New Method for Lawsonia intracelullaris Quantification Based on Optical Density by Spectrophotometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Vitro Propagation of Lawsonia Intracellularis
2.2. Spectrophotometric Analysis of Optical Density (OD) of L. intracellularis Culture
2.3. Real Time Quantitative PCR
2.4. Statistical Analysis
3. Results
3.1. Spectrophotometry and RT-qPCR
3.2. Regression Analysis
3.3. Transformation of OD to mL of Bacterial Suspension
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lawson, G.H.K.; McOrist, S.; Jasni, S.; Mackie, R.A. Intracellular bacteria of porcine proliferative enteropathy: Cultivation and maintenance in vitro. J. Clin. Microbiol. 1993, 31, 1136–1142. [Google Scholar] [CrossRef] [PubMed]
- McOrist, S.; Roberts, L.; Jasni, S.; Rowland, A.C.; Lawson, G.H.; Gebhart, C.J.; Bosworth, B. Developed and resolving lesions in porcine proliferative enteropathy: Possible pathogenetic mechanisms. J. Comp. Pathol. 1996, 115, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Resende, T.P.; Pereira, C.E.R.; Daniel, A.G.S.; Vasquez, E.; Saqui-Salces, M.; Vannucci, F.A.; Gebhart, C.J. Effects of Lawsonia intracellularis infection in the proliferation of different mammalian cell lines. Vet. Microbiol. 2019, 228, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Guedes, R.M.C.; Gebhart, C.J.; Deen, J.; Winkelman, N.L. Validation of an immunoperoxidase monolayer assay as a serologic test for porcine proliferative enteropathy. J. Vet. Diagnostic Investig. 2002, 14, 528–530. [Google Scholar] [CrossRef]
- Vannucci, F.A.; Wattanaphansak, S.; Gebhart, C.J. An alternative method for cultivation of Lawsonia intracellularis. J. Clin. Microbiol. 2012, 50, 1070–1072. [Google Scholar] [CrossRef]
- Guedes, R.M.C.; Gebhart, C.J. Onset and duration of fecal shedding, cell-mediated and humoral immune responses in pigs after challenge with a pathogenic isolate or attenuated vaccine strain of Lawsonia intracellularis. Vet. Microbiol. 2003, 91, 135–145. [Google Scholar] [CrossRef]
- Lawson, G.H.; Gebhart, C.J. Proliferative enteropathy. J. Comp. Pathol. 2000, 122, 77–100. [Google Scholar] [CrossRef] [PubMed]
- McOrist, S.; Jasni, S.; Mackie, R.A.; Berschneider, H.M.; Rowland, A.C.; Lawson, G.H. Entry of the bacterium ileal symbiont intracellularis into cultured enterocytes and its subsequent release. Res. Vet. Sci. 1995, 59, 255–260. [Google Scholar] [CrossRef]
- Pereira, C.E.R.; Resende, T.P.; Daniel, A.G.S.; Vannucci, F.A.; Gebhart, C.; Guedes, R.M.C. Evaluation of the role of clathrin and bacterial viability in the endocytosis of Lawsonia intracellularis. Front. Vet. Sci. 2023, 30, 1005676. [Google Scholar] [CrossRef]
- Boutrup, T.S.; Boesen, H.T.; Boye, M.; Agerholm, J.S.; Jensen, T.K. Early pathogenesis in porcine proliferative enteropathy caused by Lawsonia intracellularis. J. Comp. Pathol. 2010, 143, 101–109. [Google Scholar] [CrossRef]
- Frazer, M.L. Lawsonia intracellularis Infection in Horses: 2005–2007. J. Vet. Intern. Med. 2008, 22, 1243–1248. [Google Scholar] [CrossRef]
- Gabardo, M.P.; Sato, J.P.H.; Daniel, A.G.S.; Andrade, M.R.; Pereira, C.E.R.; Rezende, T.P.; Otoni, L.V.A.; Rezende, L.A.; Guedes, R.M.C. Evaluation of the involvement of mice (Mus musculus) in the epidemiology of porcine proliferative enteropathy. Vet. Microbiol. 2017, 205, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Nathues, H.; Holthaus, K.; Grosse Beilage, E. Quantification of Lawsonia intracellularis in porcine faeces by real-time PCR. J. Appl. Microbiol. 2009, 107, 2009–2016. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.E.R.; Resende, T.P.; Armién, A.G.; Laub, R.P.; Vannucci, F.A.; Santos, R.L.; Gebhart, C.J.; Guedes, R.M.C. Survival of Lawsonia intracellularis in porcine peripheral blood monocyte-derived macrophages. PLoS ONE 2020, 15, e0236887. [Google Scholar] [CrossRef]
- McOrist, S.; Boid, R.; Lawson, G.H.; McConnell, I. Monoclonal antibodies to intracellular campylobacter-like organisms of the porcine proliferative enteropathies. Vet. Rec. 1987, 121, 421–422. [Google Scholar] [CrossRef] [PubMed]
- Kelley, M.F.; Gebhart, C.J.; Oliveira, S. Multilocus Sequencing Typing System for Lawsonia intracellularis. Chicago, IL. Proceedings of the 91st Conference of Research Workers in Animal Diseases (CRWAD). Abstract 109. 2005. p. 156. Available online: https://crwad.org/wp-content/uploads/2017/11/CRWAD_Proceedings_2010.pdf (accessed on 22 February 2025).
- Vannucci, F.A.; Foster, D.N.; Gebhart, C.J. Comparative transcriptional analysis of homologous pathogenic and non-pathogenic Lawsonia intracellularis isolates in infected porcine cells. PLoS ONE 2012, 7, e46708. [Google Scholar] [CrossRef]
- Brown, H.L. Microbial Growth. In Encyclopedia of Infection and Immunity; Rezaei, N., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 324–335. [Google Scholar] [CrossRef]
- de Petris, S. Ultrastructure of the cell wall of Escherichia coli. J. Ultrastruct. Res. 1965, 12, 247–262. [Google Scholar] [CrossRef]
- Fredlund, J.; Santos, J.C.; Stévenin, V.; Weiner, A.; Latour-Lambert, P.; Rechav, K.; Mallet, A.; Krijnse-Locker, J.; Elbaum, M.; Enninga, J. The entry of Salmonella in a distinct tight compartment revealed at high temporal and ultrastructural resolution. Cell Microbiol. 2018, 20, 1–13. [Google Scholar] [CrossRef]
- Wattanaphansak, S.; Gebhart, C.J.; Anderson, J.M.; Singer, R.S. Development of a polymerase chain reaction assay for quantification of Lawsonia intracellularis. J. Vet. Diagn. Invest. 2010, 602, 598–602. [Google Scholar] [CrossRef]
- Sampieri, F.; Vannucci, F.A.; Allen, A.L.; Pusterla, N.; Antonopoulos, A.J.; Ball, K.R.; Thompson, J.; Dowling, P.M.; Hamilton, D.L.; Gebhart, C.J. Species-specificity of equine and porcine Lawsonia intracellularis isolates in laboratory animals. Can. J. Vet. Res. = Rev. Can. Rech. Vet. 2013, 77, 261–272. [Google Scholar]
- RCT. R Core Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Jepras, R.I.; Paul, F.E.; Pearson, S.C.; Wilkinson, M.J. Rapid assessment of antibiotic effects on Escherichia coli by bis-(1, 3-dibutylbarbituric acid) trimethine oxonol and flow cytometry. Antimicrob. Agents Chemother. 1997, 41, 2001–2005. [Google Scholar] [CrossRef] [PubMed]
- Beal, J.; Farny, N.G.; Haddock-Angelli, T.; Selvarajah, V.; Baldwin, G.S.; Buckley-Taylor, R.; Gershater, M.; Kiga, D.; Marken, J.; Sanchania, V.; et al. Robust estimation of bacterial cell count from optical density. Commun. Biol. 2020, 3, 512. [Google Scholar] [CrossRef] [PubMed]
- Mira, P.; Yeh, P.; Hall, B.G. Estimating microbial population data from optical density. PLoS ONE 2022, 17, e0276040. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.F. Estudo de Mecanismos de Patogenicidade Utilizados pela Salmonella Enterica Sorotipo Typhimurium e Salmonella enterica Sorotipo Typhi No Intestino de Modelos Animais de Infecção, Thesis. Veterinary School, Universidade Federal de Minas Gerais, 2015; 120p. Available online: http://hdl.handle.net/1843/BUBD-A4YEPF (accessed on 22 February 2025).
- Zhou, Q.; Qi, Y.P.; Yang, F. Application of spectrophotometry to evaluate the concentration of purified White Spot Syndrome Virus. J. Virol. Methods 2007, 146, 288–292. [Google Scholar] [CrossRef]
- Jacobson, M.; Aspan, A.; Königsson, M.H.; Segerstad, C.H.A.; Wallgren, P.; Fellström, C.; Jensen-Waern, M.; Gunnarson, A. Routine diagnostics of Lawsonia intracellularis performed by PCR, serological and postmortem examination, with special emphasis on sample preparation methods for PCR. Vet. Microbiol. 2004, 102, 189–201. [Google Scholar] [CrossRef]
Concentrations | 405 nm Cuvette | 450 nm Cuvette | 405 nm Microplate | 450 nm Microplate | RT-qPCR (Ct) |
---|---|---|---|---|---|
D1 | 0.604 | 0.487 | 0.161 | 0.137 | 15.706 |
D2 | 0.302 | 0.245 | 0.106 | 0.091 | 16.094 |
D3 | 0.149 | 0.125 | 0.085 | 0.073 | 16.520 |
D4 | 0.077 | 0.064 | 0.073 | 0.063 | 18.657 |
D5 | 0.026 | 0.024 | 0.066 | 0.057 | 19.191 |
Concentrations | 405 nm Cuvette | 450 nm Cuvette | 405 nm Microplate | 450 nm Microplate | RT-qPCR (Ct) |
D1 | 0.381 | 0.305 | 0.178 | 0.152 | 16.708 |
D2 | 0.182 | 0.147 | 0.120 | 0.102 | 17.392 |
D3 | 0.076 | 0.057 | 0.086 | 0.075 | 18.282 |
D4 | 0.044 | 0.032 | 0.068 | 0.057 | 19.004 |
D5 | 0.027 | 0.019 | 0.058 | 0.051 | 20.361 |
Parameters | R2 | Significance Level (p) | Equation |
---|---|---|---|
RT-qPCRq vs. OD on microplate at 405 nm | 0.8149 | 0.0359 | f(x) = −7.438 × 108 + 1.797 × 1010. X |
RT-qPCR vs. DO in cuvette at 405 nm | 0.8423 | 0.0279 | f(x) = 3.255 × 108 + 3.003 × 109. X |
RT-qPCR vs. OD on microplate at 450 nm | 0.82 | 0.0343 | f(x) = −8.006 × 108 + 2.169 × 1010. X |
RT-qPCR vs. DO in cuvette at 450 nm | 0.846 | 0.027 | f(x) = 3.107 × 108 + 3.758 × 109. X |
Test 1 Sample | Ct | Log (X = −Y − 48.983/3.584) | L. intracellularis/mL |
D1 | 15.706 | 9.285 | 1.93 × 109 |
D2 | 16.094 | 9.177 | 1.50 × 109 |
D3 | 16.520 | 9.058 | 1.14 × 109 |
D4 | 18.657 | 8.461 | 2.89 × 108 |
D5 | 19.191 | 8.313 | 2.05 × 108 |
Test 2 Sample | Ct | Log (X = −Y − 48.983/3.584) | L. intracellularis/mL |
D1 | 16.844 | 8.967 | 9.28 × 108 |
D2 | 17.568 | 8.765 | 5.83 × 108 |
D3 | 18.334 | 8.552 | 3.56 × 108 |
D4 | 18.954 | 8.379 | 2.39 × 108 |
D5 | 20.451 | 7.961 | 9.14 × 107 |
Test 1 Sample | OD | L. intracellularis/mL Cell Count (CC) | Test 2 Sample | OD | L. intracellularis/mL Cell Count (CC) |
---|---|---|---|---|---|
D1 | 0.305 | 1.46 × 109 | D1 | 0.487 | 2.14 × 109 |
D2 | 0.15 | 8.63 × 108 | D2 | 0.25 | 1.23 × 109 |
D3 | 0.06 | 5.25 × 108 | D3 | 0.13 | 7.80 × 108 |
D4 | 0.03 | 4.31 × 108 | D4 | 0.06 | 5.51 × 108 |
D5 | 0.02 | 3.82 × 108 | D5 | 0.02 | 4.01 × 108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suarez-Duarte, M.E.; Laub, R.P.; Santos, R.L.; Pereira, C.E.R.; Resende, T.P.; Araujo, M.D.; Correia, P.A.; Barbosa, J.C.R.; Guedes, R.M.C. New Method for Lawsonia intracelullaris Quantification Based on Optical Density by Spectrophotometry. Microorganisms 2025, 13, 568. https://doi.org/10.3390/microorganisms13030568
Suarez-Duarte ME, Laub RP, Santos RL, Pereira CER, Resende TP, Araujo MD, Correia PA, Barbosa JCR, Guedes RMC. New Method for Lawsonia intracelullaris Quantification Based on Optical Density by Spectrophotometry. Microorganisms. 2025; 13(3):568. https://doi.org/10.3390/microorganisms13030568
Chicago/Turabian StyleSuarez-Duarte, Mirtha E., Ricardo P. Laub, Renato L. Santos, Carlos E. R. Pereira, Talita P. Resende, Matheus D. Araujo, Paula A. Correia, Jessica C. R. Barbosa, and Roberto M. C. Guedes. 2025. "New Method for Lawsonia intracelullaris Quantification Based on Optical Density by Spectrophotometry" Microorganisms 13, no. 3: 568. https://doi.org/10.3390/microorganisms13030568
APA StyleSuarez-Duarte, M. E., Laub, R. P., Santos, R. L., Pereira, C. E. R., Resende, T. P., Araujo, M. D., Correia, P. A., Barbosa, J. C. R., & Guedes, R. M. C. (2025). New Method for Lawsonia intracelullaris Quantification Based on Optical Density by Spectrophotometry. Microorganisms, 13(3), 568. https://doi.org/10.3390/microorganisms13030568