Plasmid Dissemination in Multispecies Carbapenemase-Producing Enterobacterales Outbreaks Involving Clinical and Environmental Strains: A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Main Characteristics of the Selected Studies
3.2. Horizontal Transmission of Carbapenemase Genes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Watanabe, M.; Iyobe, S.; Inoue, M.; Mitsuhashi, S. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 1991, 35, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Yigit, H.; Queenan, A.M.; Anderson, G.J.; Domenech-Sanchez, A.; Biddle, J.W.; Steward, C.D.; Alberti, S.; Bush, K.; Tenover, F.C. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2001, 45, 1151–1161. [Google Scholar] [CrossRef] [PubMed]
- Van Duin, D.; Doi, Y. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence 2017, 8, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Salamanca-Rivera, E.; Palacios-Baena, Z.R.; Cañada, J.E.; Moure, Z.; Pérez-Vázquez, M.; Calvo-Montes, J.; Martínez-Martínez, L.; Cantón, R.; Ruiz Carrascoso, G.; Pitart, C.; et al. GEMARA/GEIRAS-SEIMC/REIPI CARB–ES–19 Group. Epidemiological and clinical characterization of community, healthcare-associated and nosocomial colonization and infection due to carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in Spain. Infection 2024, 52, 2231–2240. [Google Scholar] [CrossRef]
- Shrestha, R.; Luterbach, C.L.; Dai, W.; Komarow, L.; Earley, M.; Weston, G.; Herc, E.; Jacob, J.T.; Salata, R.; Wong, D.; et al. Characteristics of community-acquired carbapenem-resistant Enterobacterales. J. Antimicrob. Chemother. 2022, 77, 2763–2771. [Google Scholar] [CrossRef]
- Kanj, S.S.; Kantecki, M.; Arhin, F.F.; Gheorghe, M. Epidemiology and outcomes associated with MBL-producing Enterobacterales: A systematic literature review. Int. J. Antimicrob. Agents 2025, 65, 107449. [Google Scholar] [CrossRef]
- Woodford, N.; Turton, J.F.; Livermore, D.M. Multiresistant Gram-negative bacteria: The role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol. Rev. 2011, 35, 736–755. [Google Scholar] [CrossRef]
- Mathers, A.J.; Peirano, G.; Pitout, J.D. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin. Microbiol. Rev. 2015, 28, 565–591. [Google Scholar] [CrossRef]
- Kopotsa, K.; Osei Sekyere, J.; Mbelle, N.M. Plasmid evolution in carbapenemase-producing Enterobacteriaceae: A review. Ann. N. Y. Acad. Sci. 2019, 1457, 61–91. [Google Scholar] [CrossRef]
- Marimuthu, K.; Venkatachalam, I.; Koh, V.; Harbarth, S.; Perencevich, E.; Cherng, B.P.Z.; Fong, R.K.C.; Pada, S.K.; Ooi, S.T.; Smitasin, N.; et al. Carbapenemase-Producing Enterobacteriaceae in Singapore (CaPES) Study Group. Whole genome sequencing reveals hidden transmission of carbapenemase-producing Enterobacterales. Nat. Commun. 2022, 13, 3052. [Google Scholar] [CrossRef]
- Kessler, C.; Hou, J.; Neo, O.; Buckner, M.M.C. In situ, in vivo, and in vitro approaches for studying AMR plasmid conjugation in the gut microbiome. FEMS Microbiol. Rev. 2023, 47, fuac044. [Google Scholar] [CrossRef]
- Michaelis, C.; Grohmann, E. Horizontal gene transfer of antibiotic resistance genes in biofilms. Antibiotics 2023, 12, 328. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.K.; Rajpurohit, Y.S. Multitasking functions of bacterial extracellular DNA in biofilms. J. Bacteriol. 2024, 206, e0000624. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Br. Med. J. 2021, 372, n71. [Google Scholar] [CrossRef]
- Tofteland, S.; Naseer, U.; Lislevand, J.H.; Sundsfjord, A.; Samuelsen, O. A long-term low-frequency hospital outbreak of KPC-producing Klebsiella pneumoniae involving intergenus plasmid diffusion and a persisting environmental reservoir. PLoS ONE 2013, 8, e59015. [Google Scholar] [CrossRef]
- Phan, H.T.T.; Stoesser, N.; Maciuca, I.E.; Toma, F.; Szekely, E.; Flonta, M.; Hubbard, A.T.M.; Pankhurst, L.; Do, T.; Peto, T.E.A.; et al. Illumina short-read and MinION long-read WGS to characterize the molecular epidemiology of an NDM-1 Serratia marcescens outbreak in Romania. J. Antimicrob. Chemother. 2018, 73, 672–679. [Google Scholar] [CrossRef]
- Mathers, A.J.; Crook, D.; Vaughan, A.; Barry, K.E.; Vegesana, K.; Stoesser, N.; Parikh, H.I.; Sebra, R.; Kotay, S.; Walker, A.S.; et al. Klebsiella quasipneumoniae provides a window into carbapenemase gene transfer, plasmid rearrangements, and patient interactions with the hospital environment. Antimicrob. Agents Chemother. 2019, 63, e02513–e02518. [Google Scholar] [CrossRef]
- Weber, R.E.; Pietsch, M.; Frühauf, A.; Pfeifer, Y.; Martin, M.; Luft, D.; Gatermann, S.; Pfennigwerth, N.; Kaase, M.; Werner, G.; et al. IS26-mediated transfer of bla (NDM-1) as the main route of resistance transmission during a polyclonal, multispecies outbreak in a German hospital. Front. Microbiol. 2019, 10, 2817. [Google Scholar] [CrossRef]
- Gobeille Paré, S.; Mataseje, L.F.; Ruest, A.; Boyd, D.A.; Lefebvre, B.; Trépanier, P.; Longtin, J.; Dolce, P.; Mulvey, M.R. Arrival of the rare carbapenemase OXA-204 in Canada causing a multispecies outbreak over 3 years. J. Antimicrob. Chemother. 2020, 75, 2787–2796. [Google Scholar] [CrossRef]
- Kizny Gordon, A.; Phan, H.T.T.; Lipworth, S.I.; Cheong, E.; Gottlieb, T.; George, S.; Peto, T.E.A.; Mathers, A.J.; Walker, A.S.; Crook, D.W.; et al. Genomic dynamics of species and mobile genetic elements in a prolonged blaIMP-4-associated carbapenemase outbreak in an Australian hospital. J. Antimicrob. Chemother. 2020, 75, 873–882. [Google Scholar] [CrossRef]
- Brehony, C.; Domegan, L.; Foley, M.; Fitzpatrick, M.; Cafferkey, J.P.; O’Connell, K.; Dinesh, B.; McNamara, E.; Duffy, F.; Fitzpatrick, F.; et al. Molecular epidemiology of an extended multiple-species OXA-48 CPE outbreak in a hospital ward in Ireland, 2018–2019. Antimicrob. Steward. Healthc. Epidemiol. 2021, 1, e54. [Google Scholar] [CrossRef] [PubMed]
- de Man, T.J.B.; Yaffee, A.Q.; Zhu, W.; Batra, D.; Alyanak, E.; Rowe, L.A.; McAllister, G.; Moulton-Meissner, H.; Boyd, S.; Flinchum, A.; et al. Multispecies outbreak of Verona Integron-encoded Metallo-ß-lactamase-producing multidrug resistant bacteria driven by a promiscuous incompatibility group A/C2 plasmid. Clin. Infect. Dis. 2021, 72, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Macesic, N.; Hawkey, J.; Vezina, B.; Wisniewski, J.A.; Cottingham, H.; Blakeway, L.V.; Harshegyi, T.; Pragastis, K.; Badoordeen, G.Z.; Dennison, A.; et al. Genomic dissection of endemic carbapenem resistance reveals metallo-beta-lactamase dissemination through clonal, plasmid and integron transfer. Nat. Commun. 2023, 14, 4764. [Google Scholar] [CrossRef] [PubMed]
- Anantharajah, A.; Goormaghtigh, F.; Nguvuyla Mantu, E.; Güler, B.; Bearzatto, B.; Momal, A.; Werion, A.; Hantson, P.; Kabamba-Mukadi, B.; Van Bambeke, F.; et al. Long-term intensive care unit outbreak of carbapenemase-producing organisms associated with contaminated sink drains. J. Hosp. Infect. 2024, 143, 38–47. [Google Scholar] [CrossRef]
- Rankin, D.A.; Walters, M.S.; Caicedo, L.; Gable, P.; Moulton-Meissner, H.A.; Chan, A.; Burks, A.; Edwards, K.; McAllister, G.; Kent, A.; et al. Concurrent transmission of multiple carbapenemases in a long-term acute-care hospital. Infect. Control Hosp. Epidemiol. 2024, 45, 292–301. [Google Scholar] [CrossRef]
- Tsukada, M.; Miyazaki, T.; Aoki, K.; Yoshizawa, S.; Kondo, Y.; Sawa, T.; Murakami, H.; Sato, E.; Tomida, M.; Otani, M.; et al. The outbreak of multispecies carbapenemase-producing Enterobacterales associated with pediatric ward sinks: IncM1 plasmids act as vehicles for cross-species transmission. Am. J. Infect. Control 2024, 52, 801–806. [Google Scholar] [CrossRef]
- Yao, Y.; Falgenhauer, L.; Rezazadeh, Y.; Falgenhauer, J.; IncN Study Group; Imirzalioglu, C.; Chakraborty, T. Predominant transmission of KPC-2 carbapenemase in Germany by a unique IncN plasmid variant harboring a novel non-transposable element (NTE (KPC)-Y). Microbiol. Spectr. 2024, 12, e0256423. [Google Scholar] [CrossRef]
- Bonomo, R.A.; Burd, E.M.; Conly, J.; Limbago, B.M.; Poirel, L.; Segre, J.A.; Westblade, L.F. Carbapenemase-producing organisms: A global scourge. Clin. Infect. Dis. 2018, 66, 1290–1297. [Google Scholar] [CrossRef]
- Peirano, G.; Pitout, J.D.D. Rapidly spreading Enterobacterales with OXA-48-like carbapenemases. J. Clin. Microbiol. 2025, 63, e0151524. [Google Scholar] [CrossRef]
- Carattoli, A. Plasmids and the spread of resistance. Int. J. Med. Microbiol. 2013, 303, 298–304. [Google Scholar] [CrossRef]
- Tamura, K.; Sakazaki, R.; Kosako, Y.; Yoshizaki, E. Leclercia adecarboxylata gen. nov., comb. nov., formerly known as Escherichia adecarboxylata. Curr. Microbiol. 1986, 13, 179–184. [Google Scholar] [CrossRef]
- Drancourt, M.; Bollet, C.; Carta, A.; Rousselier, P. Phylogenetic analyses of Klebsiella species delineate Klebsiella and Raoultella gen. nov., with description of Raoultella ornithinolytica comb. nov., Raoultella terrigena comb. nov. and Raoultella planticola comb. nov. Int. J. Syst. Evol. Microbiol. 2001, 51, 925–932. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, T.G.; Gonçalves, B.R.; da Silva, M.S.; Novais, Â.; Machado, E.; Carriço, J.A.; Peixe, L. Citrobacter portucalensis sp. nov., isolated from an aquatic sample. Int. J. Syst. Evol. Microbiol. 2017, 67, 3513–3517. [Google Scholar] [CrossRef] [PubMed]
- Jolivet, S.; Couturier, J.; Le Neindre, K.; Ehmig, M.; Dortet, L.; Emeraud, C.; Barbut, F. Persistence of OXA-48-producing ST-22 Citrobacter freundii in patients and the hospital environment, Paris, France, 2016 to 2022. Euro Surveill. 2024, 29, 2400262. [Google Scholar] [CrossRef]
- Heljanko, V.; Johansson, V.; Räisänen, K.; Anttila, V.J.; Lyytikäinen, O.; Jalava, J.; Weijo, I.; Lehtinen, J.M.; Lehto, K.M.; Lipponen, A.; et al. Genomic epidemiology of nosocomial carbapenemase-producing Citrobacter freundii in sewerage systems in the Helsinki metropolitan area, Finland. Front. Microbiol. 2023, 14, 1165751. [Google Scholar] [CrossRef]
- Choquet, M.; Mullié, C. Down the drain: A systematic review of molecular biology evidence linking sinks with bacterial healthcare-associated infections in intensive care units. Hygiene 2022, 2, 94–108. [Google Scholar] [CrossRef]
- Weingarten, R.A.; Johnson, R.C.; Conlan, S.; Ramsburg, A.M.; Dekker, J.P.; Lau, A.F.; Khil, P.; Odom, R.T.; Deming, C.; Park, M.; et al. Genomic analysis of hospital plumbing reveals diverse reservoir of bacterial plasmids conferring carbapenem resistance. MBio 2018, 9, e02011–e02017. [Google Scholar] [CrossRef]
- Mathers, A.J.; Vegesana, K.; German Mesner, I.; Barry, K.E.; Pannone, A.; Baumann, J.; Crook, D.W.; Stoesser, N.; Kotay, S.; Carroll, J.; et al. Intensive care unit wastewater interventions to prevent transmission of multispecies Klebsiella pneumoniae carbapenemase-producing organisms. Clin. Infect. Dis. 2018, 67, 171–178. [Google Scholar] [CrossRef]
- Moulin, E.; Filippidis, P.; Paire-Ficout, C.A.; Blanc, D.S.; Grandbastien, B.; Senn, L. Successful control of an environmental reservoir of NDM-producing Klebsiella pneumoniae associated with nosocomial transmissions in a low-incidence setting. Antimicrob. Resist. Infect. Control 2024, 13, 130. [Google Scholar] [CrossRef]
- Kumar, P.; Sundermann, A.J.; Martin, E.M.; Snyder, G.M.; Marsh, J.W.; Harrison, L.H.; Roberts, M.S. Method for economic evaluation of bacterial whole genome sequencing surveillance compared to standard of care in detecting hospital outbreaks. Clin. Infect. Dis. 2021, 73, e9–e18. [Google Scholar] [CrossRef]
- Elliott, T.M.; Harris, P.N.; Roberts, L.W.; Doidge, M.; Hurst, T.; Hajkowicz, K.; Forde, B.; Paterson, D.L.; Gordon, L.G. Cost-effectiveness analysis of whole-genome sequencing during an outbreak of carbapenem-resistant Acinetobacter baumannnii. Antimicrob. Steward. Healthc. Epidemiol. 2021, 1, e62. [Google Scholar] [CrossRef]
Reference | Continental Location (Country) | Isolates Retrieved from | Setting | Duration in Months (Period Dates) |
---|---|---|---|---|
Tofteland et al., 2013 [15] | Europe (Norway) | 1 OI R and P CSP 2 ESC | 1 ICU * (outbreak), 1 hospital (environmental screening) 3 hospitals (clinical screening) | 11 (05/2010–04/2011) |
Phan et al., 2018 [16] | Europe (Romania) | 2 OIs 1 ESC | 1 NICU, 1 neonatal ward 2 hospitals | 60 (2010–2015) |
Mathers et al., 2019 [17] | America (United States) | CSP 1 ESC | 1 hospital | 117 (08/2007–05/2017) |
Weber et al., 2019 [18] | Europe (Germany) | 1 OI CSP ESC | 7 wards 1 hospital | 27 (05/2015–09/2017) |
Gobeille-Paré et al., 2020 [19] | America (Canada) | 1 OI CSP ESC | ICU, Nephrology unit 4 hospitals | 34 (01/2016–10/2018) |
Kizny-Gordon et al., 2020 [20] | Australia (Australia) | 1 OI ESCs | 1 burn unit 1 hospital | 120 (2006–2015) |
Brehony et al., 2021 [21] | Europe (Ireland) | 1 OI ESCs | 1 (confined) ward 1 hospital | 18 (07/2018–12/2019) |
De Man et al., 2021 [22] | America (United States) | 1 OI ESC | 1 ICU 1 hospital | 10 (08/2015–05/2016) |
Macesic et al., 2023 [23] | Australia (Australia) | 1 OI ESC | 1 hospital | 96 (2002–2020) |
Anantharajah et al., 2024 [24] | Europe (Belgium) | 1 OI CSP ESCs | 1 ICU 1 hospital | 48 (01/2018–12/2022) |
Rankin et al., 2024 [25] | America (United States) | 2 OIs CSP ESCs | 1 hospital | 17 (07/2017–12/2018) |
Tsukada et al., 2024 [26] | Asia (Japan) | 1 OI Post-OI P CSP ESC | 1 pediatric ward 1 hospital | 17 (06/2016–10/2017) |
Yao et al., 2024 [27] | Europe (Germany) | OIs SP ESC | 61 hospitals | 94 (2013–2019) |
Reference | Carbapenemase | Sources | Species | Plasmid | Involved Mobile Genetic Elements | |
---|---|---|---|---|---|---|
Length (kb) | Grouping | |||||
Tofteland et al., 2013 [15] | KPC-2 | P + E * | K. pneumoniae | 97 | IncFII | ND |
P + E | E. asburiae | |||||
Phan et al., 2018 [16] | NDM-1 | P | S. marcescens | ND | IncFII | ISKpn26, ISEhe3 |
P | E. cloacae | |||||
P | K. pneumoniae | |||||
E | S. marcescens | ND | ||||
Mathers et al., 2019 [17] | KPC-3 | P | K. quasipneumoniae | 447 | RepA | Tn4401b-1 |
KPC-2 + KPC-3 | E | K.quasipneumoniae | 447 53 | IncU/X5 RepA | ||
KPC-2 | E | K. quasipneumoniae | 441 69 | IncX5 RepA | ||
KPC-2 | P | S. marcescens | 69 | IncU/X5 | ||
Weber et al., 2019 [18] | NDM-1 | P + E | E. coli | 44.5 | IncN | Tn125, IS26 |
P | M. morganii | |||||
P | E. coli | 115.3 | IncA/C2 | |||
P | K. pneumoniae | 155.2 | ||||
P | C. freundii | 176.5 | ||||
Gobeille-Paré et al., 2020 [19] | OXA-204 | P + E | C. freundii | 256–282 | IncFII/FIB/A/C2 | ND |
P | E. coli | |||||
P | K. quasipneumoniae | 187 | IncA/C2 | |||
Kizny-Gordon et al., 2020 [20] | IMP-4 | P | E. cloacae | 88 173 | IncM2 | blaIMP-4-qacG2-aacA4-catB3 cassette |
E | E. cloacae | 86 | ||||
P | C. freundii | 176 | ||||
E | C. freundii | 87 176 | ||||
P | K. pneumoniae | 87 209 | ||||
P | K. oxytoca | 59 | ||||
E | S. marcescens | 87 | ||||
E | L. adecarboxylata | 128 82 | ||||
E | Enterobacter spp. | 96 | ||||
P | E. coli | ND | IS116, IS110, IS902 | |||
P | S. marcescens | |||||
Brehony et al., 2021 [21] | OXA-48 | P | E. cloacae complex | ND | Types 1 and 2 | ND |
P | E. coli | |||||
E | K. michiganensis | Type 1 | ||||
P | K. michiganensis | Type 2 | ||||
P | K. oxytoca | |||||
P | C. freundii | |||||
P | S. marcescens | |||||
De Man et al., 2021 [22] | VIM-1 | P | K. pneumoniae | 160 164 | IncA/C2 | In1209 |
P | E. hormaechei | |||||
P | E. coli | 160 | ||||
P | R. ornithinolytica | |||||
E | C. amalonaticus | |||||
Macesic et al., 2023 [23] | IMP-4 | P + E | E. hormaechei | ND | IncC IncHI2A IncL/M | Class 1 integron blaIMP-4-qacG-aacA4-catB3-qacE-sul1 |
P | E. cloacae | IncC IncL/M | ||||
P | E. coli | |||||
P | K. pneumoniae | |||||
P | K. michiganensis | |||||
P | C. freundii | |||||
P | K. oxytoca | IncC IncHI2A | ||||
P + E | S. marcescens | IncC | ||||
Anantharajah et al., 2024 [24] | NDM-1 | P + E | E. cloacae | 140 | IncC | Class 1 integron |
P + E | C. freundii | |||||
P | E. coli | |||||
P + E | K. oxytoca | |||||
P | P. mirabilis | |||||
P | K. pneumoniae | |||||
Rankin et al., 2024 [25] | KPC-3 | P + E | C. freundii | ND | IncFII | ND |
E | E. cloacae complex | |||||
P | S. marcescens | |||||
Tsukada et al., 2024 [26] | IMP-1 | P + E | K. pneumoniae complex | ND | IncM1 | Class 1 integron |
P | C. freundii | |||||
IMP-11 | P | E. cloacae complex | ||||
Yao et al., 2024 [27] | KPC-2 | P | K. pneumoniae | ND | IncN | NTEKPC-Y cassette, IS26 |
P + E | E. coli | 43-kb backbone | ||||
P + E | C. freundii | |||||
P + E | E. xiangfangensis | |||||
P + E | K. michiganensis | |||||
P + E | C. portucalensis | |||||
P + E | K. aerogenes | |||||
P | C. koseri |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alglave, L.; Faure, K.; Mullié, C. Plasmid Dissemination in Multispecies Carbapenemase-Producing Enterobacterales Outbreaks Involving Clinical and Environmental Strains: A Narrative Review. Microorganisms 2025, 13, 810. https://doi.org/10.3390/microorganisms13040810
Alglave L, Faure K, Mullié C. Plasmid Dissemination in Multispecies Carbapenemase-Producing Enterobacterales Outbreaks Involving Clinical and Environmental Strains: A Narrative Review. Microorganisms. 2025; 13(4):810. https://doi.org/10.3390/microorganisms13040810
Chicago/Turabian StyleAlglave, Louis, Karine Faure, and Catherine Mullié. 2025. "Plasmid Dissemination in Multispecies Carbapenemase-Producing Enterobacterales Outbreaks Involving Clinical and Environmental Strains: A Narrative Review" Microorganisms 13, no. 4: 810. https://doi.org/10.3390/microorganisms13040810
APA StyleAlglave, L., Faure, K., & Mullié, C. (2025). Plasmid Dissemination in Multispecies Carbapenemase-Producing Enterobacterales Outbreaks Involving Clinical and Environmental Strains: A Narrative Review. Microorganisms, 13(4), 810. https://doi.org/10.3390/microorganisms13040810