Study on the Influence Mechanism of the Rhizosphere Soil Microbial Community and Physicochemical Factors on the Occurrence of Pepper Phytophthora Blight
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection of Rhizosphere Soil
2.2. Determination of Rhizosphere Soil Physicochemical Properties
2.3. Sample DNA Extraction, Amplification and Sequencing
2.4. Analysis of Microbial Diversity of Samples
2.5. Statistical Analysis
3. Results
3.1. Analysis of Physicochemical Properties and Enzyme Activity of Diseased YS and Healthy YR Rhizosphere Soil
3.2. Microbial Sequencing Data Quality Control and OTU Basic Analysis for Diseased YS and Healthy YR Rhizosphere Soil
3.3. Analysis of Diversity and Structural Similarity in Bacterial and Fungal Communities of Diseased YS and Healthy YR Rhizosphere Soil
3.4. Analysis of Species Composition and Differences in Bacterial and Fungal Communities Between Diseased YS and Healthy YR Rhizosphere Soil
3.5. Functional Prediction of Bacterial and Fungal Communities in Diseased YS and Healthy YR Rhizosphere Soil
3.6. Correlation Analysis of Microbial Community Structure with Environmental Factors in Diseased YS and Healthy YR Rhizosphere Soil
3.7. Correlation Analysis of Microbial Composition with Environmental Factors in Diseased YS and Healthy YR Rhizosphere Soil
4. Discussion
4.1. Potential Influence of Rhizosphere Soil Enzymes and Physicochemical Properties on Pepper Phytophthora Blight Occurrence
4.2. Analysis of Soil Microbial Diversity and Dominant Species in YS and YR
4.3. Functional Prediction and Differential Analysis of Soil Microbial Communities in YS and YR
4.4. Correlation Analysis Between Key Environmental Factors and Dominant Fungal Communities Reveals Mechanisms Underlying Pepper Phytophthora Blight Occurrence
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Antonio, A.S.; Wiedemann, L.S.M.; Veiga, V.F. The genus Capsicum: A phytochemical review of bioactive secondary metabolites. Rsc Adv. 2018, 8, 25767–25784. [Google Scholar] [CrossRef] [PubMed]
- Mao, T.; Tao, G.; Zhao, X.; Wang, Q.; Li, S. Biological Control of Four Kinds of Microbial Preparations against Main Diseases of Pepper. Chin. J. Biol. Control 2020, 36, 258–264. [Google Scholar]
- Chen, M.; Li, D.; You, T.; Ge, X.; Ou, L.; Liu, Q. Soil bacterial community characteristics in effectively suppressing pepper phytophthora blight by composite microbial agents. Res. Agric. Mod. 2024, 45, 336–344. [Google Scholar]
- Shi, F.; Wang, Z.; Zhang, X.; Wang, X.; Zou, C. Research Progress on the Mechanism of Pepper Resistance to Phytophthora Blight. Acta Hortic. Sin. 2024, 51, 1665–1682. [Google Scholar]
- Yang, F.; Wang, X.; Jiang, H.Y.; Yao, Q.J.; Liang, S.; Chen, W.W.; Shi, G.Y.; Tian, B.M.; Hegazy, A.; Ding, S.L. Mechanism of a novel Bacillus subtilis JNF2 in suppressing Fusarium oxysporum f. sp. cucumerium and enhancing cucumber growth. Front. Microbiol. 2024, 15, 1459906. [Google Scholar] [CrossRef]
- Nihorimbere, G.; Alleluya, V.K.; Nimbeshaho, F.; Nihorimbere, V.; Legrève, A.; Ongena, M. Bacillus-based biocontrol beyond chemical control in central Africa: The challenge of turning myth into reality. Front. Plant Sci. 2024, 15, 1349357. [Google Scholar] [CrossRef] [PubMed]
- Du, G.; Huang, Y.; Huang, D.; Ni, Z.; Li, X.; Peng, J.; Liu, W.; Qi, Z. Control Efficacy of Different Microbial Agent on Pepper Phytophthora Blight and Effects on Soil Bacterial Community. Chin. J. Trop. Crops 2023, 44, 1214–1223. [Google Scholar]
- Guan, X.; Sui, C.; Li, J.; Chen, Z.; Wu, W.; Ran, C. Research Progress on Biological Pesticides for Control of Pepper Phytophthora Disease. Agrochemicals 2020, 59, 473. [Google Scholar]
- Yang, F.; Wang, X.; Jiang, H.Y.; Chang, X.K.; Chen, W.W.; Shi, G.Y.; Tian, B.M.; Yao, Q.J. Formation of a Novel Antagonistic Bacterial Combination to Enhance Biocontrol for Cucumber Fusarium Wilt. Microorganisms 2025, 13, 133. [Google Scholar] [CrossRef]
- Liu, W.S.; Li, H.Q.; He, Y.; Huang, Y.Y.; Qiu, K.Y.; Xie, Y.Z. Research progress on the interaction regulation of plant and soil by rhizosphere microbiome. Soil Fertil. Sci. China 2021, 5, 318–327. [Google Scholar]
- Li, Y.Q.; Zhou, S.T.; Xu, L.L.; Wang, L.Y. Microbial Diversity and Physicochemical Properties of Rhizosphere Soil of Healthy and Diseased Andrographis paniculata. Chin. J. Exp. Tradit. Med. Formulae 2025, 31, 172–181. [Google Scholar]
- Liu, S.; Wang, Z.Y.; Niu, J.F.; Dang, K.K.; Zhang, S.K.; Wang, S.Q.; Wang, Z.Z. Changes in physicochemical properties, enzymatic activities, and the microbial community of soil significantly influence the continuous cropping of Panax quinquefolius L. (American ginseng). Plant Soil 2021, 463, 427–446. [Google Scholar] [CrossRef]
- Thepbandit, W.; Athinuwat, D. Rhizosphere Microorganisms Supply Availability of Soil Nutrients and Induce Plant Defense. Microorganisms 2024, 12, 558. [Google Scholar] [CrossRef]
- Nadeem, S.M.; Ahmad, M.; Zahir, Z.A.; Javaid, A.; Ashraf, M. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol. Adv. 2014, 32, 429–448. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Zhang, Q.; Wang, D.; Shi, J.; Geng, X.; Tian, D.; Zhong, Z.; Zhao, X.; Qi, L. Effect of Microbicides on Main Diseases and Soil Microbial Communities of Tomatoes in Facilities. J. Agric. Sci. Technol. 2024, 26, 102–112. [Google Scholar]
- Luo, L.Y.; Jin, D.C.; Zuo, H.; Zhang, Z.; Tan, X.Q.; Zhang, D.Y.; Lu, X.Y.; Liu, Y. Effects of Rhodopseudomonas palustris PSB06 on Pepper Rhizosphere Microbial Community Structure. Huan Jing Ke Xue 2017, 38, 735–742. [Google Scholar]
- Ye, M.; Yu, J.; Ma, Y.; Huang, Y. Effects of different microbial inoculants on pepper blight suppression and soil properties. Jiangsu J. Agric. Sci. 2019, 35, 811–817. [Google Scholar]
- Chen, Q.; Miao, Y.; Wang, T.; Guo, L.; Liu, D. Fusarium Wilt Changes Microbial Community Structure in Rhizosphere Soil of Chrysanthemum morifolium. Chin. J. Exp. Tradit. Med. Formulae 2021, 27, 180–186. [Google Scholar]
- Zhao, Y.P.; Bian, Q.Y.; Dong, Z.D.; Rao, X.J.; Wang, Z.G.; Fu, Y.B.; Chen, B.L. The input of organic fertilizer can improve soil physicochemical properties and increase cotton yield in southern Xinjiang. Front. Plant Sci. 2025, 15, 1520272. [Google Scholar] [CrossRef]
- Song, X.H.; Pan, Y.; Li, L.Y.; Wu, X.L.; Wang, Y. Composition and diversity of rhizosphere fungal community in Coptis chinensis Franch. continuous cropping fields. PLoS ONE 2018, 13, e0193811. [Google Scholar] [CrossRef]
- Wang, H.Y.; Sun, H.X.; Zhou, J.M.; Cheng, W.; Du, C.W.; Chen, X.Q. Evaluating Plant-Available Potassium in Different Soils Using a Modified Sodium Tetraphenylboron Method. Soil Sci. 2010, 175, 544–551. [Google Scholar] [CrossRef]
- Liu, J.; Wu, L.C.; Chen, D.; Li, M.; Wei, C.J. Soil quality assessment of different Camellia oleifera stands in mid-subtropical China. Appl. Soil Ecol. 2017, 113, 29–35. [Google Scholar] [CrossRef]
- Zhao, M.; Su, Z.; Long, F.; Zou, Y.; Mo, T.; Huang, X.; Li, K.; Chen, Y.; Sheng, J.; Wu, P. Analysis of changes in rhizosphere soil microbial community structure of banana varieties resistant to wilt disease under continuous cropping. J. South. Argic. 2024, 55, 1–12. [Google Scholar]
- Shi, Y.; Li, Y.T.; Xiang, X.J.; Sun, R.B.; Yang, T.; He, D.; Zhang, K.P.; Ni, Y.Y.; Zhu, Y.G.; Adams, J.M.; et al. Spatial scale affects the relative role of stochasticity versus determinism in soil bacterial communities in wheat fields across the North China Plain. Microbiome 2018, 6, 27. [Google Scholar] [CrossRef]
- Xu, Y.X.; Du, A.P.; Wang, Z.C.; Zhu, W.K.; Li, C.; Wu, L.C. Effects of different rotation periods of Eucalyptus plantations on soil physiochemical properties, enzyme activities, microbial biomass and microbial community structure and diversity. For. Ecol. Manag. 2020, 456, 117683. [Google Scholar] [CrossRef]
- Wang, E.; Lyu, P.; Zhou, Y.; Zhan, Y.; He, G.; Wang, L.; Miao, X.; Chen, C.; Li, Q. Effects of Biocontrol Bacteria on Soil Properties and Bacterial Community Structure of Ginseng Continuous Cropping. J. Agric. Sci. Technol. 2025, 27, 140–148. [Google Scholar]
- Xie, L.; Wu, Q.; Wang, Y.; Zhang, M.; He, P.; Ma, C. Ecological processes of preventing arid grasslands from changing into deserts by Caragana shrubs. Acta Ecol. Sin. 2024, 44, 1680–1691. [Google Scholar]
- Zhou, D.; Li, X.; Ning, Y.; Liang, X.; Wang, J.; Li, Y.; Liu, Y. Effect of chemical fertilizer combined with vermicompost on soil characters and enzyme activity in paddy fields. J. Northeast Agric. Univ. 2021, 52, 25–35. [Google Scholar]
- Chen, S.F.; Zhou, Y.Q.; Chen, Y.R.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, 884–890. [Google Scholar] [CrossRef]
- Magoc, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996. [Google Scholar] [CrossRef]
- Stackebrandt, E.; Goebel, B.M. A place for DNA-DNA reassociation and 16s ribosomal-rRNA Sequence-Analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 1994, 44, 846–849. [Google Scholar] [CrossRef]
- Shi, F.Y.; Wang, X.X.; Wei, M.J.; Zhang, X.; Wang, Z.D.; Lu, X.C.; Zou, C.L. Transcriptome analysis provides new insights into the resistance of pepper to Phytophthora capsici infection. BMC Genom. 2025, 26, 311. [Google Scholar] [CrossRef] [PubMed]
- Rinaldy, R.; Pahira, S.H. Long-term effects of agropharmaceutic (pesticide category) use on soil microbial communities and water resources. EQA-Int. J. Environ. Qual. 2025, 69, 87–95. [Google Scholar]
- Wang, X.; Yang, J.; Cao, W.; Wei, L.; Ji, G. Screening of Biocontrol Bacteria on Rice Bacteria Leaf Streak and Determination of Field Control Efficacy. Chin. J. Biol. Control 2019, 35, 648–654. [Google Scholar]
- Mendes, R.; Kruijt, M.; de Bruijn, I.; Dekkers, E.; van der Voort, M.; Schneider, J.H.M.; Piceno, Y.M.; DeSantis, T.Z.; Andersen, G.L.; Bakker, P.; et al. Deciphering the Rhizosphere Microbiome for Disease-Suppressive Bacteria. Science 2011, 332, 1097–1100. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, X.; Tian, X.; Liu, W. Composition of Bacterial Community in Maize Rhizosphere and Screening of Biocontrol Bacteria Strains. Chin. J. Biol. Control 2018, 34, 771–778. [Google Scholar]
- Berg, G.; Köberl, M.; Rybakova, D.; Müller, H.; Grosch, R.; Smalla, K. Plant microbial diversity is suggested as the key to future biocontrol and health trends. FEMS Microbiol. Ecol. 2017, 93, fix050. [Google Scholar] [CrossRef]
- Garbeva, P.; van Veen, J.A.; van Elsas, J.D. Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol. 2004, 42, 243–270. [Google Scholar] [CrossRef]
- Shen, T.; Zhang, X.; Yang, G.; Liu, B.; Qi, Y.; Li, L.; Tian, X. Effects of biocontrol agents on watermelon rhizosphere soil microbial community and Fusarium oxysporum f.sp. J. Northwest A F Univ. Nat. Sci. Ed. 2023, 51, 115–125. [Google Scholar]
- Piccolo, A.; Spaccini, R.; Cozzolino, V.; Nuzzo, A.; Drosos, M.; Zavattaro, L.; Grignani, C.; Puglisi, E.; Trevisan, M. Effective carbon sequestration in Italian agricultural soils by in situ polymerization of soil organic matter under biomimetic photocatalysis. Land Degrad. Dev. 2018, 29, 485–494. [Google Scholar] [CrossRef]
- Shu-Ping, Q.I.N.; Chun-Sheng, H.U.; Yu-Ming, Z.; Yu-Ying, W.; Wen-Xu, D.; Xiao-Xin, L.I. Enzymological regulation of soil nutrient cycle in the piedmont region of North China Plain. Chin. J. Eco-Agric. 2011, 19, 1129–1133. [Google Scholar]
- Liu, C.J.; Li, B.; Dong, Y.B.; Lin, H. Endophyte colonization enhanced cadmium phytoremediation by improving endosphere and rhizosphere microecology characteristics. J. Hazard. Mater. 2022, 434, 128829. [Google Scholar] [CrossRef]
- Adetunji, A.T.; Lewu, F.B.; Mulidzi, R.; Ncube, B. The biological activities of β-glucosidase, phosphatase and urease as soil quality indicators: A review. J. Soil Sci. Plant Nutr. 2017, 17, 794–807. [Google Scholar] [CrossRef]
- Makoi, J.; Ndakidemi, P.A. Selected soil enzymes: Examples of their potential roles in the ecosystem. Afr. J. Biotechnol. 2008, 7, 181–191. [Google Scholar]
- You, C.; Lu, X.; Guan, H. The relevance of notoginseng root rot to the enzyme activity in soil. Yunnan Norm. Univ. 2014, 34, 25–29. [Google Scholar]
- Li, X.; Qi, Y.; Guo, C.; Guo, W.; Li, X.; Li, M. Effects of naked barley root rot on rhizosphere soil microorganisms and enzyme activity. Acta Ecol. Sin 2017, 37, 5641–5649. [Google Scholar]
- Boiteau, G.; Goyer, C.; Rees, H.W.; Zebarth, B.J. Differentiation of potato ecosystems on the basis of relationships among physical, chemical and biological soil parameters. Can. J. Soil Sci. 2014, 94, 463–476. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Du, M.; Ha, J.; Wang, Q.; Shen, Y.; Yang, X. Analysis of Soil Microbial Diversity in Different Habitats INAN Arid, Saline-alkali Area of Qinghai Province. Acta Agric. Boreali-Occident. Sin. 2025, 34, 309–318. [Google Scholar]
- Yu, W.; Yi, Y.; Yang, L. Effect of different available calcium and nitrogen in soil on effectiveness of disease resistance to blight of tomato. Soil Fertil. Sci. China 2016, 1, 134–140. [Google Scholar]
- Ma, Y.B.; Liu, M.M.; Hong, Y.T.; Wang, Y.C.; Chang, X.K.; Shi, G.Y.; Xiao, H.J.; Yao, Q.J.; Yang, F. Influence of Soil Physicochemical Properties and Inter-Root Microbial Communities on the Inhibition of Anthracnose in Peppers. Microorganisms 2025, 13, 661. [Google Scholar] [CrossRef]
- Zhang, Y.K.; Biswas, A.; Adamchuk, V.I. Implementation of a sigmoid depth function to describe change of soil pH with depth. Geoderma 2017, 289, 1–10. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, S.; Yang, J.; Wei, Y.; Lin, C.; Ma, H. Correlation Analysis of the Occurrence of Bacterial Wilt and Physicochemical Properties and Enzyme Activity of Root-Zone Soil of Casuarina spp. Ecol. Environ. Sci. 2022, 31, 70–78. [Google Scholar]
- Zhang, G.; Chu, D.; Liu, Y.; Niu, J.; Chen, Q.; Naila, I.; Wei, J.; Li, Y. Effects of Biochar and Seaweed Fertilizers on Tobacco Growth, Soil Properties and Bacterial Wilt Occurrence. Chin. Tob. Sci. 2019, 40, 15–22. [Google Scholar] [CrossRef]
- Duffy, B.K.; Ownley, B.H.; Weller, D.M. Soil chemical and physical properties associated with suppression of take-all of wheat by Trichoderma koningii. Phytopathology 1997, 87, 1118–1124. [Google Scholar] [CrossRef]
- Powlson, D.S.; Jenkinson, D.S. A comparison of the organic-matter, biomass, adenosine-triphosphate and mineralizable nitrogen contents of ploughed and direct-drilled soils. J. Agric. Sci. 1981, 97, 713–721. [Google Scholar] [CrossRef]
- Zhang, C.; Hao, M.; Wei, X.; Wang, X. Change of soil microbial biomass carbon in different agroecosystems. Chin. J. Eco-Agric. 2006, 14, 81–83. [Google Scholar]
- Ma, Y.; Xu, H.; Song, M.; Feng, Z.; Shao, Z.; Lu, B.; Wang, X.; Ma, G.; Gao, J. Correlation between Ginseng Root Rot and Main Chemical Properties and Enzyme Activities of Rhizosphere Soil. J. Jilin Agric. Univ. 2024, 46, 465–474. [Google Scholar]
- Saiyaremu, H.; Deng, X.; Song, X.; Song, R. Seasonal Variation of Soil Nutrients and Fungal Community Structure in Rhizosphere of Susceptible and Non-susceptible Pinus sylvestris var. mongolica Plantations. J. Jilin Agric. Univ. 2022, 44, 572–585. [Google Scholar]
- Zhang, Z.; Deng, Y.; Nie, Q.; Xie, G.; Wu, L.; Di, X.; Shi, H.; Fu, K.; Zhang, J.; Lin, C.; et al. Differences in soil microbial community and function between healthy and clubroot diseased plants of Chinese cabbage. Chin. J. Eco-Agric. 2023, 31, 530–542. [Google Scholar]
- Jiang, J.L.; Yu, M.; Hou, R.P.; Li, L.; Ren, X.M.; Jiao, C.J.; Yang, L.J.; Xu, H. Changes in the soil microbial community are associated with the occurrence of Panax quinquefolius L. root rot diseases. Plant Soil 2019, 438, 143–156. [Google Scholar] [CrossRef]
- Shang, Q.H.; Yang, G.; Wang, Y.; Wu, X.K.; Zhao, X.; Hao, H.T.; Li, Y.Y.; Xie, Z.K.; Zhang, Y.B.; Wang, R.Y. Illumina-based analysis of the rhizosphere microbial communities associated with healthy and wilted Lanzhou lily (Lilium davidii var. unicolor) plants grown in the field. World J. Microbiol. Biotechnol. 2016, 32, 95. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Tan, J.; Li, L.; Wang, Y.; Wu, X. Illumina high-throughput sequencing reveals fungal community composition and diversity in root rot of Coptis chinensis in rhizosphere soil. Chin. Tradit. Herb. Drugs 2018, 49, 5396–5403. [Google Scholar]
- Yu, J.; Huang, X.; Shuai, Z.; Xie, L.; Liu, Y.; Wang, C.; Chai, D.; Liu, D.; Zhou, X.; Chen, Q. The community structure of bacteria and fungi in soils with root rot diseased garlic plants in Pengzhou, Sichuan Province. Chin. J. Appl. Environ. Biol. 2020, 26, 928–935. [Google Scholar]
- Tu, Z.; Zhang, L.; He, W.; Zhan, Z.; Wang, J. Fungi diversity in the soil around the healthy and huanglongbing-diseased roots of Citrus sinensis Osbeck in southern Jiangxi Province. J. Anhui Agric. Univ. 2017, 44, 333–341. [Google Scholar]
- Kang, J.; Zhang, S.; Han, T.; Sun, Z.; Luo, T. Research on Rhizosphere Soil Microbial Diversity of Two Typical Kinds of Disease in Yam. Biotechnol. Bull. 2017, 33, 107–113. [Google Scholar]
- Wu, W.; Huang, X.; Zhang, L.; Yang, X.; Li, H.; Liu, Y. Crucifer clubroot disease changes the microbial community structure of rhizosphere soil. Acta Ecol. Sin. 2020, 40, 1532–1541. [Google Scholar] [CrossRef]
- Yang, G.; Huang, W.; Li, Y.; Zhao, S.; Kong, B.; Ma, J.; Li, F.; Li, K.; Ma, J. Fungal community and diversity in rhizospheric soil with root rot in an apple orchard. J. Fruit Sci. 2020, 37, 875–881. [Google Scholar]
- Wang, G.; Liu, J.; Yu, Z.; Wang, X.; Jin, J.; Liu, X. Research Progress of Acidobacteria Ecology in Soils. Biotechnol. Bull. 2016, 32, 14–20. [Google Scholar]
- Yang, G.; Wei, Y. The Research Status and Application Prospect of Pseudomonas. Biotechnol. Bull. 2011, 1, 37–39. [Google Scholar]
- Gao, P.; Li, F.; Guo, Y.; Duan, T. Advances in AM Fungi and Rhizobium to Control Plant Fungal Diseases. Acta Agrestia Sin. 2017, 25, 236–242. [Google Scholar]
- Bhatti, A.A.; Haq, S.; Bhat, R.A. Actinomycetes benefaction role in soil and plant health. Microb. Pathog. 2017, 111, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Kunakom, S.; Eustáquio, A.S. Burkholderia as a Source of Natural Products. J. Nat. Prod. 2019, 82, 2018–2037. [Google Scholar] [CrossRef] [PubMed]
- Desiderato, J.G.; Alvarenga, D.O.; Constancio, M.T.L.; Alves, L.M.C.; Varani, A.M. The genome sequence of Dyella jiangningensis FCAV SCS01 from a lignocellulose-decomposing microbial consortium metagenome reveals potential for biotechnological applications. Genet. Mol. Biol. 2018, 41, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Xian, W.; Zhang, X.; Li, W. Research status and prospect on bacterial phylum Chloroflexi. Acta Microbiol. Sin. 2020, 60, 1801–1820. [Google Scholar]
- Jia, F.; Xu, Y.; Yan, H.; He, X.; Li, J.; Liu, D.; Wang, Y.; Chang, D. Identification and biocontrol potential evaluation of antagonistic bacterial strain L210 against Fusarium spp. of tobacco root rot. Tob. Sci. Technol. 2023, 56, 40–48. [Google Scholar]
- Tong, Y.; Wang, L.; Wu, C.; Zhang, H.; Deng, Y.; Chen, M.; Zheng, X.; Lu, W.; Chen, J.; Ge, T. Promotion of symbiotic interaction between phagotrophic protists and beneficial bacteria, mediated via balancing of soil nutrients, reduces the incidence of watermelon Fusarium wilt. Pedosphere 2025, 35, 352–363. [Google Scholar] [CrossRef]
- Jiang, X.Q.; Ding, J.; Chu, X.Y.; Zhao, Y.P.; Chen, M.R.; Yan, J.; Dai, J.W.; Qin, W.; Liu, Y.W. Effects of H.uvarum combined with KGM on postharvest diseases of blueberry. Food Biosci. 2023, 53, 102730. [Google Scholar] [CrossRef]
- Cai, Z.; Zhang, M.; Zhou, C.; Tao, Y.; Yang, S.; LI, X.; LI, X. Analysis of Endogenous Microbial Community Diversity, Structure and Function of Pepper Different Resistant Phytophthora Blight Cultivars. Acta Hortic. Sin. 2025, 52, 322–336. [Google Scholar]
- Hildebrandt, T.M.; Nesi, A.N.; Ara; Io, W.L.; Braun, H.P. Amino Acid Catabolism in Plants. Mol. Plant 2015, 8, 1563–1579. [Google Scholar] [CrossRef]
- Li, S.; Ahmed, W.; Jiang, T.; Yang, D.; Yang, L.; Hu, X.; Zhao, M.; Peng, X.; Yang, Y.; Zhang, W.; et al. Amino acid metabolism pathways as key regulators of nitrogen distribution in tobacco: Insights from transcriptome and WGCNA analyses. BMC Plant Biol. 2025, 25, 393. [Google Scholar] [CrossRef]
- Wang, H.X.; Chen, Y.Y.; Ge, L.; Fang, T.T.; Meng, J.; Liu, Z.; Fang, X.Y.; Ni, S.; Lin, C.; Wu, Y.Y.; et al. PCR screening reveals considerable unexploited biosynthetic potential of ansamycins and a mysterious family of AHBA-containing natural products in actinomycetes. J. Appl. Microbiol. 2013, 115, 77–85. [Google Scholar] [CrossRef]
- Chosy, M.B.; Sun, J.Z.; Rahn, H.P.; Liu, X.Y.; Brcic, J.; Wender, P.A.; Cegelski, L. Vancomycin-Polyguanidino Dendrimer Conjugates Inhibit Growth of Antibiotic-Resistant Gram-Positive and Gram-Negative Bacteria and Eradicate Biofilm-Associated S. aureus. ACS Infect. Dis. 2024, 10, 384–397. [Google Scholar] [CrossRef]
- Tripathi, R.; Tewari, R.; Singh, K.P.; Keswani, C.; Minkina, T.; Srivastava, A.K.; De Corato, U.; Sansinenea, E. Plant mineral nutrition and disease resistance: A significant linkage for sustainable crop protection. Front. Plant Sci. 2022, 13, 883970. [Google Scholar] [CrossRef] [PubMed]
- Streeter, T.C.; Rengel, Z.; Neate, S.M.; Graham, R.D. Zinc fertilisation increases tolerance to Rhizoctonia solani (AG 8) in Medicago truncatula. Plant Soil 2001, 228, 233–242. [Google Scholar] [CrossRef]
- Luo, Y.F.; Yao, A.M.; Tan, M.Y.; Li, Z.L.; Qing, L.; Yang, S.Y. Effects of manganese and zinc on the growth process of Phytophthora nicotianae and the possible inhibitory mechanisms. PeerJ 2020, 8, e8613. [Google Scholar] [CrossRef] [PubMed]
- Pánek, M.; Tomsovsky, M. In vitro growth response of Phytophthora cactorum, P-nicotianae and P. x pelgrandis to antibiotics and fungicides. Folia Microbiol. 2017, 62, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Angulo, M.; García, M.J.; Alcántara, E.; Pérez-Vicente, R.; Romera, F.J. Comparative Study of Several Fe Deficiency Responses in the Arabidopsis thaliana Ethylene Insensitive Mutants ein2-1 and ein2-5. Plants 2021, 10, 262. [Google Scholar] [CrossRef]
- Aznar, A.; Chen, N.W.G.; Thomine, S.; Dellagi, A. Immunity to plant pathogens and iron homeostasis. Plant Sci. 2015, 240, 90–97. [Google Scholar] [CrossRef]
- Hendrix, J.W.; Guttman, S.M.; Wightman, D.L. Cation and sterol effects on growth of Phytophthora parasitica var. nicotianae. Phytopathology 1969, 59, 1620–1624. [Google Scholar]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Yang, F.; Zhang, Y.; Liu, M.; Hong, Y.; Chang, X.; Jiang, H.; Yang, W.; Yao, Q.; Tian, B. Study on the Influence Mechanism of the Rhizosphere Soil Microbial Community and Physicochemical Factors on the Occurrence of Pepper Phytophthora Blight. Microorganisms 2025, 13, 2765. https://doi.org/10.3390/microorganisms13122765
Wang X, Yang F, Zhang Y, Liu M, Hong Y, Chang X, Jiang H, Yang W, Yao Q, Tian B. Study on the Influence Mechanism of the Rhizosphere Soil Microbial Community and Physicochemical Factors on the Occurrence of Pepper Phytophthora Blight. Microorganisms. 2025; 13(12):2765. https://doi.org/10.3390/microorganisms13122765
Chicago/Turabian StyleWang, Xin, Fan Yang, Ying Zhang, Miaomiao Liu, Yuting Hong, Xiaoke Chang, Hongxun Jiang, Wenrui Yang, Qiuju Yao, and Baoming Tian. 2025. "Study on the Influence Mechanism of the Rhizosphere Soil Microbial Community and Physicochemical Factors on the Occurrence of Pepper Phytophthora Blight" Microorganisms 13, no. 12: 2765. https://doi.org/10.3390/microorganisms13122765
APA StyleWang, X., Yang, F., Zhang, Y., Liu, M., Hong, Y., Chang, X., Jiang, H., Yang, W., Yao, Q., & Tian, B. (2025). Study on the Influence Mechanism of the Rhizosphere Soil Microbial Community and Physicochemical Factors on the Occurrence of Pepper Phytophthora Blight. Microorganisms, 13(12), 2765. https://doi.org/10.3390/microorganisms13122765
