Evaluation of Total Volatile Basic Nitrogen, Formaldehyde, and Formic Acid as Markers to Define the Acceptability of Farmed Sea Bass and Sea Bream Stored Under Vacuum (VP) or in Modified-Atmosphere Packaging (MAP) at 4 ± 2 °C
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples and Packaging
2.2. Microbiological Analyses
2.3. Physico-Chemical Analyses
2.4. Sensory Analysis
- A comparative analysis was conducted on gutted sea bass and sea bream filets packaged under vacuum (VP) conditions and stored at 4 ± 2 °C for 0, 12, and 15 days. Ten samples from each fish species and packaging type were analyzed at each sampling time.
- A parallel comparison was performed on modified-atmosphere packaged (MAP) samples of the same fish species, stored under the same temperature and time conditions (0, 12, and 15 days). During sensory evaluation, the panelists were presented with two coded samples and asked to identify whether a perceptible difference existed between them. If a difference was detected, assessors were requested to indicate the preferred sample and to express their overall acceptance of the product. The scoring system used was as follows: 1 (excellent), 2 (good), 3 (sufficient), and 4 (scarce).
2.5. Statistical Analysis
3. Results and Discussion
3.1. Microbial and Physico-Chemical Characteristic of Sea Bass
3.2. Microbial and Physico-Chemical Characteristic of Sea Bream
3.3. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Angiolillo, L.; Conte, A.; Del Nobile, M.A. A new method to bio-preserve sea bass fillets. Int. J. Food Microbiol. 2018, 271, 60–66. [Google Scholar] [CrossRef]
- Parlapani, F.F.; Kormas, K.A.; Boziaris, I.S. Microbiological changes, shelf life and identification of initial and spoilage microbiota of sea bream fillets stored under various conditions using 16S rRNA gene analysis. J. Sci. Food Agric. 2015, 95, 2386–2394. [Google Scholar] [CrossRef] [PubMed]
- Parlapani, F.F.; Haroutounian, S.A.; Nychas, G.J.E.; Boziaris, I.S. Microbiological spoilage and volatiles production of gutted European sea bass stored under air and commercial modified atmosphere package at 2 °C. Food Microbiol. 2015, 50, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Grigorakis, K.; Alexis, M.; Gialamas, I.; Nikolopoulou, D. Sensory, microbiological, and chemical spoilage of cultured common sea bass (Dicentrarchus labrax) stored in ice: A seasonal differentiation. Eur. Food Res. Technol. 2004, 219, 584–587. [Google Scholar] [CrossRef]
- Grigorakis, K.; Fountoulaki, E.; Giogios, I.; Alexis, M.N. Volatile compounds and organoleptic qualities of gilthead sea bream (Sparus aurata) fed commercial diets containing different lipid sources. Aquaculture 2009, 290, 116–121. [Google Scholar] [CrossRef]
- Xiccato, G.; Trocino, A.; Tulli, F.; Tibaldi, E. Prediction of chemical composition and origin identification of European sea bass (Dicentrarchus labrax) by near infrared reflectance spectroscopy (NIRS). Food Chem. 2004, 86, 275–281. [Google Scholar] [CrossRef]
- Papadopoulos, V.; Chouliara, I.; Badeka, A.; Savvaidis, I.N.; Kontominas, M.G. Effect of gutting on microbiological, chemical and sensory properties of aquacultured sea bass (Dicentrarchus labrax) stored in ice. Food Microbiol. 2003, 20, 411–420. [Google Scholar] [CrossRef]
- Gram, L.; Huss, H.H. Microbiological spoilage of fish and fish products. Int. J. Food Microbiol. 1996, 33, 121–137. [Google Scholar] [CrossRef]
- Cakly, S.; Kilinc, B.; Cadun, A.; Dincer, T.; Tolasa, S. Effects of Gutting and Ungutting on Microbiological, Chemical, and Sensory Properties of Aquacultured Sea Bream (Sparus aurata) and Sea Bass (Dicentrarchus labrax) Stored in Ice. Crit. Rev. Food Sci. Nutr. 2006, 46, 519–527. [Google Scholar] [CrossRef]
- Huss, H. Quality and Quality Changes in Fresh Fish; FAO: Rome, Italy, 1995. [Google Scholar]
- Sigholt, T.; Erickson, U.; Rustad, T.; Johansen, S.; Nordtvedt, T.S.; Seland, A. Handling stress and storage temperature affect meat quality of farmed raised Altantic salmon (Salmo salar). J. Food Sci. 1997, 62, 898–905. [Google Scholar] [CrossRef]
- Comi, G. Qualità microbiologica del pesce fresco. In Branzini e orate allevate: Qualità igienico sanitaria, sensoriale e nutrizionale a cura di Snježana Zrnčić and Giuseppe Comi; Adriaquanet Intereg Italia Croazia: Croazia, Italy, 2021; pp. 13–28. [Google Scholar]
- Kyrana, V.R.; Lougovois, V.P.; Valsamis, D.S. Assessment of shelf-life of maricultured gilthead sea bream (Sparus aurata) stored in ice. Int. J. Food Sci. Technol. 1997, 32, 339–347. [Google Scholar] [CrossRef]
- Carrascosa, C.; Millán, R.; Saavedra, P.; Jaber, J.R.; Raposo, A.; Pérez, E.; Montenegro, T.; Sanjuán, E. Microbiological evolution of gilthead sea bream (Sparus aurata) in Canary Islands during ice storage. J. Food Sci. Techn. 2015, 52, 1586–1593. [Google Scholar] [CrossRef] [PubMed]
- Bassi, L.E.; Hassouna, M.; Shinzato, N.; Matsgui, T. Biopreservation of Refrigerated and Vacuum-Packed Dicentrarchus labrax by Lactic Acid Bacteria. J. Food Sci. 2009, 74, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Broekaert, K.; Heyndrickx, M.; Herman, L.; Devlieghere, F.; Vlaemynck, G. Seafood quality analysis: Molecular identification of dominant microbiota after ice storage on several general growth media. Food Microbiol. 2011, 28, 1162–1169. [Google Scholar] [CrossRef]
- Macè, S.; Joffraud, J.J.; Cardinal, M.; Malcheva, M.; Cornet, J.; Lalanne, V.; Chevalier, F.; Serot, T.; Pilet, M.F.; Dousset, X. Evaluation of the spoilage potential of bacteria isolated from spoiled raw salmon (Salmo salar) fillets stored under modified atmosphere packaging. Int. J. Food Microbiol. 2013, 160, 227–238. [Google Scholar] [CrossRef]
- Comi, G.; Iacumin, L. Spoilage of meat and fish. Woodhead Publishing Series in Food Science, Technology and Nutrition. In The Microbiological Quality of Food “Foodborne Spoilers”; Bevilacqua, A., Corbo, M.R., Sinigaglia, M., Eds.; Elsevier Ltd.: Oxford, UK, 2024; pp. 221–248, ISBN 0323911315, 9780323911313. [Google Scholar]
- Dalgaard, P.; Madsen, H.; Samieian, N.; Emborg, J. Biogenic amine formation and microbial spoilage in chilled garfish (Belone belone) effect of modified atmosphere packaging and previous frozen storage. J. Appl. Microbiol. 2006, 101, 80–95. [Google Scholar] [CrossRef]
- Hovda, M.B.; Lunestad, B.T.; Sivertsvik, M.; Rosnes, J.T. Characterisation of the bacterial flora of modified atmosphere packaged farmed Atlantic cod (Gadus morhua) by PCR-DGGE of conserved 16S rRNA gene regions. Int. J. Food Microbiol. 2007, 117, 68–75. [Google Scholar] [CrossRef]
- Reynisson, E.; Lauzon, H.L.; Magnússon, H.; Jónsdóttir, R.; Olafsdóttir, G.; Marteinsson, V.; Hreggvidsson, G.O. Bacterial composition and succession during storage of North-Atlantic cod (Gadus morhua) at super chilled temperatures. BMC Microbiol. 2009, 9, 250–255. [Google Scholar] [CrossRef]
- Nychas, G.E.; Skandamis, P.N.; Tassou, C.C.; Koutsoumanis, K.P. Meat spoilage during distribution. Meat Sci. 2008, 78, 77–89. [Google Scholar] [CrossRef]
- Cakly, S.; Kilinc, B.; Dincer, T.; Tolasa, S. Effects of Using Slurry Ice During Transportation on the Microbiological, Chemical, and Sensory Assessments of Aquacultured Sea Bass (Dicentrarchus Labrax) Stored at 4 °C. Crit. Rev. Food Sci. Nutr. 2006, 46, 453–458. [Google Scholar] [CrossRef]
- Drosinos, E.H.; Nychas, G.J.E. Production of acetic acid in relation to the content of glucose during storage of gilt-head sea bream (Sparus aurata) under modified at 0 ± 1 °C. Food Res. Int. 1997, 30, 711–717. [Google Scholar] [CrossRef]
- Dainty, R.H. Chemical/biochemical detection of spoilage. Int. J. Food Microbiol. 1996, 33, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Dalgaard, P. Qualitative and quantitative characterization of spoilage bacteria from packed fish. Int. J. Food Microbiol. 1995, 26, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Gram, L.; Trolle, G.; Huss, H.H. Detection of specific spoilage bacteria from fish stored at low (0 °C) and high (20 °C) temperatures. Int. J. Food Microbiol. 1987, 4, 65–72. [Google Scholar] [CrossRef]
- Oehlenschlager, J. Seafood quality assessment. In Seafood Processing, IFST Advances in Food Science Series. Technology, Quality & Safety; Boziaris, I.S., Ed.; Wiley-Blackwell: West Sussex, UK, 2014; pp. 361–386. [Google Scholar] [CrossRef]
- Cakli, S.; Kilinc, B.; Cadun, A.; Dincer, T.; Tolasa, S. Quality differences of whole ungutted sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) while stored in ice. Food Contr. 2007, 18, 391–397. [Google Scholar] [CrossRef]
- Summers, G.; Wibisono, R.D.; Hedderley, D.I.; Fletcher, G.C. Trimethylamine oxide content and spoilage potential of New Zealand commercial fish species. N. Zealand J. Mar. Freshw. Res. 2017, 51, 393–405. [Google Scholar] [CrossRef]
- Huss, H.H.; Dalsgaard, D.; Hansen, L.; Ladefoged, H.; Pedersen, A.; Zittan, L. The influence of hygiene in catch handling on the storage life of iced cod and plaice. Int. J. Food Sci. Technol. 1974, 9, 213–221. [Google Scholar] [CrossRef]
- Tappi, S.; De Aguiar Saldanha Pinheiro, A.C.; Mercatante, D.; Picone, G.; Soglia, F.; Rodriguez-Estrada, M.T.; Rocculi, P. Quality changes during frozen storage of mechanical-separated flesh obtained from an underutilized crustacean. Foods 2020, 9, 1485. [Google Scholar] [CrossRef]
- Cantoni, C.; Renon, P.; Comi, G. Trasformazione dell’aldeide formica nelle carni di animali marini. Archivio Vet. Ital. 1978, 29 (Suppl. S1–S2), 67–68. [Google Scholar]
- Hebard, C.E.; Flick, G.J.; Martin, R.E. Occurrence and significance of trimethylamine oxide cand its derivatives in fish and shellfish. In Chemistry and Biochemistry of Marine Food Products; Martin, R.E., Flick, G.J., Hebard, C.E., Ward, D.R., Eds.; AVI: Westport, CO, USA, 1982; pp. 149–304. [Google Scholar]
- Jinadasa, B.K.K.K.; Elliott, C.; Jayasinghe, G.D.T.M. A review of the presence of formaldehyde in fish and seafood. Food Contr. 2022, 136, 108882. [Google Scholar] [CrossRef]
- Chung, S.W.C.; Chan, B.T.P. Trimethylamine oxide, dimethylamine, trimethylamine and formaldehyde levels in main traded fish species in Hong Kong. Food Addit. Contam. Part B 2009, 2, 44–51. [Google Scholar] [CrossRef]
- European Food Safety Authority. Endogenous formaldehyde turnover in humans compared with exogenous contribution from food sources. Eur. Food Saf. Author. J. 2014, 12, 3550. [Google Scholar]
- Bianchi, F.; Careri, M.; Musci, M.; Mangia, A. Fish and food safety: Determination of formaldehyde in 12 fish species by SPME extraction and GC–MS analysis. Food Chem. 2007, 100, 1049–1053. [Google Scholar] [CrossRef]
- Anissah, U.; Putri, A.K.; Barokah, G.R. An estimation of endogenous formaldehyde exposure due to consumption of Indonesian opah fish (Lampris guttatus) in three major export destination countries. Squalen Bull. Mar. Fish. Postharvest Biotechnol. 2019, 14, 1–8. [Google Scholar] [CrossRef]
- Chandralekha, A.; Baranage, C.; Samarajeewa, U. Formaldehyde levels in fish from the Kandy market. J. Nation. Sci. Found. Sri Lanka 2017, 20, 115–121. [Google Scholar] [CrossRef]
- Devaraj, P.; Babu, V.; Cengiz, E.I. Qualitative detection of formaldehyde and ammonia in fish and other seafoods obtained from Chennai’s (India) fish markets. Environ. Monit. Assess. 2021, 193, 78. [Google Scholar] [CrossRef]
- Joshi, R.; Bhatta, R.; Paudel, P.; Kafle, B. Formaldehyde content of selected fish from the wet markets of Kathmandu valley. Int. Food Res. J. 2015, 22, 1434–1437. [Google Scholar] [CrossRef]
- Laly, S.; Priya, E.; Panda, S.; Zynudheen, A. Formaldehyde in seafood: A review. Fishery Techn. 2018, 55, 87–93. [Google Scholar] [CrossRef]
- Ma, H.; Haque, M.; Afmiu, Z.; Aziz, M.; Sharmin, K. Association of natural formaldehyde level with quality attributes of selected sea fish, collected from southeast coast of Bangladesh. Sci. Res. J. 2020, 8, 1–7. [Google Scholar] [CrossRef]
- Lannelongue, M.; Hanna, M.O.; Finne, G.; Nickelson, R.; Vanderzant, C. Storage characteristics of fin-fish fillets (Archosargus probatocephalus) packaged in modified gas atmospheres containing carbon dioxide. J. Food Prot. 1982, 45, 440–444. [Google Scholar] [CrossRef]
- Parlapani, F.F.; Mallouchos, A.; Haroutounian, S.A.; Boziaris, I.S. Microbiological spoilage and investigation of volatiles profile during storage of sea bream fillets under various conditions. Int. J. Food Microbiol. 2014, 189, 153–163. [Google Scholar] [CrossRef]
- Parlapani, F.F.; Meziti, A.; Kormas, K.A.; Boziaris, I.S. Indigenous and spoilage microbiota of farmed sea bream stored in ice identified by phenotypic and 16S rRNA gene analysis. Food Microbiol. 2013, 33, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Tryfinopoulou, P.; Tsakalidou, E.; Nychas, G.J.E. Characterization of Pseudomonas spp. associated with spoilage of gilt-head sea bream stored under various conditions. Appl. Environ. Microbiol. 2002, 68, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Emborg, J.; Laursen, B.G.; Dalgaard, P. Significant histamine formation in tuna (Thunnus albacares) at 2 °C effect of vacuum and modified atmosphere packaging on psychrotolerant bacteria. Int. J. Food Microbiol. 2005, 101, 263–279. [Google Scholar] [CrossRef] [PubMed]
- Kanki, M.; Yoda, T.; Ishibashi, M.; Tsukamoto, T. Photobacterium phosphoreum caused a histamine fish poisoning incident. Int. J. Food Microbiol. 2004, 92, 79–87. [Google Scholar] [CrossRef]
- Silla Santos, M.H. Biogenic amines: Their importance in food. Int. J. Food Microbiol. 1996, 29, 213–231. [Google Scholar] [CrossRef]
- Hernández-Jover, T.; Izquierdo-Pulido, M.; Veciana-Nogués, M.T.; Mariné-Font, A.; Vidal-Carou, M.C. Biogenic amine and polyamine contents in meat and meat products. J. Agricol. Food Chem. 1997, 45, 2098–2102. [Google Scholar] [CrossRef]
- European Food Safety Authority. Annual Report; EFSA: Parma, Italy, 2011; pp. 1–54. [Google Scholar]
- Noseda, B.; Vermeulen, A.; Ragaert, P.; Devlieghere, F. Packaging of fish and fishery products. IFST Advances in Food Science Series. In Seafood Processing: Technology, Quality & Safety; Boziaris, I.S., Ed.; Wiley-Blackwell: West Sussex, UK, 2014; pp. 237–261. [Google Scholar]
- Kostaki, M.; Giatrakou, V.; Savvaidis, I.N.; Kontominas, M.G. Combined effect of MAP and thyme essential oil on the microbiological, chemical and sensory attributes of organically aquacultured sea bass (Dicentrarchus labrax) fillets. Food Microbiol. 2009, 26, 475–482. [Google Scholar] [CrossRef]
- Che Man, Y.B.; Ramadas, J. Effect of packaging environment on quality changes of smoked Spanish mackerel under refrigeration. J. Food Qual. 1998, 21, 167–174. [Google Scholar] [CrossRef]
- Vollenweider, S.; Grassi, G.; König, I.; Puhan, Z. Purification and structural characterization of 3-hydroxypropionaldehyde and its derivates. J. Agric. Food Chem. 2003, 51, 3287–3293. [Google Scholar] [CrossRef]
- Iacumin, L.; Jayasinghe, A.S.; Pellegrini, M.; Comi, G. Evaluation of Different Techniques, including Modified Atmosphere, under Vacuum Packaging, Washing, and Latilactobacillus sakei as a Bioprotective Agent, to Increase the Shelf-Life of Fresh Gutted Sea Bass (Dicentrarchus labrax) and Sea Bream (Sparus aurata) Stored at 6 ± 2 °C. Biology 2022, 11, 217. [Google Scholar] [CrossRef]
- Comi, G.; Iacumin, L. Meat and Fish products. In Food Microbiology; Gobetti, G., Vincenzini, M., Farris, G.A., Neviani, E., Eds.; Ambrosiana Editrice: Milano, Italy, 2012; pp. 153–196. [Google Scholar]
- ICMSF. Microorganisms in Foods. In The International Commission on Microbiological Specifications for Foods; ICMSF: Toronto, Ontario, Canada, 1978; Volume 2. [Google Scholar]
- Alasalvar, C.; Taylor, K.D.A.; Oksuz, A.; Garhtwaite, T.; Alexis, M.N.; Grigorakis, K. Freshness assessment of cultured sea bream (Sparus aurata) by chemical, physical and sensory methods. Food Chem. 2001, 72, 33–40. [Google Scholar] [CrossRef]
- Ananou, S.; Maqueda, M.; Martínez-Bueno, M.; Valdivia, E. Biopreservation, an ecological approach to improve the safety and shelf-life of foods. In Communicating Current Research and Educational Topics and Trends in Applied Microbiology; Méndez-Vilas, A., Ed.; Formatex: Paris, France, 2007; pp. 475–486. Available online: https://www.researchgate.net/publication/237438016 (accessed on 19 November 2025).
- Angiolillo, L.; Conte, A.; Zambrini, A.V.; Del Nobile, M.A. Biopreservation of Fiordilatte cheese. J. Dairy Sci. 2014, 97, 5345–5355. [Google Scholar] [CrossRef] [PubMed]
- ISO 6579-1: 2002 Cor.1:2004; Microbiology of food and animal feeding stuffs—Horizontal method for the detection of Salmonella spp. International Standard Organization: Geneva, Switzerland, 2002.
- ISO 11290-1:1996 Adm.1:2004; Microbiology of food and animal feeding stuffs—Horizontal method for the detection of Listeria monocytogenes. International Standard Organization: Geneva, Switzerland, 1996.
- Pearson, D. Laboratory Techniques in Food Analysis; Butterworths & Co. Publishers Ltd.: London, UK, 1973; pp. 169, 201–202. [Google Scholar]
- Ke, P.Y.; Cervantes, E.; Robles-Martınez, C. Determination of thiobarbituric acid reactive substances (TBARS) in fish tissue by an improved distillation spectrophotometer method. J. Sci. Food Agric. 1984, 35, 1248–1254. [Google Scholar] [CrossRef]
- ISO 4120: 2004; Triangle Test Methodology. Standard Test Method for Sensory Analysis—General Guidance for the Design of Test Rooms. ISO: Geneva, Switzerland, 2004.
- Stone, H.; Sidel, J.L. Sensory Evaluation Practices, 3rd ed.; Elsevier Academic Press: San Diego, CA, USA, 2004. [Google Scholar]
- International Commission on Microbiological Specification for Foods. Microorganisms in Foods 2. Sampling for Microbiological Analysis: Principles and Specific Applications, 2nd ed.; University of Toronto Press: Toronto, ON, Canada, 1986. [Google Scholar]
- Arechavala-Lopez, P.; Fernandez-Jover, D.; Black, K.D.; Ladoukakis, E.; Bayle-Sempere, J.T.; Sanchez-Jerez, P.; Dempster, T. Differentiating the wild or farmed origin of Mediterranean fish: A review of tools for sea bream and sea bass. Rev. Aquac. 2013, 5, 137–157. [Google Scholar] [CrossRef]
- Kyrana, V.R.; Lougovois, V.P. Sensory, chemical, microbiological assessment of farm-raised European sea bass (Dicentrarchus labrax) stored in melting ice. Int. J. Food Sci. Technol. 2002, 37, 319–328. [Google Scholar] [CrossRef]
- Paleologos, E.K.; Savvaidis, I.N.; Kontominas, M.G. Biogenic amines formation and its relation to microbiological and sensory attributes in ice-stored whole, gutted and filleted Mediterranean Sea bass (Dicentrarchus labrax). Food Microbiol. 2004, 21, 549–557. [Google Scholar] [CrossRef]
- Fishler, F. EEC/95—Commission Decision of 8 March 1995 fixing the total volatile basic nitrogen (TVB-N) limit values for certain categories of fishery products and specifying the analysis methods to be used (95/ 149/EC). Official Journal of the European Communities: No. L 97/84, 29/04/1995. Off. J. Eur. Communities 1995, 97, 84–87. [Google Scholar]
- Aminah, A.S.; Zailina, H.; Fatimah, A.B. Health risk assessment of adults consuming commercial fish contaminated with formaldehyde. Food Public Health 2013, 3, 52–58. [Google Scholar] [CrossRef]
- Koutsoumanis, K.; Nychas, G.J.E. Application of a systematic procedure to develop a microbial model for rapid fish shelf-life predictions. Int. J. Food Microbiol. 2000, 60, 171–184. [Google Scholar] [CrossRef]
- Iacumin, L.; Pellegrini, M.; Sist, A.; Tabanelli, G.; Montanari, C.; Bernardi, C.; Comi, G. Improving the Shelf-Life of Fish Burgers Made with a Mix of Sea Bass and Sea Bream Meat by Bioprotective Cultures. Microorganisms 2022, 10, 1786. [Google Scholar] [CrossRef]
| Parameter | Time (Days) | |||||||
|---|---|---|---|---|---|---|---|---|
| T0 | T6 | T12 | T15 | |||||
| VP | MAP | VP | MAP | VP | MAP | VP | MAP | |
| Total viable count | 2.0 ± 0.1 a | 2.0 ± 0.2 a | 5.2 ± 0.3 b | 7.7 ± 0.3 c | 7.8 ± 0.3 c | 8.4 ± 0.2 d | 7.5 ± 0.2 c | 8.5 ± 0.1 d |
| Enterobacteriaceae | 2.0 ± 0.2 a | 2.1 ± 0.3 a | 3.3 ± 0.3 b | 3.5 ± 0.1 b | 4.2± 0.4 c | 4.4 ± 0.4 c | 4.1 ± 0.3 c | 4.2 ± 0.2 c |
| Pseudomonas spp. | 2.1 ± 0.3 a | 2.2 ± 0.2 a | 2.1 ± 0.3 a | 2.2 ± 0.1 a | 2.2 ± 0.3 a | 2.0 ± 0.3 a | 2.1 ± 0.2 a | 2.2 ± 0.1 a |
| E. coli | <10 a | <10 a | 2.0 ± 0.2 b | 2.0 ± 0.1 b | 2.0 ± 0.1 b | 2.0 ± 0.2 b | 2.1 ± 0.1 b | 2.1 ± 0.2 b |
| Total coliforms | <10 a | <10 a | 2.2 ± 0.2 b | 2.4 ± 0.1 b | 4.1 ± 0.2 c | 4.5 ± 0.2 c | 3.9 ± 0.5 c | 4.7 ± 0.3 c |
| Clostridium H2 S+ | <10 a | <10 a | <10 a | <10 a | <10 a | <10 a | <10 a | <10 a |
| Lactic acid bacteria | <10 a | <10 a | 2.2 ± 0.1 a | 2.3 ± 0.1 a | 5.5 ± 0.2 a | 5.2 ± 0.3 b | 5.6 ± 0.2 b | 5.3 ± 0.1 b |
| Enterococci | <10 a | <10 a | 2.0 ± 0.1 a | 2.1 ± 0.1 a | 2.1 ± 0.2 a | 2.2 ± 0.2 a | 2.1 ± 0.2 a | 2.1 ± 0.1 a |
| TBARS | 1.5 ± 0.2 a | 1.5 ± 0.1 a | 2.3± 0.2 b | 2.3 ± 0.2 b | 2.4 ± 0.2 b | 2.3 ± 0.1 b | 2.2 ± 0.3 b | 2.2 ± 0.2 b |
| pH | 6.12 ± 0.03 a | 6.10 ± 0.02 a | 6.09 ± 0.05 a | 6.01 ± 0.04 a | 6.05 ± 0.04 a | 6.02 ± 0.03 a | 6.03 ± 0.04 a | 6.05 ± 0.02 a |
| Days | Sea Bass | |||||
|---|---|---|---|---|---|---|
| VP | MAP (20% CO2; 80% N2; < 0.5% O2) | |||||
| TVB-N | Formaldehyde | Formic Acid | TVB-N | Formaldehyde | Formic Acid | |
| 0 | 13.0 ± 0.2 a | 3.9 ± 0.1 a | 1.8 ± 0.3 a | 13.5 ± 0.5 a | 4.5 ± 0.3 a | 2.9 ± 0.3 a |
| 6 | 19.9 ± 0.5 a | 28.4 ± 0.4 b | 3.6 ± 0.2 b | 20.1 ± 0.3 a | 32.7 ± 0.3 b | 4.4 ± 0.2 b |
| 9 | 31.5 ± 1.3 a | 12.5 ± 0.2 c | 5.2 ± 0.1 c | 33.2 ± 0.3 a | 12.5 ± 0.5 c | 5.8 ± 0.1 c |
| 12 | 32.2 ± 0.9 a | 14.5 ± 0.7 d | 5.5 ± 0.2 d | 33.4 ± 0.7 a | 15.5 ± 0.2 d | 6.1 ± 0.3 c |
| 15 | 41.9 ± 0.2 b | 14.5 ± 0.1 d | 5.4 ± 0.1 d | 43.3 ± 0.2 b | 14.5 ± 0.7 d | 5.3 ± 0.2 d |
| Parameter | Time (Days) | |||||||
|---|---|---|---|---|---|---|---|---|
| T0 | T6 | T12 | T15 | |||||
| VP | MAP | VP | MAP | VP | MAP | VP | MAP | |
| Total viable count | 2.1 ± 0.2 a | 2.1 ± 0.1 a | 4.4 ± 0.5 b | 5.3 ± 0.3 b | 5.5 ± 0.1 b | 5.7 ± 0.3 b | 7.9 ± 0.2 c | 8.2 ± 0.1 c |
| Enterobacteriaceae | 2.1 ± 0.1 a | 2.0 ± 0.2 a | 2.2 ± 0.3 a | 2.2 ± 0.2 a | 4.2 ± 0.2 b | 4.4 ± 0.2 b | 4.6 ± 0.2 b | 4.6 ± 0.3 b |
| Pseudomonas spp. | 2.2 ± 0.1 a | 2.1 ± 0.2 a | 2.1 ± 0.1 a | 2.2 ± 0.2 a | 2.2 ± 0.1 a | 2.2 ± 0.2 a | 2.3 ± 0.2 a | 2.3 ± 0.2 a |
| E. coli | <10 a | <10 a | 1.4 ± 0.2 a | 1.5 ± 0.1 a | 1.5 ± 0.1 a | 1.4 ± 0.1 a | 1.6 ± 0.2 a | 1.6 ± 0.2 a |
| Total coliforms | <10 a | <10 a | 2.0 ± 0.3 b | 2.2 ± 0.4 b | 3.6 ± 0.2 b | 3.8 ± 0.3 b | 4.4 ± 0.3 c | 4.4 ± 0.1 c |
| Clostridium H2S+ | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 |
| Lactic acid bacteria | <10 a | <10 a | 2.2 ± 0.4 a | 2.2 ± 0.2 a | 5.8 ± 0.2 a | 4.9 ± 0.5 b | 5.7 ± 0.1 a | 5.5 ± 0.2 b |
| Enterococci | <10 a | <10 a | 1.5 ± 0.1 b | 1.6 ± 0.1 b | 1.5 ± 0.1 b | 1.6 ± 0.1 a | 1.6 ± 0.2 b | 1.7. ± 0.2 b |
| TBARS | 1.5 ± 0.1 a | 1.7 ± 0.2 a | 2.3 ± 0.2 b | 2.4 ± 0.2 b | 2.4 ± 0.1 b | 2.5 ± 0.1 b | 2.4 ± 0.1 b | 2.3 ± 0.1 b |
| pH | 6.10 ± 0.01 a | 6.00 ± 0.02 a | 6.09 ± 0.03 a | 6.09 ± 0.02 a | 5.91 ± 0.02 a | 6.03 ± 0.01 a | 6.02 ± 0.02 a | 6.03 ± 0.02 a |
| Days | Sea Bream | |||||
|---|---|---|---|---|---|---|
| VP | MAP (20% CO2; 80% N2; < 0.5% O2) | |||||
| TVB-N | Formaldehyde | Formic Acid | TVB-N | Formaldehyde | Formic Acid | |
| 0 | 12.9 ± 0.5 a | 3.5 ± 0.1 a | 2.1 ± 0.3 a | 12.7 ± 0.3 a | 4.9 ± 0.4 a | 3.2 ± 0.1 a |
| 6 | 21.9 ± 0.1 a | 30.2 ± 0.2 b | 4.2 ± 0.3 b | 23.5 ± 1.2 a | 35.2 ± 0.1 b | 6.1 ± 0.2 b |
| 9 | 31.5 ± 1.3 a | 12.5 ± 0.1 c | 5.3 ± 0.2 c | 33.2 ± 0.3 a | 12.5 ± 0.3 c | 5.8 ± 0.3 b |
| 12 | 34.6 ± 0.2 a | 12.7 ± 0.2 c | 5.4 ± 0.3 c | 34.0 ± 0.5 a | 17.3 ± 0.2 d | 7.2 ± 0.4 c |
| 15 | 41.5 ± 0.3 b | 12.3 ± 0.3 c | 5.4 ± 0.2 c | 42.8 ± 0.8 b | 17.4 ± 0.1 d | 7.2 ± 0.2 c |
| Fish | Samples | Difference | Final Values Scores * |
|---|---|---|---|
| Sea bass | 0 days vs. 12 days | +7/20 | 1/2 a/a |
| 0 days vs.15 days | +20/20 | 1/4 a/na | |
| 12 days vs. 15 days | +20/20 | 2/4 a/na | |
| Sea bream | 0 days vs. 12 days | +9/20 | 1/2 a/a |
| 0 days vs. 15 days | +20/20 | 1/4 a/na | |
| 12 days vs. 15 days | +20/20 | 2/4 a/na |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pellegrini, M.; Andyanto, D.; Iacumin, L.; Comi, G. Evaluation of Total Volatile Basic Nitrogen, Formaldehyde, and Formic Acid as Markers to Define the Acceptability of Farmed Sea Bass and Sea Bream Stored Under Vacuum (VP) or in Modified-Atmosphere Packaging (MAP) at 4 ± 2 °C. Microorganisms 2025, 13, 2774. https://doi.org/10.3390/microorganisms13122774
Pellegrini M, Andyanto D, Iacumin L, Comi G. Evaluation of Total Volatile Basic Nitrogen, Formaldehyde, and Formic Acid as Markers to Define the Acceptability of Farmed Sea Bass and Sea Bream Stored Under Vacuum (VP) or in Modified-Atmosphere Packaging (MAP) at 4 ± 2 °C. Microorganisms. 2025; 13(12):2774. https://doi.org/10.3390/microorganisms13122774
Chicago/Turabian StylePellegrini, Michela, Debbie Andyanto, Lucilla Iacumin, and Giuseppe Comi. 2025. "Evaluation of Total Volatile Basic Nitrogen, Formaldehyde, and Formic Acid as Markers to Define the Acceptability of Farmed Sea Bass and Sea Bream Stored Under Vacuum (VP) or in Modified-Atmosphere Packaging (MAP) at 4 ± 2 °C" Microorganisms 13, no. 12: 2774. https://doi.org/10.3390/microorganisms13122774
APA StylePellegrini, M., Andyanto, D., Iacumin, L., & Comi, G. (2025). Evaluation of Total Volatile Basic Nitrogen, Formaldehyde, and Formic Acid as Markers to Define the Acceptability of Farmed Sea Bass and Sea Bream Stored Under Vacuum (VP) or in Modified-Atmosphere Packaging (MAP) at 4 ± 2 °C. Microorganisms, 13(12), 2774. https://doi.org/10.3390/microorganisms13122774

