Mechanisms and Applications of Gastrointestinal Microbiota–Metabolite Interactions in Ruminants: A Review
Abstract
1. Introduction
2. Characteristics and Microbial Ecology of the Ruminant Digestive System
2.1. Species Diversity and Digestive System Characteristics
2.2. Metabolic Characteristics of Ruminants
2.2.1. Fundamental Changes in Energy Metabolism
2.2.2. Complex Hydrogen Metabolic Network and Methane Production
2.2.3. Efficient Nitrogen Utilization and Transformation
2.2.4. Unique Biotransformation and Detoxification Capabilities
2.2.5. Development Stage Characteristics
3. Mechanism of Interaction Between Microbiome and Metabolome
3.1. Microorganism-Mediated Metabolic Regulation
3.2. The Feedback Effect of Metabolites on Microorganisms
3.3. Host–Microorganism Metabolic Network
3.4. Temporal and Spatial Distribution of Microbial Metabolites
3.5. Host Immune Metabolic Regulation
4. Ruminant Gastrointestinal Metabolite System
4.1. Primary Metabolites and Their Functions
4.2. Secondary Metabolites and Their Activities
5. Research Methods and Technical Progress
5.1. Microbial Culture Technology
5.2. Integration of Molecular Biology and Omics
5.3. Metabolomic Analysis Techniques
6. Influencing Factors
6.1. Dietary Factors
6.2. Environmental Factors
6.3. Host Factor
7. Control Strategy
7.1. Nutritional Regulation Strategy
7.2. Microbial Intervention Strategies
7.3. Biotechnology
7.4. Screening Based on Behavioral Phenotype
7.5. Epigenetic-Based Regulation
7.6. Limitations and Practical Considerations of Intervention Strategies
8. Challenges and Prospects
8.1. Expanding the Breadth of Research: Building a Full-Spectrum Microbial Resource and Integrated Ecosystem
8.2. Deepening Research Depth: From Correlation Analysis to Causal Mechanism and Ecological Theory
8.3. Innovative Research Methods: Breaking Through Technical Bottlenecks and Driving Data-Model Fusion
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AMGs | Auxiliary metabolic genes |
| BCFAs | Branched-chain fatty acids |
| CH4 | Methane |
| CO2 | carbon dioxide |
| FXR | Farnesoid X receptor |
| GPBAR1 (or TGR5) | G Protein-coupled bile acid receptor 1 |
| GPCR | G Protein-coupled receptor |
| GPR | G Protein-coupled receptor |
| HDAC | Histone deacetylase |
| H2 | Hydrogen |
| IBD | Inflammatory bowel disease |
| IL | Interleukin |
| mGWAS | Microbiome genome-wide association study |
| MCP | Microbial crude protein |
| MGEs | Mobile genetic elements |
| MALDI-MS | Matrix-assisted laser desorption/ionization mass spectrometry |
| NPN | Non-protein nitrogen |
| SCFAs | Short-chain fatty acids |
| SERS | Surface-enhanced raman spectroscopy |
| TNF-α | Tumor necrosis factor-alpha |
| VFAs | Volatile fatty acids |
| 3-NOP | 3-Nitrooxypropanol |
| AhR | Aryl hydrocarbon receptor |
| CAZyme | Carbohydrate-active enzymes |
| GC-MS | Gas chromatography–mass spectrometry |
| IDO | Indoleamine 2,3-dioxygenase |
| IL-17 | Interleukin-17 |
| LC-MS | Liquid chromatography–mass spectrometry |
| mTORC1 | Mechanistic target of rapamycin complex 1 |
| NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
| NMR | Nuclear magnetic resonance |
| qPCR | Quantitative polymerase chain reaction |
| TMA | Trimethylamine |
| TMAO | Trimethylamine N-oxide |
| Treg | Regulatory T cell |
| Th17 | T helper 17 cell |
| TR | Rumen type |
| CO | Colon type |
References
- Deng, J.; Liu, Y.-J.; Wei, W.-T.; Huang, Q.-X.; Zhao, L.-P.; Luo, L.-Y.; Zhu, Q.; Zhang, L.; Chen, Y.; Ren, Y.-L.; et al. Single-Cell Transcriptome and Metagenome Profiling Reveals the Genetic Basis of Rumen Functions and Convergent Developmental Patterns in Ruminants. Genome Res. 2023, 33, 1690–1707. [Google Scholar] [CrossRef]
- Monteiro, H.F.; Zhou, Z.; Gomes, M.S.; Peixoto, P.M.G.; Bonsaglia, E.C.R.; Canisso, I.F.; Weimer, B.C.; Lima, F.S. Rumen and Lower Gut Microbiomes Relationship with Feed Efficiency and Production Traits throughout the Lactation of Holstein Dairy Cows. Sci. Rep. 2022, 12, 4904. [Google Scholar] [CrossRef]
- Qi, W.; Xue, M.-Y.; Jia, M.-H.; Zhang, S.; Yan, Q.; Sun, H.-Z. Invited Review—Understanding the Functionality of the Rumen Microbiota: Searching for Better Opportunities for Rumen Microbial Manipulation. Anim. Biosci. 2024, 37, 370–384. [Google Scholar] [CrossRef]
- Stewart, R.D.; Auffret, M.D.; Warr, A.; Walker, A.W.; Roehe, R.; Watson, M. Compendium of 4,941 Rumen Metagenome-Assembled Genomes for Rumen Microbiome Biology and Enzyme Discovery. Nat. Biotechnol. 2019, 37, 953–961. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, Y.; Yu, Z.; Xu, Q.; Zheng, N.; Zhao, S.; Huang, G.; Wang, J. Ruminal Microbiota-Host Interaction and Its Effect on Nutrient Metabolism. Anim. Nutr. 2021, 7, 49–55. [Google Scholar] [CrossRef]
- Xu, Q.; Ungerfeld, E.M.; Morgavi, D.P.; Waters, S.M.; Liu, J.; Du, W.; Zhao, S. Editorial: Rumen Microbiome: Interacting with Host Genetics, Dietary Nutrients Metabolism, Animal Production, and Environment. Front. Microbiol. 2023, 14, 1267149. [Google Scholar] [CrossRef]
- Zhang, Q.; Difford, G.; Sahana, G.; Løvendahl, P.; Lassen, J.; Lund, M.S.; Guldbrandtsen, B.; Janss, L. Bayesian modeling reveals host genetics associated with rumen microbiota jointly influence methane emission in dairy cows. ISME J. 2020, 14, 2019–2033. [Google Scholar] [CrossRef]
- MacLeod, M.J.; Vellinga, T.; Opio, C.; Falcucci, A.; Tempio, G.; Henderson, B.; Makkar, H.; Mottet, A.; Robinson, T.; Steinfeld, H.; et al. Invited Review: A Position on the Global Livestock Environmental Assessment Model (GLEAM). Animal 2018, 12, 383–397. [Google Scholar] [CrossRef]
- Wang, F.; Harindintwali, J.D.; Yuan, Z.; Wang, M.; Wang, F.; Li, S.; Yin, Z.; Huang, L.; Fu, Y.; Li, L.; et al. Technologies and Perspectives for Achieving Carbon Neutrality. Innovation 2021, 2, 100180. [Google Scholar] [CrossRef]
- Kumar, S.; Choudhury, P.K.; Carro, M.D.; Griffith, G.W.; Dagar, S.S.; Puniya, M.; Calabro, S.; Ravella, S.R.; Dhewa, T.; Upadhyay, R.C.; et al. New aspects and strategies for methane mitigation from ruminants. Appl. Microbiol. Biotechnol. 2014, 98, 31–44. [Google Scholar] [CrossRef]
- Zhang, B.; Jiang, X.; Yu, Y.; Cui, Y.; Wang, W.; Luo, H.; Stergiadis, S.; Wang, B. Rumen Microbiome-Driven Insight into Bile Acid Metabolism and Host Metabolic Regulation. ISME J. 2024, 18, wrae098. [Google Scholar] [CrossRef]
- Bi, Y.; Tu, Y.; Zhang, N.; Wang, S.; Zhang, F.; Suen, G.; Shao, D.; Li, S.; Diao, Q. Multiomics Analysis Reveals the Presence of a Microbiome in the Gut of Fetal Lambs. Gut 2021, 70, 853–864. [Google Scholar] [CrossRef]
- Shen, H.; Lu, Z.; Xu, Z.; Chen, Z.; Shen, Z. Associations among Dietary Non-Fiber Carbohydrate, Ruminal Microbiota and Epithelium G-Protein-Coupled Receptor, and Histone Deacetylase Regulations in Goats. Microbiome 2017, 5, 123. [Google Scholar] [CrossRef]
- Jiang, Q.; Lin, L.; Xie, F.; Jin, W.; Zhu, W.; Wang, M.; Qiu, Q.; Li, Z.; Liu, J.; Mao, S. Metagenomic Insights into the Microbe-Mediated B and K2 Vitamin Biosynthesis in the Gastrointestinal Microbiome of Ruminants. Microbiome 2022, 10, 109. [Google Scholar] [CrossRef]
- Shen, H.; Li, Y.; Pi, Q.; Tian, J.; Xu, X.; Huang, Z.; Huang, J.; Pian, C.; Mao, S. Unveiling Novel Antimicrobial Peptides from the Ruminant Gastrointestinal Microbiomes: A Deep Learning-Driven Approach Yields an Anti-MRSA Candidate. J. Adv. Res. 2025, 77, 821–835. [Google Scholar] [CrossRef]
- McCann, J.C.; Wickersham, T.A.; Loor, J.J. High-Throughput Methods Redefine the Rumen Microbiome and Its Relationship with Nutrition and Metabolism. Bioinform. Biol. Insights 2014, 8, 109–125. [Google Scholar] [CrossRef]
- Wang, B.; Chen, L.; Wang, W. Genomic Insights into Ruminant Evolution: From Past to Future Prospects. Zool. Res. 2019, 40, 476–487. [Google Scholar] [CrossRef]
- Xu, S.; Akhatayeva, Z.; Liu, J.; Feng, X.; Yu, Y.; Badaoui, B.; Esmailizadeh, A.; Kantanen, J.; Amills, M.; Lenstra, J.A.; et al. Genetic Advancements and Future Directions in Ruminant Livestock Breeding: From Reference Genomes to Multiomics Innovations. Sci. China Life Sci. 2025, 68, 934–960. [Google Scholar] [CrossRef]
- Gao, X.; Wang, S.; Wang, Y.-F.; Li, S.; Wu, S.-X.; Yan, R.-G.; Zhang, Y.-W.; Wan, R.-D.; He, Z.; Song, R.-D.; et al. Long Read Genome Assemblies Complemented by Single Cell RNA-Sequencing Reveal Genetic and Cellular Mechanisms Underlying the Adaptive Evolution of Yak. Nat. Commun. 2022, 13, 4887. [Google Scholar] [CrossRef]
- Chen, L.; Qiu, Q.; Jiang, Y.; Wang, K.; Lin, Z.; Li, Z.; Bibi, F.; Yang, Y.; Wang, J.; Nie, W.; et al. Large-Scale Ruminant Genome Sequencing Provides Insights into Their Evolution and Distinct Traits. Science 2019, 364, eaav6202. [Google Scholar] [CrossRef]
- Zhang, X.; Zhong, R.; Wu, J.; Tan, Z.; Jiao, J. Dietary Selection of Distinct Gastrointestinal Microorganisms Drives Fiber Utilization Dynamics in Goats. Microbiome 2025, 13, 118. [Google Scholar] [CrossRef]
- Pan, X.; Cai, Y.; Li, Z.; Chen, X.; Heller, R.; Wang, N.; Wang, Y.; Zhao, C.; Wang, Y.; Xu, H.; et al. Modes of Genetic Adaptations Underlying Functional Innovations in the Rumen. Sci. China Life Sci. 2021, 64, 1–21. [Google Scholar] [CrossRef]
- He, J.; Yi, L.; Hai, L.; Ming, L.; Gao, W.; Ji, R. Characterizing the Bacterial Microbiota in Different Gastrointestinal Tract Segments of the Bactrian Camel. Sci. Rep. 2018, 8, 654. [Google Scholar] [CrossRef]
- Ren, J.; Ma, X.; Zhao, P.; Zhang, L.; Tao, S.; Wang, X.; Shi, B. Synergistic Adaptations of Yak Rumen Microbiota, Metabolites and Host to Altitudinal. Microorganisms 2025, 13, 1543. [Google Scholar] [CrossRef]
- Ni, G.; Wang, M.; Walker, N.; Muetzel, S.; Schmidt, O.; Fischer, A.; Stemmler, R.T.; Leung, P.M.; Zhang, X.; Li, Q.; et al. Methanogenesis Inhibition Remodels Microbial Fermentation and Stimulates Acetogenesis in Ruminants. Proc. Natl. Acad. Sci. USA 2025, 122, e2514823122. [Google Scholar] [CrossRef]
- Østbye, K.; Wilson, R.; Rudi, K. Rumen Microbiota for Wild Boreal Cervids Living in the Same Habitat. FEMS Microbiol. Lett. 2016, 363, fnw233. [Google Scholar] [CrossRef]
- Ye, X.; Sahana, G.; Lund, M.S.; Cai, Z. The Crosstalk between Host and Rumen Microbiome in Cattle: Insights from Multi-Omics Approaches and Genome-Wide Association Studies. World J. Microbiol. Biotechnol. 2025, 41, 267. [Google Scholar] [CrossRef]
- Martinez-Boggio, G.; Monteiro, H.F.; Lima, F.S.; Figueiredo, C.C.; Bisinotto, R.S.; Santos, J.E.P.; Mion, B.; Schenkel, F.S.; Ribeiro, E.S.; Weigel, K.A.; et al. Revealing Host Genome-Microbiome Networks Underlying Feed Efficiency in Dairy Cows. Sci. Rep. 2024, 14, 26060. [Google Scholar] [CrossRef]
- Chaucheyras-Durand, F.; Chevaux, E.; Martin, C.; Forano, E. Use of Yeast Probiotics in Ruminants: Effects and Mechanisms of Action on Rumen pH, Fibre Degradation, and Microbiota According to the Diet. In Probiotic in Animals; Rigobelo, E.C., Ed.; InTech Open: Rijeka, Croatia, 2012; pp. 119–162. [Google Scholar]
- Malmuthuge, N.; Guan, L.L. Gut Microbiome and Omics: A New Definition to Ruminant Production and Health. Anim. Front. 2016, 6, 8–12. [Google Scholar] [CrossRef]
- Andrade, B.G.N.; Bressani, F.A.; Cuadrat, R.R.C.; Tizioto, P.C.; de Oliveira, P.S.N.; Mourão, G.B.; Coutinho, L.L.; Reecy, J.M.; Koltes, J.E.; Walsh, P.; et al. The Structure of Microbial Populations in Nelore GIT Reveals Inter-Dependency of Methanogens in Feces and Rumen. J. Anim. Sci. Biotechnol. 2020, 11, 6. [Google Scholar] [CrossRef]
- Taschuk, R.; Griebel, P.J. Commensal Microbiome Effects on Mucosal Immune System Development in the Ruminant Gastrointestinal Tract. Anim. Health Res. Rev. 2012, 13, 129–141. [Google Scholar] [CrossRef]
- Hailemariam, S.; Zhao, S.; Wang, J. Complete Genome Sequencing and Transcriptome Analysis of Nitrogen Metabolism of Succinivibrio Dextrinosolvens Strain Z6 Isolated from Dairy Cow Rumen. Front. Microbiol. 2020, 11, 1826. [Google Scholar] [CrossRef]
- O’Hara, E.; Neves, A.L.A.; Song, Y.; Guan, L.L. The Role of the Gut Microbiome in Cattle Production and Health: Driver or Passenger? Annu. Rev. Anim. Biosci. 2020, 8, 199–220. [Google Scholar] [CrossRef]
- Xie, F.; Jin, W.; Si, H.; Yuan, Y.; Tao, Y.; Liu, J.; Wang, X.; Yang, C.; Li, Q.; Yan, X.; et al. An integrated gene catalog and over 10,000 metagenome-assembled genomes from the gastrointestinal microbiome of ruminants. Microbiome 2021, 9, 137, Correction in Microbiome 2022, 10, 228. [Google Scholar] [CrossRef]
- Li, Q.; Wang, R.; Zhou, X.; Li, S.; Zhang, S.; Zhang, X.; Wang, W.; Jiao, J.; Janssen, P.H.; Ungerfeld, E.M.; et al. Metabolic Versatility Enables Acetogens to Colonize Ruminants with Diet-Driven Niche Partitioning. ISME J. 2025, 19, wraf183. [Google Scholar] [CrossRef]
- Kumari, S.; Fagodiya, R.K.; Hiloidhari, M.; Dahiya, R.P.; Kumar, A. Methane Production and Estimation from Livestock Husbandry: A Mechanistic Understanding and Emerging Mitigation Options. Sci. Total Environ. 2020, 709, 136135. [Google Scholar] [CrossRef]
- Tapio, I.; Snelling, T.J.; Strozzi, F.; Wallace, R.J. The ruminal microbiome associated with methane emissions from ruminant livestock. J. Anim. Sci. Biotechnol. 2017, 8, 7. [Google Scholar] [CrossRef]
- Choi, Y.Y.; Lee, S.J.; Lee, Y.J.; Kim, H.S.; Eom, J.S.; Kim, S.C.; Kim, E.T.; Lee, S.S. New Challenges for Efficient Usage of Sargassum Fusiforme for Ruminant Production. Sci. Rep. 2020, 10, 19655. [Google Scholar] [CrossRef]
- Yan, X.; Si, H.; Zhu, Y.; Li, S.; Han, Y.; Liu, H.; Du, R.; Pope, P.B.; Qiu, Q.; Li, Z. Integrated Multi-Omics of the Gastrointestinal Microbiome and Ruminant Host Reveals Metabolic Adaptation Underlying Early Life Development. Microbiome 2022, 10, 222. [Google Scholar] [CrossRef]
- Mhlongo, L.C.; Kenyon, P.; Nsahlai, I.V. Effect of Acacia Mearnsii Forage or Tannin Extract on Rumen Dry Matter and Crude Protein Degradation. J. Anim. Physiol. Anim. Nutr. 2025, 109, 22–29. [Google Scholar] [CrossRef]
- Lv, L.; Xiong, F.; Pei, S.; He, S.; Li, B.; Wu, L.; Cao, Z.; Li, S.; Yang, H. Synergistic Fermentation of Cottonseed Meal Using Lactobacillus Mucosae LLK-XR1 and Acid Protease: Sustainable Production of Cottonseed Peptides and Depletion of Free Gossypol. Food Chem. 2025, 493, 145848. [Google Scholar] [CrossRef]
- Nawab, A.; Tang, S.; Gao, W.; Li, G.; Xiao, M.; An, L.; Wu, J.; Liu, W. Tannin Supplementation in Animal Feeding; Mitigation Strategies to Overcome the Toxic Effects of Tannins on Animal Health: A Review. J. Agric. Sci. 2020, 12, 217. [Google Scholar] [CrossRef]
- Yeoman, C.J.; Ishaq, S.L.; Bichi, E.; Olivo, S.K.; Lowe, J.; Aldridge, B.M. Biogeographical Differences in the Influence of Maternal Microbial Sources on the Early Successional Development of the Bovine Neonatal Gastrointestinal Tract. Sci. Rep. 2018, 8, 3197. [Google Scholar] [CrossRef]
- Malmuthuge, N.; Griebel, P.J.; Guan, L.L. Taxonomic identification of commensal bacteria associated with the mucosa and digesta throughout the gastrointestinal tracts of preweaned calves. Appl. Environ. Microbiol. 2014, 80, 2021–2028. [Google Scholar] [CrossRef]
- Fregulia, P.; Dias, R.J.P.; Campos, M.M.; Tomich, T.R.; Pereira, L.G.R.; Neves, A.L.A. Composition of the rumen microbiome and its association with methane yield in dairy cattle raised in tropical conditions. Mol. Biol. Rep. 2024, 51, 447. [Google Scholar] [CrossRef]
- Wu, Y.; Jiao, C.; Diao, Q.; Tu, Y. Effect of Dietary and Age Changes on Ruminal Microbial Diversity in Holstein Calves. Microorganisms 2023, 12, 12. [Google Scholar] [CrossRef]
- Lei, Y.; Zheng, Y.; Yan, Y.; Zhang, K.; Sun, X.; Yang, B.; Ge, L.; Meng, Z.; Cao, X.; Zhang, X.; et al. Deciphering Functional Landscapes of Rumen Microbiota Unveils the Role of Prevotella Bryantii in Milk Fat Synthesis in Goats. Genome Biol. 2025, 26, 311. [Google Scholar] [CrossRef]
- Islam, M.M.; Fernando, S.C.; Saha, R. Metabolic Modeling Elucidates the Transactions in the Rumen Microbiome and the Shifts Upon Virome Interactions. Front. Microbiol. 2019, 10, 2412. [Google Scholar] [CrossRef]
- Denman, S.E.; Morgavi, D.P.; McSweeney, C.S. Review: The Application of Omics to Rumen Microbiota Function. Animal 2018, 12, s233–s245. [Google Scholar] [CrossRef]
- Shinkai, T.; Takizawa, S.; Enishi, O.; Higuchi, K.; Ohmori, H.; Mitsumori, M. Characteristics of Rumen Microbiota and Prevotella Isolates Found in High Propionate and Low Methane-Producing Dairy Cows. Front. Microbiol. 2024, 15, 1404991. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Y.; Qin, J.; Zhu, H.; Liu, N.; Sun, D.; Yin, Y.; Mao, S.; Zhu, W.; Huang, Z.; et al. Early Concentrate Starter Introduction Induces Rumen Epithelial Parakeratosis by Blocking Keratinocyte Differentiation with Excessive Ruminal Butyrate Accumulation. J. Adv. Res. 2024, 66, 71–86. [Google Scholar] [CrossRef]
- Tang, Y.; Zhan, P.; Wu, Y.; Zhang, T.; Yin, D.; Gao, Y.; Yu, Y.; Qiu, S.; Zhao, J.; Zhang, X.; et al. Landscape of Mobile Genetic Elements and Their Functional Cargo across the Gastrointestinal Tract Microbiomes in Ruminants. Microbiome 2025, 13, 162. [Google Scholar] [CrossRef]
- Rooks, M.G.; Garrett, W.S. Gut Microbiota, Metabolites and Host Immunity. Nat. Rev. Immunol. 2016, 16, 341–352. [Google Scholar] [CrossRef]
- Chen, X.; Xu, J.; Zhang, L.; Xie, B.; Ren, J.; He, J.; Liu, T.; Liu, Q.; Dong, Y.; He, X.; et al. Altered Ruminal Microbiome Tryptophan Metabolism and Their Derived 3-Indoleacetic Acid Inhibit Ruminal Inflammation in Subacute Ruminal Acidosis Goats. Microbiome 2025, 13, 215, Correction in Microbiome 2025, 13, 252. [Google Scholar] [CrossRef]
- Wang, G.; Huang, S.; Wang, Y.; Cai, S.; Yu, H.; Liu, H.; Zeng, X.; Zhang, G.; Qiao, S. Bridging Intestinal Immunity and Gut Microbiota by Metabolites. Cell Mol. Life Sci. 2019, 76, 3917–3937. [Google Scholar] [CrossRef]
- Ringseis, R.; Gessner, D.K.; Eder, K. The Gut-Liver Axis in the Control of Energy Metabolism and Food Intake in Animals. Annu. Rev. Anim. Biosci. 2020, 8, 295–319. [Google Scholar] [CrossRef]
- Niu, J.; Cui, M.; Yang, X.; Li, J.; Yao, Y.; Guo, Q.; Lu, A.; Qi, X.; Zhou, D.; Zhang, C.; et al. Microbiota-derived acetate enhances host antiviral response via NLRP3. Nat. Commun. 2023, 14, 642. [Google Scholar] [CrossRef]
- Tremaroli, V.; Bäckhed, F. Functional Interactions between the Gut Microbiota and Host Metabolism. Nature 2012, 489, 242–249. [Google Scholar] [CrossRef]
- Dou, J.; Bennett, M.R. Synthetic Biology and the Gut Microbiome. Biotechnol. J. 2018, 13, e1700159. [Google Scholar] [CrossRef]
- Chen, V.L.; Kasper, D.L. Interactions between the intestinal microbiota and innate lymphoid cells. Gut Microbes 2014, 5, 129–140. [Google Scholar] [CrossRef]
- Shen, J.; Han, X.; Zheng, L.; Liu, S.; Jin, C.; Liu, T.; Cao, Y.; Lei, X.; Yao, J. High Rumen-Degradable Starch Diet Promotes Hepatic Lipolysis and Disrupts Enterohepatic Circulation of Bile Acids in Dairy Goats. J. Nutr. 2020, 150, 2755–2763. [Google Scholar] [CrossRef]
- Lee, D.M.; Ecton, K.E.; Trikha, S.R.J.; Wrigley, S.D.; Thomas, K.N.; Battson, M.L.; Wei, Y.; Johnson, S.A.; Weir, T.L.; Gentile, C.L. Microbial metabolite indole-3-propionic acid supplementation does not protect mice from the cardiometabolic consequences of a Western diet. Am. J. Physiol. Gastrointest. Liver Physiol. 2020, 319, G51–G62. [Google Scholar] [CrossRef]
- Giurini, E.F.; Godla, A.; Gupta, K.H. Redefining Bioactive Small Molecules from Microbial Metabolites as Revolutionary Anticancer Agents. Cancer Gene Ther. 2024, 31, 187–206. [Google Scholar] [CrossRef]
- Rinschen, M.M.; Ivanisevic, J.; Giera, M.; Siuzdak, G. Identification of Bioactive Metabolites Using Activity Metabolomics. Nat. Rev. Mol. Cell Biol. 2019, 20, 353–367. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, J.; Wang, B. Metabolomics in Ruminant Food: Bridging Nutritional Quality and Safety Evaluation. Anim. Nutr. 2025, 2, e7. [Google Scholar] [CrossRef]
- Cai, G.; Zhao, L.; Wang, T.; Lv, N.; Li, J.; Ning, J.; Pan, X.; Zhu, G. Variation of Volatile Fatty Acid Oxidation and Methane Production during the Bioaugmentation of Anaerobic Digestion System: Microbial Community Analysis Revealing the Influence of Microbial Interactions on Metabolic Pathways. Sci. Total Environ. 2021, 754, 142425. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gibson, G.R.; Sailer, M.; Theis, S.; Rastall, R.A. Prebiotics Inhibit Proteolysis by Gut Bacteria in a Host Diet-Dependent Manner: A Three-Stage Continuous In Vitro Gut Model Experiment. Appl. Environ. Microbiol. 2020, 86, e02730-19. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Hu, J.; Liu, C.; Zhang, S.; Liu, Y.; Zhao, G. Investigation on the Action Mechanisms of Taurine on Rumen Microbial Crude Protein Synthesis and Nitrogen Metabolism in Beef Steers Using Sodium Sulfate as a Contrast. Anim. Nutr. 2025, 22, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Guliye, A.Y.; Wallace, R.J. Effects of Aromatic Amino Acids, Phenylacetate and Phenylpropionate on Fermentation of Xylan by the Rumen Anaerobic Fungi, Neocallimastix Frontalis and Piromyces Communis. J. Appl. Microbiol. 2007, 103, 924–929. [Google Scholar] [CrossRef]
- Wang, Z.; Kang, S.; Wu, Z.; Liu, X.; Zhang, X.; Wu, Y.; Wen, Y.; Zhou, X.; Zhang, G.; Wang, J.; et al. Muribaculum Intestinale Restricts Salmonella Typhimurium Colonization by Converting Succinate to Propionate. ISME J 2025, 19, wraf069. [Google Scholar] [CrossRef]
- Hou, L.; Ma, Y.; Li, J.; Yang, Y.; Duan, P.; Guo, T. Effects of Dietary Supplementation with Different Amounts of Lycium Ruthenicum (Black Goji Berry) Branch Roughage on Plasma Biochemical Indices and Rumen Microflora of Sheep. Front. Microbiol. 2025, 16, 1556724. [Google Scholar] [CrossRef]
- Hu, J.; Ma, L.; Nie, Y.; Chen, J.; Zheng, W.; Wang, X.; Xie, C.; Zheng, Z.; Wang, Z.; Yang, T.; et al. A Microbiota-Derived Bacteriocin Targets the Host to Confer Diarrhea Resistance in Early-Weaned Piglets. Cell Host Microbe 2018, 24, 817–832.e8. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Huws, S.A.; Xu, G.; Li, J.; Ren, J.; Xu, J.; Guan, L.L.; Yao, J.; Wu, S. Ileal Microbial Microbiome and Its Secondary Bile Acids Modulate Susceptibility to Nonalcoholic Steatohepatitis in Dairy Goats. Microbiome 2024, 12, 247. [Google Scholar] [CrossRef]
- Zelante, T.; Iannitti, R.G.; Cunha, C.; De Luca, A.; Giovannini, G.; Pieraccini, G.; Zecchi, R.; D’Angelo, C.; Massi-Benedetti, C.; Fallarino, F.; et al. Tryptophan Catabolites from Microbiota Engage Aryl Hydrocarbon Receptor and Balance Mucosal Reactivity via Interleukin-22. Immunity 2013, 39, 372–385. [Google Scholar] [CrossRef]
- Xiao, M.; Du, L.; Wei, M.; Wang, Y.; Dong, C.; Ju, J.; Zhang, R.; Peng, W.; Wang, Y.; Zheng, Y.; et al. Effects of Quercetin on in Vitro Rumen Fermentation Parameters, Gas Production and Microflora of Beef Cattle. Front. Microbiol. 2025, 16, 1527405. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yang, X.; Zhang, X.; Zhang, L.; Zhang, Z.; Zhang, Y.; Yang, Q. Linking Environmental Signals to Plant Metabolism: The Combination of Field Trials and Environment Simulators. Mol. Plant 2022, 15, 213–215. [Google Scholar] [CrossRef] [PubMed]
- Omondi, V.O.; Bosire, G.O.; Onyari, J.M.; Kibet, C.; Mwasya, S.; Onyonyi, V.N.; Getahun, M.N. Multi-Omics Analyses Reveal Rumen Microbes and Secondary Metabolites That Are Unique to Livestock Species. mSystems 2024, 9, e0122823. [Google Scholar] [CrossRef]
- Zehavi, T.; Probst, M.; Mizrahi, I. Insights Into Culturomics of the Rumen Microbiome. Front. Microbiol. 2018, 9, 1999. [Google Scholar] [CrossRef]
- Luro, S.; Potvin-Trottier, L.; Okumus, B.; Paulsson, J. Isolating Live Cells after High-Throughput, Long-Term, Time-Lapse Microscopy. Nat. Methods 2020, 17, 93–100. [Google Scholar] [CrossRef]
- Gharechahi, J.; Sarikhan, S.; Han, J.-L.; Ding, X.-Z.; Salekdeh, G.H. Functional and Phylogenetic Analyses of Camel Rumen Microbiota Associated with Different Lignocellulosic Substrates. NPJ Biofilms Microbiomes 2022, 8, 46. [Google Scholar] [CrossRef]
- Jia, M.; Zhu, S.; Xue, M.-Y.; Chen, H.; Xu, J.; Song, M.; Tang, Y.; Liu, X.; Tao, Y.; Zhang, T.; et al. Single-Cell Transcriptomics across 2,534 Microbial Species Reveals Functional Heterogeneity in the Rumen Microbiome. Nat. Microbiol. 2024, 9, 1884–1898. [Google Scholar] [CrossRef]
- Abecia, L.; Martínez-Fernandez, G.; Waddams, K.; Martín-García, A.I.; Pinloche, E.; Creevey, C.J.; Denman, S.E.; Newbold, C.J.; Yáñez-Ruiz, D.R. Analysis of the Rumen Microbiome and Metabolome to Study the Effect of an Antimethanogenic Treatment Applied in Early Life of Kid Goats. Front. Microbiol. 2018, 9, 2227. [Google Scholar] [CrossRef]
- McLoughlin, S.; Spillane, C.; Claffey, N.; Smith, P.E.; O’Rourke, T.; Diskin, M.G.; Waters, S.M. Rumen Microbiome Composition Is Altered in Sheep Divergent in Feed Efficiency. Front. Microbiol. 2020, 11, 1981. [Google Scholar] [CrossRef]
- Wang, S.; Kong, F.; Zhang, X.; Dai, D.; Li, C.; Cao, Z.; Wang, Y.; Wang, W.; Li, S. Disruption of Hindgut Microbiome Homeostasis Promotes Postpartum Energy Metabolism Disorders in Dairy Ruminants by Inhibiting Acetate-Mediated Hepatic AMPK-PPARA Axis. Microbiome 2025, 13, 167. [Google Scholar] [CrossRef]
- Balzerani, F.; Blasco, T.; Pérez-Burillo, S.; Francino, M.P.; Rufián-Henares, J.Á.; Valcarcel, L.V.; Planes, F.J. Q2-Metnet: QIIME2 Package to Analyse 16S rRNA Data via High-Quality Metabolic Reconstructions of the Human Gut Microbiota. Bioinformatics 2024, 40, btae455. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Muñoz, J.C.; Selem-Mojica, N.; Mullowney, M.W.; Kautsar, S.A.; Tryon, J.H.; Parkinson, E.I.; De Los Santos, E.L.C.; Yeong, M.; Cruz-Morales, P.; Abubucker, S.; et al. A Computational Framework to Explore Large-Scale Biosynthetic Diversity. Nat. Chem. Biol. 2020, 16, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Taubenheim, J.; Kadibalban, A.S.; Zimmermann, J.; Taubenheim, C.; Tran, F.; Schreiber, S.; Rosenstiel, P.; Aden, K.; Kaleta, C. Metabolic Modeling Reveals a Multi-Level Deregulation of Host-Microbiome Metabolic Networks in IBD. Nat. Commun. 2025, 16, 5120, Correction in Nat. Commun. 2025, 16, 8978. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zheng, J.; Mao, H.; Vinitchaikul, P.; Wu, D.; Chai, J. Multiomics of Yaks Reveals Significant Contribution of Microbiome into Host Metabolism. NPJ Biofilms Microbiomes 2024, 10, 133. [Google Scholar] [CrossRef]
- Wilson, S.R.; Olsen, C.; Lundanes, E. Nano liquid chromatography columns. Analyst 2019, 144, 7090–7104. [Google Scholar] [CrossRef]
- Sun, C.; Wang, A.; Zhou, Y.; Chen, P.; Wang, X.; Huang, J.; Gao, J.; Wang, X.; Shu, L.; Lu, J.; et al. Spatially Resolved Multi-Omics Highlights Cell-Specific Metabolic Remodeling and Interactions in Gastric Cancer. Nat. Commun. 2023, 14, 2692. [Google Scholar] [CrossRef]
- Xing, B.; Wang, R.; Kou, T.; Liu, W.; Zhu, Z.-J. Unraveling Tissue-Specific Fatty Acid Biosynthesis and Inter-Tissue Crosstalk in Mice through Stable-Isotope Tracing Metabolomics. Adv. Sci. 2025, 12, e03662. [Google Scholar] [CrossRef]
- Gao, Y.; Luo, M.; Wang, H.; Zhou, Z.; Yin, Y.; Wang, R.; Xing, B.; Yang, X.; Cai, Y.; Zhu, Z.-J. Charting Unknown Metabolic Reactions by Mass Spectrometry-Resolved Stable-Isotope Tracing Metabolomics. Nat. Commun. 2025, 16, 5059. [Google Scholar] [CrossRef]
- Luo, M.; Yin, Y.; Zhou, Z.; Zhang, H.; Chen, X.; Wang, H.; Zhu, Z.-J. A Mass Spectrum-Oriented Computational Method for Ion Mobility-Resolved Untargeted Metabolomics. Nat. Commun. 2023, 14, 1813. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Guo, C.; Sun, D.; Seddik, H.-E.; Mao, S. The Ruminal Microbiome and Metabolome Alterations Associated with Diet-Induced Milk Fat Depression in Dairy Cows. Metabolites 2019, 9, 154. [Google Scholar] [CrossRef] [PubMed]
- Clemmons, B.A.; Powers, J.B.; Campagna, S.R.; Seay, T.B.; Embree, M.M.; Myer, P.R. Rumen Fluid Metabolomics of Beef Steers Differing in Feed Efficiency. Metabolomics 2020, 16, 23. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, Y.; Zhang, Y.; Wang, L. The Effects of Different Concentrate-to-Forage Ratio Diets on Rumen Bacterial Microbiota and the Structures of Holstein Cows During the Feeding Cycle. Animals 2020, 10, 957. [Google Scholar] [CrossRef]
- Wang, J.-K.; Ye, J.-A.; Liu, J.-X. Effects of Tea Saponins on Rumen Microbiota, Rumen Fermentation, Methane Production and Growth Performance—A Review. Trop. Anim. Health Prod. 2012, 44, 697–706. [Google Scholar] [CrossRef]
- Min, B.R.; Solaiman, S.; Waldrip, H.M.; Parker, D.; Todd, R.W.; Brauer, D. Dietary Mitigation of Enteric Methane Emissions from Ruminants: A Review of Plant Tannin Mitigation Options. Anim. Nutr. 2020, 6, 231–246. [Google Scholar] [CrossRef]
- Rama, H.; Ndaba, B.; Dhlamini, M.S.; Cochrane, N.; Maaza, M.; Roopnarain, A. Elucidating Key Microbial Drivers for Methane Production during Cold Adaptation and Psychrophilic Anaerobic Digestion of Cattle Manure and Food Waste. Fermentation 2024, 10, 370. [Google Scholar] [CrossRef]
- Wang, D.; Chen, L.; Tang, G.; Yu, J.; Chen, J.; Li, Z.; Cao, Y.; Lei, X.; Deng, L.; Wu, S.; et al. Multi-Omics Revealed the Long-Term Effect of Ruminal Keystone Bacteria and the Microbial Metabolome on Lactation Performance in Adult Dairy Goats. Microbiome 2023, 11, 215. [Google Scholar] [CrossRef]
- Li, Y.; Mao, K.; Zang, Y.; Lu, G.; Qiu, Q.; Ouyang, K.; Zhao, X.; Song, X.; Xu, L.; Liang, H.; et al. Revealing the Developmental Characterization of Rumen Microbiome and Its Host in Newly Received Cattle during Receiving Period Contributes to Formulating Precise Nutritional Strategies. Microbiome 2023, 11, 238. [Google Scholar] [CrossRef]
- Kurilshikov, A.; Medina-Gomez, C.; Bacigalupe, R.; Radjabzadeh, D.; Wang, J.; Demirkan, A.; Le Roy, C.I.; Raygoza Garay, J.A.; Finnicum, C.T.; Liu, X.; et al. Large-Scale Association Analyses Identify Host Factors Influencing Human Gut Microbiome Composition. Nat. Genet. 2021, 53, 156–165. [Google Scholar] [CrossRef]
- Wilde, J.; Slack, E.; Foster, K.R. Host Control of the Microbiome: Mechanisms, Evolution, and Disease. Science 2024, 385, eadi3338. [Google Scholar] [CrossRef]
- Dixit, S.; Kumar, S.; Sharma, R.; Banakar, P.S.; Deb, R.; Tyagi, A.K. Rumen Microbial Diversity, Enteric Methane Emission and Nutrient Utilization of Crossbred Karan-Fries Cattle (Bos Taurus) and Murrah Buffalo (Bubalus Bubalis) Consuming Varied Roughage Concentrate Ratio. Anim. Biotechnol. 2023, 34, 1857–1875. [Google Scholar] [CrossRef] [PubMed]
- Khiaosa-Ard, R.; Mahmood, M.; Lerch, F.; Traintinger, F.-P.; Petri, R.M.; Münnich, M.; Zebeli, Q. Physicochemical Stressors and Mixed Alkaloid Supplementation Modulate Ruminal Microbiota and Fermentation in Vitro. Anaerobe 2020, 65, 102263. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Guan, F.; Liu, P.; Ma, H.; Zhang, J.; Ma, Y.; Mao, S.; Xiang, X.; Jin, W. Effects of Dietary NDF/NFC Ratios on in Vitro Rumen Fermentation, Methane Emission, and Microbial Community Composition. Front. Vet. Sci. 2025, 12, 1588357. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, G.; Li, M.M. Using nutritional strategies to mitigate ruminal methane emissions from ruminants. Front. Agric. Sci. Eng. 2023, 10, 390–402. [Google Scholar] [CrossRef]
- Li, Z.; Liu, N.; Cao, Y.; Jin, C.; Li, F.; Cai, C.; Yao, J. Effects of fumaric acid supplementation on methane production and rumen fermentation in goats fed diets varying in forage and concentrate particle size. J Anim Sci Biotechnol. 2018, 9, 21. [Google Scholar] [CrossRef]
- Sun, M.; Liu, P.; Xing, Y.; Zhang, M.; Yu, Y.; Wang, W.; Li, D. Effects of Chestnut Tannin on Nutrient Digestibility, Ruminal Protease Enzymes, and Ruminal Microbial Community Composition of Sheep. Fermentation 2025, 11, 302. [Google Scholar] [CrossRef]
- Wang, C.; Wei, S.; Liu, B.; Wang, F.; Lu, Z.; Jin, M.; Wang, Y. Maternal consumption of a fermented diet protects offspring against intestinal inflammation by regulating the gut microbiota. Gut Microbes 2022, 14, 2057779. [Google Scholar] [CrossRef]
- Zheng, R.; Wang, C.; Liu, R.; Cai, R.; Sun, C. Physiological and metabolic insights into the first cultured anaerobic representative of deep-sea Planctomycetes bacteria. Elife 2024, 12, RP89874. [Google Scholar] [CrossRef] [PubMed]
- Lanier, J.S.; Corl, B.A. Challenges in Enriching Milk Fat with Polyunsaturated Fatty Acids. J. Anim. Sci. Biotechnol. 2015, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Rosa, F.; Michelotti, T.C.; St-Pierre, B.; Trevisi, E.; Osorio, J.S. Early Life Fecal Microbiota Transplantation in Neonatal Dairy Calves Promotes Growth Performance and Alleviates Inflammation and Oxidative Stress during Weaning. Animals 2021, 11, 2704. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Tan, J.; Fang, L.; Jiang, L. Leveraging Gene Editing to Combat Methane Emissions in Ruminant Agriculture. Trends Biotechnol. 2025, 43, 2771–2785. [Google Scholar] [CrossRef]
- Bature, I.; Liang, Z.; Xiaohu, W.; Yang, F.; Yang, Y.; Dong, P.; Ding, X. Isolation, Cloning, and Characterization of a Novel GH5 Cellulase from Yak Rumen Metagenome for Enhanced Lignocellulose Hydrolysis in Biofuel Production and Ruminant Feed Utilization. Enzyme Microb. Technol. 2025, 191, 110737. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, X.; Zhu, S.; Jia, M.; Liu, J.X.; Sun, H.Z. New insights into the enteric methane production based on the archaeal genome atlas of ruminant gastrointestinal tract. J. Adv. Res. 2025, 74, 13–24. [Google Scholar] [CrossRef]
- Dai, M.; Zhao, F.; Shi, X.; Tian, C.; Lin, Y.; Bai, L.; Li, T.; Jin, X.; Xiao, L.; Kristiansen, K.; et al. Cultivation and Sequencing of Microbiota Members Unveil the Functional Potential of Yak Gut Microbiota. mSystems 2025, 10, e0036725. [Google Scholar] [CrossRef]
- Castaneda, A.; Indugu, N.; Lenker, K.; Narayan, K.; Rassler, S.; Bender, J.; Baker, L.; Purandare, O.; Chai, D.; Zhao, X.; et al. Host-Specific Microbiome-Rumination Interactions Shape Methane-Yield Phenotypes in Dairy Cattle. mSphere 2025, 10, e0009025. [Google Scholar] [CrossRef]
- Alipio, M.; Villena, M.L. Intelligent Wearable Devices and Biosensors for Monitoring Cattle Health Conditions: A Review and Classification. Smart Health 2023, 27, 100369. [Google Scholar] [CrossRef]
- Kasubuchi, M.; Hasegawa, S.; Hiramatsu, T.; Ichimura, A.; Kimura, I. Dietary Gut Microbial Metabolites, Short-Chain Fatty Acids, and Host Metabolic Regulation. Nutrients 2015, 7, 2839–2849. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Ma, Q.; Li, Y.; Wei, L.; Zhang, Z.; Khan, A.; Khan, M.Z.; Wang, C. Butyrate Supplementation Improves Intestinal Health and Growth Performance in Livestock: A Review. Biomolecules 2025, 15, 85. [Google Scholar] [CrossRef] [PubMed]
- Fardi, F.; Khasraghi, L.B.; Shahbakhti, N.; Salami Naseriyan, A.; Najafi, S.; Sanaaee, S.; Alipourfard, I.; Zamany, M.; Karamipour, S.; Jahani, M.; et al. An Interplay between Non-Coding RNAs and Gut Microbiota in Human Health. Diabetes Res. Clin. Pract. 2023, 201, 110739. [Google Scholar] [CrossRef] [PubMed]
- Belanche, A.; Belzecki, G.; Hernandez-Sanabria, E.; Martínez-Fernandez, G.; Ramos-Morales, E.; de la Fuente, G. Editorial: Unravelling the Unknown of the Rumen Microbiome: Implications for Animal Health, Productivity, and Beyond. Front. Microbiol. 2025, 16, 1720795. [Google Scholar] [CrossRef]
- Lennon, J.T.; Jones, S.E. Microbial Seed Banks: The Ecological and Evolutionary Implications of Dormancy. Nat. Rev. Microbiol. 2011, 9, 119–130. [Google Scholar] [CrossRef]
- Ma, H.; Cornadó, D.; Raaijmakers, J.M. The Soil-Plant-Human Gut Microbiome Axis into Perspective. Nat. Commun. 2025, 16, 7748. [Google Scholar] [CrossRef]
- Mangnier, L.; Bodein, A.; Mariaz, M.; Mathieu, A.; Scott-Boyer, M.-P.; Vashist, N.; Bramble, M.S.; Droit, A. A Systematic Benchmark of Integrative Strategies for Microbiome-Metabolome Data. Commun. Biol. 2025, 8, 1100. [Google Scholar] [CrossRef]
- Glowacki, R.W.P.; Engelhart, M.J.; Ahern, P.P. Controlled Complexity: Optimized Systems to Study the Role of the Gut Microbiome in Host Physiology. Front. Microbiol. 2021, 12, 735562. [Google Scholar] [CrossRef]
- Fagundes, R.R.; Belt, S.C.; Bakker, B.M.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N. Beyond butyrate: Microbial fiber metabolism supporting colonic epithelial homeostasis. Trends Microbiol. 2024, 32, 178–189. [Google Scholar] [CrossRef]
- Tomasulo, A.; Simionati, B.; Facchin, S. Microbiome One Health model for a healthy ecosystem. Sci. One Health 2024, 3, 100065. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Zhu, P.; Diao, Z.; Tian, S.; Ding, Z.; Duan, Y.; Xu, T.; Zhou, X.; Wang, X.; et al. Raman Flow Cytometry Based Single-Cell Species Classification, Viable-Cell Counting and Vitality Test for Probiotic Products. iMetaOmics 2025, 2, e70024. [Google Scholar] [CrossRef]
- Lee, C.; Lee, G.Y.; Joo, H.; Kim, H.; Kang, J.; Kim, T.H.; Ha, J.; Kwon, S.; Choi, J. Sequential Trench Well Based Microfluidic Platform to Isolate Bacteria from Whole Blood with Large Volume Processing. Lab Chip 2025, 25, 6650–6661, Correction in Lab Chip 2026. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Pan, J.; Liu, H.; Chuanguo, C. Intestinal Mucin Glycosylation: Structural Regulation, Homeostasis Maintenance and Disease Association. Biomolecules 2025, 15, 1552. [Google Scholar] [CrossRef] [PubMed]
- Arcidiacono, S.; Soares, J.W.; Philip Karl, J.; Chrisey, L.; Dancy, C.B.C.; Goodson, M.; Gregory, F.; Hammamieh, R.; Loughnane, N.K.; Kokoska, R.; et al. The Current State and Future Direction of DoD Gut Microbiome Research: A Summary of the First DoD Gut Microbiome Informational Meeting. Stand. Genom. Sci. 2018, 13, 5. [Google Scholar] [CrossRef]
- Nasirahmadi, A.; Hensel, O. Toward the Next Generation of Digitalization in Agriculture Based on Digital Twin Paradigm. Sensors 2022, 22, 498. [Google Scholar] [CrossRef]
- Tzachor, A.; Richards, C.E.; Jeen, S. Transforming Agrifood Production Systems and Supply Chains with Digital Twins. NPJ Sci. Food 2022, 6, 47. [Google Scholar] [CrossRef]
- Sattayawat, P.; Inwongwan, S.; Noirungsee, N.; Li, J.; Guo, J.; Disayathanoowat, T. Engineering Gut Symbionts: A Way to Promote Bee Growth? Insects 2024, 15, 369. [Google Scholar] [CrossRef]
| Digestive Tract Parts | Dominant Flora/Functional Flora | Cell Density/Abundance | Main Functions | Influencing Factors |
|---|---|---|---|---|
| Rumen | Prevotella, Ruminococcus, Butyrivibrio [27] | 1010–1011 cells/mL [27] | Fiber degradation, nitrogen metabolism, and volatile fatty acid synthesis [27] | Diet composition, host genetics [27,28] |
| Rumen | Fibrobacter succinogenes, Ruminococcus albus [29] | - | Degradation of cellulose and hemicellulose [29] | Dietary fiber content [29] |
| Rumen | Methanobrevibacter [27] | It accounts for 0.3–3% of the microbiome [27] | methane production [27] | hydrogen availability [27] |
| Small intestine | Lactobacillus, Streptococcus, Enterobacteriaceae, etc. [30] | - | Oligopeptides and amino acid absorption, subsequent digestion of residual starch and protein, immune regulation [30] | Amino acid composition [30] |
| Large intestine | Bacteroides, Clostridium, Fibrobacter, etc. [31,32] | - | Undigested fiber and protein fermentation, SCFAs secondary synthesis, water absorption [32] | Dietary residues [32] |
| Rumen liquid phase | Succinivibrio dextrinosolvens [33] | - | Pectin and maltose are degraded to produce succinic acid and acetic acid [33] | soluble carbohydrates [33] |
| Rumen solid phase | Fibrobacter succinogenes [29] | - | Crystalline cellulose degradation [29] | fiber substrate [29] |
| ruminal epithelium | - | - | Epithelial cell regulation [27] | host-microorganism interaction [27] |
| Digestive tract of newborn individual | Mother-derived microorganisms [31] | - | Early colonization [31] | Maternal exposure and environmental exposure [31] |
| Metabolite Type | Mainly Producing Flora | Main Functional Characteristics | Concentration/Ratio Characteristics | Key Regulatory Mechanisms |
|---|---|---|---|---|
| Short-chain fatty acids (SCFAs) | Firmicutes (butyric acid), Bacteroidetes (acetic acid/propionic acid) [56] | Energy supply (meeting 50% of rumen energy demand) [57], immune regulation (GPR41/43 pathway) [58], intestinal barrier function | Proximal large intestine 57:22:21 (acetic acid:propionic acid:butyric acid) [59] | Activation of G protein-coupled receptors, inhibition of HDAC [13], inhibition of NF-κB signaling [60], and promotion of Treg cell proliferation [61] |
| Bile acid | Clostridium (such as Clostridium scindens) [46,55] | lipid digestion and absorption, GLP-1 secretion promotion [59], metabolic regulation (FXR/GPBAR1 receptor) [12] | High-starch diet increases TCDCA/TDCA levels [62] | 7-dehydroxylation transformation [56], FXR nuclear receptor activation [17], TGR5 receptor-mediated energy expenditure [59] |
| Tryptophan derivatives | Bifidobacterium et al. [56] | Immunomodulatory (IL-22 induction) [12], neurotransmitter synthesis (5-HT) [63], inflammatory regulation (Th17 inhibition) [55] | Increased metabolic activity in IBD patients | AhR receptor activation [22], IDO enzyme expression upregulation [56], KYN pathway metabolite regulation [12] |
| Polyamines | Prevotella, Ruminococcus | Epithelial cell proliferation promotion, autophagy regulation, and anti-inflammatory effects (IL-10 promotion/TNF-α inhibition) | It accounts for 30–40% of intestinal polyamine pool | Arginine decarboxylase/ornithine decarboxylase pathway, HDAC inhibition, macrophage polarization regulation |
| Vitamins | Bacteroidetes, Firmicutes | Nutrition supply (B vitamins), coagulation function (VitK), immune regulation (Foxp3+ T cell homeostasis) [56] | Nicotinic acid inhibits IL-8 production [12] | Epigenetic modification is involved in the regulation of inflammatory signaling pathways |
| Choline metabolites | Specific intestinal flora | Cardiovascular health indicators, lipid metabolism regulation | The content of TMA decreased in IBD patients [12] | Choline-TMA-TMAO metabolic axis and liver transformation mechanism |
| Technical Platform | Detection Range and Characteristics | Typical Application Cases | Technical Advantages | Limitations |
|---|---|---|---|---|
| Gas chromatography–mass spectrometry (GC-MS) | A total of 665 effective peaks were detected, and 272 metabolites were identified, including amines, amino acids and organic acids. [95] | Standard Method for Analysis of Volatile Organic Compounds in Ruminant Research [95] | Electron bombardment ionization produces characteristic fragment patterns, which are suitable for the analysis of volatile organic compounds [95] | Limited detection of thermally unstable and non-volatile compounds [41] |
| Liquid chromatography–mass spectrometry (LC-MS) | The mass accuracy is less than 2 ppm, which is suitable for the accurate identification of polar metabolites [41] | Amino acid derivatives and bile acid compounds analysis [41] | High sensitivity and wide dynamic range, suitable for compounds with high polarity, large molecular weight, and poor thermal stability [41] | Matrix effect is obvious, which requires complex pretreatment [41] |
| Nuclear magnetic resonance (NMR) | A rumen fluid database containing 246 metabolites was constructed [96] | Dynamic metabolic process monitoring and non-destructive testing [96] | Non-destructive detection characteristics, suitable for dynamic process monitoring [96] | Low sensitivity and high detection limit [96] |
| Fourier transform infrared spectroscopy | Rapid acquisition of functional group information of metabolites [41] | And complementary analysis of mass spectrometry data [41] | Rapid detection and simple sample pretreatment [41] | have low specificity and are mainly used to assist identification [41] |
| Categories of Influencing Factors | Specific Indicators | Degree of Influence/Range of Change | Key Role Mechanism |
|---|---|---|---|
| Diet factors [105] | Concentrate to forage ratio (30:70—70:30) | Acetic acid ↓ propionic acid ↑ | Change microbial metabolic pathways. |
| Diet factors [105] | High-grain concentrate (>80%) | Methane conversion rate of 3–4% | Reduce methane to hydrogen source |
| Diet factors [105] | High fiber feed | Methane conversion rate of 10%+ | Promote acetic acid/butyric acid fermentation |
| Diet factors [96] | Ionophore antibiotics | Microbial community function significantly changed | Regulating enzyme system activity |
| Environmental factors [106] | Temperature (25 °C–5 °C) | The amount of methane synthesis ↓ | Fermentation mode to propionic acid |
| Environmental factors [106] | Humidity change | pH 6.8–5.8 | Methanogenic archaea activity ↓ 78% |
| Environmental factors [101] | Redox potential (−350–−420 mV) | Cellulose decomposition rate ↑ 45% | Strictly anaerobic bacteria activity enhanced |
| Environmental factors [101] | Osmotic pressure (280–350 mOsm/kg) | Osmotic protectant production ↑ 2.6 times | Microbial homeostasis regulation |
| Host factor [7] | Methane emission in Holstein cows | Heritability 0.12–0.45 | Genotype-specific regulation |
| Host factor [80] | Geographical distance (per 100 km) | The proportion of common flora ↓ 15% | Host genetic differentiation effect |
| Host factor [105] | Crossbreeding differences | 18-month-old growth performance changes | Microbiome-metabolome recombination |
| Host factor | Physiological rhythm regulation | 30% microbial group response | Multi-factor timing coordination |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urga; Wang, X.; Wei, H.; Zhao, G. Mechanisms and Applications of Gastrointestinal Microbiota–Metabolite Interactions in Ruminants: A Review. Microorganisms 2025, 13, 2880. https://doi.org/10.3390/microorganisms13122880
Urga, Wang X, Wei H, Zhao G. Mechanisms and Applications of Gastrointestinal Microbiota–Metabolite Interactions in Ruminants: A Review. Microorganisms. 2025; 13(12):2880. https://doi.org/10.3390/microorganisms13122880
Chicago/Turabian StyleUrga, Xingdong Wang, Huimin Wei, and Gerelt Zhao. 2025. "Mechanisms and Applications of Gastrointestinal Microbiota–Metabolite Interactions in Ruminants: A Review" Microorganisms 13, no. 12: 2880. https://doi.org/10.3390/microorganisms13122880
APA StyleUrga, Wang, X., Wei, H., & Zhao, G. (2025). Mechanisms and Applications of Gastrointestinal Microbiota–Metabolite Interactions in Ruminants: A Review. Microorganisms, 13(12), 2880. https://doi.org/10.3390/microorganisms13122880

