Effect of External Teat Sealant on the Prevention of Intramammary Infection for Milking Cows: A Randomized Cross-Over Design Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Farm and Animals
2.2. Study Design and Interventions
2.3. External Teat Sealant
2.4. Teat Callosity
2.5. Teat Swabs
2.6. Milk Tests
2.6.1. Somatic Cell Counts
2.6.2. Bacterial Counts and Identification
2.7. Statistical Analyses
3. Results
3.1. Overview of Enrolled Cows and Interventions
3.2. Outcomes
3.2.1. ATP
3.2.2. Somatic Cell Counts
3.2.3. Bacterial Counts in Sample 1 (BC1)
3.2.4. Bacterial Counts in Sample 2 (BC2)
3.3. Bacterial Identification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ATP | adenosine triphosphate |
BC1 | bacterial counts in first foremilk |
BC2 | bacterial counts in milk just before the milking unit was attached |
ETS | external teat sealant |
RLU | relative light unit |
SCC | somatic cell counts |
References
- Ruegg, P.L. A 100-Year Review: Mastitis detection, management, and prevention. J. Dairy Sci. 2017, 100, 10381–10397. [Google Scholar] [PubMed]
- Cheng, W.N.; Han, S.G. Bovine mastitis: Risk factors, therapeutic strategies, and alternative treatments—A review. Asian-Australas. J. Anim. Sci. 2020, 33, 1699–1713. [Google Scholar] [CrossRef]
- Pol, M.; Ruegg, P.L. Treatment practices and quantification of antimicrobial drug usage in conventional and organic dairy farms in Wisconsin. J. Dairy Sci. 2007, 90, 249–261. [Google Scholar]
- Kikuchi, M.; Okabe, T.; Shimizu, H.; Matsui, T.; Matsuda, F.; Haga, T.; Fujimoto, K.; Endo, Y.; Sugiura, K. Antimicrobial use and its association with the presence of methicillin-resistant staphylococci (MRS) and extended-spectrum beta-lactamases (ESBL)-producing coliforms in mastitic milk on dairy farms in the Chiba Prefecture, Japan. Heliyon 2022, 8, e12381. [Google Scholar]
- French, E.A.; Mukai, M.; Zurakowski, M.; Rauch, B.; Gioia, G.; Hillebrandt, J.R.; Henderson, M.; Schukken, Y.H.; Hemling, T.C. Iodide Residues in Milk Vary between Iodine-Based Teat Disinfectants. J. Food Sci. 2016, 81, 1864–1870. [Google Scholar] [CrossRef]
- Wesen, D.P.; Schultz, L.H. Effectiveness of a post-milking teat dip in preventing new udder infections. J. Dairy Sci. 1970, 53, 1391–1403. [Google Scholar] [CrossRef]
- Hogan, J.S.; White, D.G.; Pankey, J.W. Effects of teat dipping on intramammary infections by staphylococci other than Staphylococcus aureus. J. Dairy Sci. 1987, 70, 873–879. [Google Scholar] [CrossRef]
- Enger, B.D.; Fox, L.K.; Gay, J.M.; Johnson, K.A. Reduction of teat skin mastitis pathogen loads: Differences between strains, dips, and contact times. J. Dairy Sci. 2015, 98, 1354–1361. [Google Scholar]
- Hogan, J.; Smith, K.L. Managing environmental mastitis. Vet. Clin. N. Am. Food Anim. Pract. 2012, 28, 217–224. [Google Scholar]
- Schreiner, D.A.; Ruegg, P.L. Relationship between udder and leg hygiene scores and subclinical mastitis. J. Dairy Sci. 2003, 86, 3460–3465. [Google Scholar]
- Bakke, M. A Comprehensive Analysis of ATP Tests: Practical Use and Recent Progress in the Total Adenylate Test for the Effective Monitoring of Hygiene. J. Food Prot. 2022, 85, 1079–1095. [Google Scholar] [CrossRef] [PubMed]
- Finger, R.; Sischo, W.M. Bioluminescence as a technique to evaluate udder preparation. J. Dairy Sci. 2001, 84, 818–823. [Google Scholar] [CrossRef] [PubMed]
- Blowey, R.W.; Collis, K. Effect of premilking teat disinfection on mastitis incidence, total bacterial count, cell count and milk yield in three dairy herds. Vet. Rec. 1992, 130, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Godden, S.; Rapnicki, P.; Stewart, S.; Fetrow, J.; Johnson, A.; Bey, R.; Farnsworth, R. Effectiveness of an internal teat seal in the prevention of new intramammary infections during the dry and early-lactation periods in dairy cows when used with a dry cow intramammary antibiotic. J. Dairy Sci. 2003, 86, 3899–3911. [Google Scholar] [CrossRef]
- Lim, G.H.; Leslie, K.E.; Kelton, D.F.; Duffield, T.F.; Timms, L.L.; Dingwell, R.T. Adherence and efficacy of an external teat sealant to prevent new intramammary infections in the dry period. J. Dairy Sci. 2007, 90, 1289–1300. [Google Scholar] [CrossRef]
- Piepers, S.; Van Den Brulle, I.; Mertens, K.; De Vliegher, S. Barrier characteristics of 3 external teat sealants to prevent bacterial penetration under in vitro conditions using rubber calf-feeding nipples. J. Dairy Sci. 2020, 103, 6569–6575. [Google Scholar] [CrossRef]
- Mein, G.A.; Neijenjuis, F.; Morgan, W.F.; Reinemann, D.J.; Hillerton, J.E.; Baines, J.R.; Ohnstad, I.; Rasmussen, M.D.; Timms, L.; Britt, J.S.; et al. Evaluation of bovine teat condition in commercial dairy herds: 1. Noninfectious factors. In Proceedings of the 2nd International Symposium on Mastitis and Milk Quality, Vancouver, BC, Canada, 13–15 September 2001; National Mastitis Council Inc.: Vancouver, BC, Canada, 2001; pp. 347–351. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=25ad5023d5154a1ab7582d333457db2a5363c766 (accessed on 22 February 2025).
- Schulthess, B.; Bloemberg, G.V.; Zbinden, R.; Böttger, E.C.; Hombach, M. Evaluation of the Bruker MALDI Biotyper for identification of Gram-positive rods: Development of a diagnostic algorithm for the clinical laboratory. J. Clin. Microbiol. 2014, 52, 1089–1097. [Google Scholar] [CrossRef]
- Mildenhall, K.B.; Rankin, S.A. Implications of Adenylate Metabolism in Hygiene Assessment: A Review. J. Food Prot. 2020, 83, 1619–1631. [Google Scholar] [CrossRef]
- Enokidani, M.; Kida, K.; Miyamoto, A. Evaluation of Teat Skin Cleanliness During Milking at a Dairy Farm Using an ATP-Bioluminescence Assay. J. Jpn. Vet. Med. Assoc. 2013, 66, 847–851. [Google Scholar] [CrossRef]
- Nørstebø, H.; Dalen, G.; Rachah, A.; Heringstad, B.; Whist, A.C.; Nødtvedt, A.; Reksen, O. Factors associated with milking-to-milking variability in somatic cell counts from healthy cows in an automatic milking system. Prev. Vet. Med. 2019, 172, 104786. [Google Scholar] [CrossRef]
- Jadhav, P.V.; Das, D.N.; Suresh, K.P.; Shome, B.R. Threshold somatic cell count for delineation of subclinical mastitis cases. Vet. World 2018, 11, 789–793. [Google Scholar] [CrossRef]
- Falentin, H.; Rault, L.; Nicolas, A.; Bouchard, D.S.; Lassalas, J.; Lamberton, P.; Aubry, J.M.; Marnet, P.G.; Le Loir, Y.; Even, S. Bovine Teat Microbiome Analysis Revealed Reduced Alpha Diversity and Significant Changes in Taxonomic Profiles in Quarters with a History of Mastitis. Front. Microbiol. 2016, 7, 480. [Google Scholar] [CrossRef]
Cow/Quarters Status | Intervention | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Experiment | Treatment | Parity (Mean ± S.D.) | log SCC (Cells/mL) (Mean ± S.D.) | Teat Score * | Pre-Dip | Post-Dip | ETS Application | ETS Dropout (%) | ||
1 | 2 | 3 | ||||||||
1 | A (cont.) | 1.1 ± 0.4 | 4.76 ± 4.59 | 0 | 11 | 8 | Yes | Yes | No | 0 (0/76) |
B | Yes | No | Yes | 14.5 (11/76) | ||||||
2 | C | 1.0 ± 0.0 | 4.70 ± 4.46 | 7 | 4 | 11 | Yes | No | Yes | 30.7 (27/88) |
D | No | No | Yes | 23.9 (21/88) |
Experiment | Treatment | n | Variables | |||
---|---|---|---|---|---|---|
logATP (RLU) | logSCC (cells/mL) | logBC1 (CFU/mL) | logBC2 (CFU/mL) | |||
1 | A (cont.) | 76 | 3.57 ± 0.21 | 4.60 ± 0.64 | 3.47 ± 0.59 | 3.33 ± 0.49 |
B | 65 | 3.14 ± 0.49 | 4.49 ± 0.71 | 3.23 ± 0.86 | 3.15 ± 1.00 | |
2 | C | 61 | 3.41 ± 0.38 | 4.14 ± 0.42 | 3.03 ± 1.16 | 3.34 ± 0.96 |
D | 67 | 3.67 ± 0.23 | 4.21 ± 0.55 | 3.57 ± 0.47 | 3.73 ± 0.32 |
Experiment 1 | ||||
p-value | ||||
Fixed effects | ATP | SCC | BC1 * | BC2 |
Teat score | 0.38 | 0.23 | 0.17 | 0.02 |
Parity | 0.32 | 0.85 | 0.11 | 0.35 |
Sequence | 0.69 | 0.17 | NT | 0.86 |
Treatment | <0.01 | 0.34 ** | 0.02 | 0.17 ** |
Period | 0.22 | 0.04 | NT | 0.04 |
Experiment 2 | ||||
p-value | ||||
Fixed effects | ATP | SCC * | BC1 * | BC2 |
Teat score | 0.84 | <0.01 | 0.16 | 0.13 |
Sequence | 0.79 | NT | 0.21 | 0.23 |
Treatment | 0.25 ** | 0.11 | 0.49 ** | 0.78 ** |
Period | <0.01 | NT | 0.03 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shinozuka, Y.; Kanda, T.; Hisaeda, K.; Goto, A.; Inoue, Y.; Yamamoto, N. Effect of External Teat Sealant on the Prevention of Intramammary Infection for Milking Cows: A Randomized Cross-Over Design Study. Microorganisms 2025, 13, 819. https://doi.org/10.3390/microorganisms13040819
Shinozuka Y, Kanda T, Hisaeda K, Goto A, Inoue Y, Yamamoto N. Effect of External Teat Sealant on the Prevention of Intramammary Infection for Milking Cows: A Randomized Cross-Over Design Study. Microorganisms. 2025; 13(4):819. https://doi.org/10.3390/microorganisms13040819
Chicago/Turabian StyleShinozuka, Yasunori, Takuya Kanda, Keiichi Hisaeda, Akira Goto, Yoichi Inoue, and Naoki Yamamoto. 2025. "Effect of External Teat Sealant on the Prevention of Intramammary Infection for Milking Cows: A Randomized Cross-Over Design Study" Microorganisms 13, no. 4: 819. https://doi.org/10.3390/microorganisms13040819
APA StyleShinozuka, Y., Kanda, T., Hisaeda, K., Goto, A., Inoue, Y., & Yamamoto, N. (2025). Effect of External Teat Sealant on the Prevention of Intramammary Infection for Milking Cows: A Randomized Cross-Over Design Study. Microorganisms, 13(4), 819. https://doi.org/10.3390/microorganisms13040819