Controlled Carbon Loss: Threshold-Dependent Overflow Metabolism in Synechocystis sp. PCC 6803
Abstract
1. Introduction
2. Materials and Methods
2.1. Cultivation of Synechocystis sp. PCC 6803
2.2. Glycogen Quantification
2.3. Quantification of Intracellular Metabolites
2.4. Quantification of Extracellular Metabolites
3. Results
3.1. Extracellular Metabolite Levels Do Not Simply Mirror Intracellular Metabolite Levels
3.2. Intracellular Central Carbon and Nitrogen Metabolism
3.3. Intracellular Energy and Redox Balance
3.4. Metabolite Excretion Represents a Major Alternative Carbon Sink
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| 2-OG | 2-oxoglutarate |
| AICAR | 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide |
| AMG | amyloglucosidase |
| DHAP | dihydroxyacetone-phosphate |
| GlgA | glycogen synthase |
| GlgC | glucose-1-phosphate adenylyltransferase |
| GO | glucose oxidase |
| GS | glucose-sensitive |
| GS/GOGAT | glutamine synthetase/glutamate synthase cycle |
| GT | glucose-tolerant |
| HPLC-MS | high-performance liquid chromatography-mass spectrometry |
| LC-MS/MS | liquid chromatography-tandem mass spectrometry |
| MG | methylglyoxal |
| OD | optical density |
| ODD | o-dianisidine dihydrochloride |
| PEP | phosphoenolpyruvate |
| PGAM | phosphoglycerate mutase |
| PGM | phosphoglucomutase |
| PHB | polyhydroxybutyrate |
| PirC | PII-interacting regulator of carbon metabolism |
| PX | peroxidase |
| SD | standard deviation |
| Synechocystis | Synechocystis sp. PCC 6803 |
| TCA | tricarboxylic acid |
| WT | wild type |
| WT-GS | glucose-sensitive wild type |
| WT-GT | glucose-tolerant wild type |
References
- Blankenship, R.E. How Cyanobacteria went green. Science 2017, 355, 1372–1373. [Google Scholar] [CrossRef] [PubMed]
- Mulkidjanian, A.Y.; Koonin, E.V.; Makarova, K.S.; Mekhedov, S.L.; Sorokin, A.; Wolf, Y.I.; Dufresne, A.; Partensky, F.; Burd, H.; Kaznadzey, D.; et al. The cyanobacterial genome core and the origin of photosynthesis. Proc. Natl. Acad. Sci. USA 2006, 103, 13126–13131. [Google Scholar] [CrossRef]
- Jaiswal, D.; Sahasrabuddhe, D.; Wangikar, P.P. Cyanobacteria as cell factories: The roles of host and pathway engineering and translational research. Curr. Opin. Biotechnol. 2022, 73, 314–322. [Google Scholar] [CrossRef]
- Toepel, J.; Karande, R.; Klähn, S.; Bühler, B. Cyanobacteria as whole-cell factories: Current status and future prospectives. Curr. Opin. Biotechnol. 2023, 80, 102892. [Google Scholar] [CrossRef]
- Koch, M.; Bruckmoser, J.; Scholl, J.; Hauf, W.; Rieger, B.; Forchhammer, K. Maximizing PHB content in Synechocystis sp. PCC 6803: A new metabolic engineering strategy based on the regulator PirC. Microb. Cell Factories 2020, 19, 231. [Google Scholar] [CrossRef]
- Koch, M.; Doello, S.; Gutekunst, K.; Forchhammer, K. PHB is Produced from Glycogen Turn-over during Nitrogen Starvation in Synechocystis sp. PCC 6803. Int. J. Mol. Sci. 2019, 20, 1942. [Google Scholar] [CrossRef]
- Anfelt, J.; Kaczmarzyk, D.; Shabestary, K.; Renberg, B.; Rockberg, J.; Nielsen, J.; Uhlén, M.; Hudson, E.P. Genetic and nutrient modulation of acetyl-CoA levels in Synechocystis for n-butanol production. Microb. Cell Factories 2015, 14, 167. [Google Scholar] [CrossRef]
- van der Woude, A.D.; Angermayr, S.A.; Puthan Veetil, V.; Osnato, A.; Hellingwerf, K.J. Carbon sink removal: Increased photosynthetic production of lactic acid by Synechocystis sp. PCC6803 in a glycogen storage mutant. J. Biotechnol. 2014, 184, 100–102. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-H.; Shen, C.R.; Li, H.; Sung, L.-Y.; Wu, M.-Y.; Hu, Y.-C. CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S. elongatus PCC 7942. Microb. Cell Factories 2016, 15, 196. [Google Scholar] [CrossRef] [PubMed]
- Klotz, A.; Georg, J.; Bučinská, L.; Watanabe, S.; Reimann, V.; Januszewski, W.; Sobotka, R.; Jendrossek, D.; Hess, W.R.; Forchhammer, K. Awakening of a Dormant Cyanobacterium from Nitrogen Chlorosis Reveals a Genetically Determined Program. Curr. Biol. 2016, 26, 2862–2872. [Google Scholar] [CrossRef] [PubMed]
- Elmorjani, K.; Herdman, M. Metabolic Control of Phycocyanin Degradation in the Cyanobacterium Synechocystis PCC 6803: A Glucose Effect. Microbiology 1987, 133, 1685–1694. [Google Scholar] [CrossRef]
- Forchhammer, K.; Schwarz, R. Nitrogen chlorosis in unicellular cyanobacteria—A developmental program for surviving nitrogen deprivation. Environ. Microbiol. 2019, 21, 1173–1184. [Google Scholar] [CrossRef] [PubMed]
- Krasikov, V.; Aguirre von Wobeser, E.; Dekker, H.L.; Huisman, J.; Matthijs, H.C.P. Time-series resolution of gradual nitrogen starvation and its impact on photosynthesis in the cyanobacterium Synechocystis PCC 6803. Physiol. Plant. 2012, 145, 426–439. [Google Scholar] [CrossRef] [PubMed]
- Görl, M.; Sauer, J.; Baier, T.; Forchhammer, K. Nitrogen-starvation-induced chlorosis in Synechococcus PCC 7942: Adaptation to long-term survival. Microbiology 1998, 144, 2449–2458. [Google Scholar] [CrossRef] [PubMed]
- Neumann, N.; Doello, S.; Forchhammer, K. Recovery of Unicellular Cyanobacteria from Nitrogen Chlorosis: A Model for Resuscitation of Dormant Bacteria. Microb. Physiol. 2021, 31, 78–87. [Google Scholar] [CrossRef]
- Doello, S.; Neumann, N.; Forchhammer, K. Regulatory phosphorylation event of phosphoglucomutase 1 tunes its activity to regulate glycogen metabolism. FEBS J. 2022, 289, 6005–6020. [Google Scholar] [CrossRef]
- Gründel, M.; Scheunemann, R.; Lockau, W.; Zilliges, Y. Impaired glycogen synthesis causes metabolic overflow reactions and affects stress responses in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 2012, 158, 3032–3043. [Google Scholar] [CrossRef]
- Carrieri, D.; Paddock, T.; Maness, P.-C.; Seibert, M.; Yu, J. Photo-catalytic conversion of carbon dioxide to organic acids by a recombinant cyanobacterium incapable of glycogen storage. Energy Environ. Sci. 2012, 5, 9457–9461. [Google Scholar] [CrossRef]
- Russell, J.B. The energy spilling reactions of bacteria and other organisms. J. Mol. Microbiol. Biotechnol. 2007, 13, 1–11. [Google Scholar] [CrossRef]
- Paczia, N.; Nilgen, A.; Lehmann, T.; Gätgens, J.; Wiechert, W.; Noack, S. Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms. Microb. Cell Factories 2012, 11, 122. [Google Scholar] [CrossRef]
- Cano, M.; Holland, S.C.; Artier, J.; Burnap, R.L.; Ghirardi, M.; Morgan, J.A.; Yu, J. Glycogen Synthesis and Metabolite Overflow Contribute to Energy Balancing in Cyanobacteria. Cell Rep. 2018, 23, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Orthwein, T.; Scholl, J.; Spät, P.; Lucius, S.; Koch, M.; Macek, B.; Hagemann, M.; Forchhammer, K. The novel PII-interactor PirC identifies phosphoglycerate mutase as key control point of carbon storage metabolism in cyanobacteria. Proc. Natl. Acad. Sci. USA 2021, 118, e2019988118. [Google Scholar] [CrossRef]
- Orthwein, T.; Alford Janette, T.; Becker Nathalie, S.; Fink, P.; Forchhammer, K. Structural elements of cyanobacterial co-factor-independent phosphoglycerate mutase that mediate regulation by PirC. mBio 2025, 16, e03378-24. [Google Scholar] [CrossRef]
- Forchhammer, K. Global carbon/nitrogen control by PII signal transduction in cyanobacteria: From signals to targets. FEMS Microbiol. Rev. 2004, 28, 319–333. [Google Scholar] [CrossRef]
- Rippka, R.; Deruelles, J.; Waterbury, J.B.; Herdman, M.; Stanier, R.Y. Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. Microbiology 1979, 111, 1–61. [Google Scholar] [CrossRef]
- Schlebusch, M.; Forchhammer, K. Requirement of the Nitrogen Starvation-Induced Protein Sll0783 for Polyhydroxybutyrate Accumulation in Synechocystis sp. Strain PCC 6803. Appl. Environ. Microbiol. 2010, 76, 6101–6107. [Google Scholar] [CrossRef]
- Vidal, R.; Venegas-Calerón, M. Simple, fast and accurate method for the determination of glycogen in the model unicellular cyanobacterium Synechocystis sp. PCC 6803. J. Microbiol. Methods 2019, 164, 105686. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Martínez, P.; Roldán, M.; Díaz-Troya, S.; Florencio, F.J. Stress response requires an efficient connection between glycogen and central carbon metabolism by phosphoglucomutases in cyanobacteria. J. Exp. Bot. 2022, 74, 1532–1550. [Google Scholar] [CrossRef]
- Doello, S.; Sauerwein, J.; von Manteuffel, N.; Burkhardt, M.; Neumann, N.; Appel, J.; Rapp, J.; Just, P.; Link, H.; Gutekunst, K.; et al. Metabolite-level regulation of enzymatic activity controls awakening of cyanobacteria from metabolic dormancy. Curr. Biol. 2025, 35, 77–86.e74. [Google Scholar] [CrossRef] [PubMed]
- Guder, J.C.; Schramm, T.; Sander, T.; Link, H. Time-optimized isotope ratio LC–MS/MS for high-throughput quantification of primary metabolites. Anal. Chem. 2017, 89, 1624–1631. [Google Scholar] [CrossRef]
- Kato, Y.; Hidese, R.; Matsuda, M.; Ohbayashi, R.; Ashida, H.; Kondo, A.; Hasunuma, T. Glycogen deficiency enhances carbon partitioning into glutamate for an alternative extracellular metabolic sink in cyanobacteria. Commun. Biol. 2024, 7, 233. [Google Scholar] [CrossRef]
- Akiyama, M.; Osanai, T. Regulation of organic acid and hydrogen production by NADH/NAD+ ratio in Synechocystis sp. PCC 6803. Front. Microbiol. 2024, 14, 1332449. [Google Scholar] [CrossRef]
- Mills, L.A.; McCormick, A.J.; Lea-Smith, D.J. Current knowledge and recent advances in understanding metabolism of the model cyanobacterium Synechocystis sp. PCC 6803. Biosci. Rep. 2020, 40, BSR20193325. [Google Scholar] [CrossRef]
- Suginaka, K.; Yamamoto, K.; Ashiida, H.; Kono, Y.; Saw, Y.; Shibata, H. Cysteine Uptake for Accumulation of Glutathione by the Cyanobacterium Synechocystis strain PCC 6803. Biosci. Biotechnol. Biochem. 1998, 62, 424–428. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Narainsamy, K.; Farci, S.; Braun, E.; Junot, C.; Cassier-Chauvat, C.; Chauvat, F. Oxidative-stress detoxification and signalling in cyanobacteria: The crucial glutathione synthesis pathway supports the production of ergothioneine and ophthalmate. Mol. Microbiol. 2016, 100, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Benson, P.J.; Purcell-Meyerink, D.; Hocart, C.H.; Truong, T.T.; James, G.O.; Rourke, L.; Djordjevic, M.A.; Blackburn, S.I.; Price, G.D. Factors Altering Pyruvate Excretion in a Glycogen Storage Mutant of the Cyanobacterium, Synechococcus PCC7942. Front. Microbiol. 2016, 7, 475. [Google Scholar] [CrossRef] [PubMed]
- Carrieri, D.; Lombardi, T.; Paddock, T.; Cano, M.; Goodney, G.A.; Nag, A.; Old, W.; Maness, P.-C.; Seibert, M.; Ghirardi, M.; et al. Transcriptome and proteome analysis of nitrogen starvation responses in Synechocystis 6803 ΔglgC, a mutant incapable of glycogen storage. Algal Res. 2017, 21, 64–75. [Google Scholar] [CrossRef]
- Muro-Pastor, M.I.; Reyes, J.C.; Florencio, F.J. Cyanobacteria Perceive Nitrogen Status by Sensing Intracellular 2-Oxoglutarate Levels. J. Biol. Chem. 2001, 276, 38320–38328. [Google Scholar] [CrossRef]
- Lucius, S.; Hagemann, M. The primary carbon metabolism in cyanobacteria and its regulation. Front. Plant Sci. 2024, 15, 1417680. [Google Scholar] [CrossRef]
- Angermayr, S.A.; van der Woude, A.D.; Correddu, D.; Vreugdenhil, A.; Verrone, V.; Hellingwerf, K.J. Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. PCC6803. Biotechnol. Biofuels 2014, 7, 99. [Google Scholar] [CrossRef]
- Kammerscheit, X.; Hecker, A.; Rouhier, N.; Chauvat, F.; Cassier-Chauvat, C. Methylglyoxal Detoxification Revisited: Role of Glutathione Transferase in Model Cyanobacterium Synechocystis sp. Strain PCC 6803. mBio 2020, 11. [Google Scholar] [CrossRef]
- Osanai, T.; Oikawa, A.; Shirai, T.; Kuwahara, A.; Iijima, H.; Tanaka, K.; Ikeuchi, M.; Kondo, A.; Saito, K.; Hirai, M.Y. Capillary electrophoresis–mass spectrometry reveals the distribution of carbon metabolites during nitrogen starvation in Synechocystis sp. PCC 6803. Environ. Microbiol. 2014, 16, 512–524. [Google Scholar] [CrossRef]
- Hauf, W.; Schlebusch, M.; Hüge, J.; Kopka, J.; Hagemann, M.; Forchhammer, K. Metabolic Changes in Synechocystis PCC6803 upon Nitrogen-Starvation: Excess NADPH Sustains Polyhydroxybutyrate Accumulation. Metabolites 2013, 3, 101–118. [Google Scholar] [CrossRef]
- Gerdes, S.Y.; Kurnasov, O.V.; Shatalin, K.; Polanuyer, B.; Sloutsky, R.; Vonstein, V.; Overbeek, R.; Osterman, A.L. Comparative Genomics of NAD Biosynthesis in Cyanobacteria. J. Bacteriol. 2006, 188, 3012–3023. [Google Scholar] [CrossRef]
- Pinson, B.; Ceschin, J.; Saint-Marc, C.; Daignan-Fornier, B. Dual control of NAD+ synthesis by purine metabolites in yeast. eLife 2019, 8, e43808. [Google Scholar] [CrossRef]
- Nelson, C.; Giraldo-Silva, A.; Garcia-Pichel, F. A symbiotic nutrient exchange within the cyanosphere microbiome of the biocrust cyanobacterium, Microcoleus vaginatus. ISME J. 2020, 15, 282–292. [Google Scholar] [CrossRef]
- Nelson, C.; Dadi, P.; Shah, D.D.; Garcia-Pichel, F. Spatial organization of a soil cyanobacterium and its cyanosphere through GABA/Glu signaling to optimize mutualistic nitrogen fixation. ISME J. 2024, 18, wrad029. [Google Scholar] [CrossRef]
- Chen, X.; Schreiber, K.; Appel, J.; Makowka, A.; Fähnrich, B.; Roettger, M.; Hajirezaei, M.R.; Sönnichsen, F.D.; Schönheit, P.; Martin, W.F.; et al. The Entner–Doudoroff pathway is an overlooked glycolytic route in cyanobacteria and plants. Proc. Natl. Acad. Sci. USA 2016, 113, 5441–5446. [Google Scholar] [CrossRef]
- Kaewbai-ngam, J.; Sukkasam, N.; Phoraksa, O.; Incharoensakdi, A.; Monshupanee, T. Production of glycogen, PHB, biohydrogen, NAD(P)H, and proteins in Synechocystis sp. PCC 6803 disrupted in metabolically linked biosynthetic pathway(s). J. Appl. Phycol. 2022, 34, 1983–1995. [Google Scholar] [CrossRef]
- Hisbergues, M.; Jeanjean, R.; Joset, F.; Tandeau de Marsac, N.; Bédu, S. Protein PII regulates both inorganic carbon and nitrate uptake and is modified by a redox signal in Synechocystis PCC 6803. FEBS Lett. 1999, 463, 216–220. [Google Scholar] [CrossRef]




| ATP | ADP | AMP | ||||
|---|---|---|---|---|---|---|
| +N | −N | +N | −N | +N | −N | |
| WT-GS | 0.31 ± 0.15 | 0.06 ± 0.03 | 3.53 ± 1.68 | 1.84 ± 0.71 | 1.37 ± 0.39 | 1.15 ± 0.28 |
| WT-GT | 0.39 ± 0.10 | 0.15 ± 0.07 | 3.44 ± 0.90 | 1.18 ± 0.94 | 0.74 ± 0.06 | 0.50 ± 0.29 |
| Δpgm-GT | 0.44 ± 0.19 | 0.38 ± 0.05 | 4.09 ± 0.73 | 5.63 ± 0.94 | 1.24 ± 0.08 | 7.35 ± 0.60 |
| ΔpirC-GT | 0.45 ± 0.21 | 0.51 ± 0.20 | 3.66 ± 1.53 | 2.77 ± 1.12 | 1.03 ± 0.18 | 0.78 ± 0.08 |
| ΔglgC-GS | 0.47 ± 0.12 | 0.13 ± 0.10 | 3.81 ± 0.65 | 2.66 ± 1.18 | 0.60 ± 0.28 | 2.15 ± 0.88 |
| ΔglgCΔpirC-GS | 0.25 ± 0.02 | 0.28 ± 0.07 | 3.29 ± 1.66 | 6.14 ± 2.15 | 1.10 ± 0.64 | 3.32 ± 0.50 |
| ΔglnB-GS | 0.99 ± 0.12 | 0.14 ± 0.02 | 6.04 ± 1.15 | 4.58 ± 0.53 | 0.88 ± 0.24 | 2.90 ± 0.22 |
| ΔglgA1-GT | 0.29 ± 0.21 | 0.16 ± 0.07 | 3.18 ± 1.22 | 4.72 ± 1.71 | 1.14 ± 0.42 | 2.92 ± 0.85 |
| ΔglgA2-GT | 0.19 ± 0.05 | 0.05 ± 0.02 | 2.18 ± 0.21 | 1.59 ± 0.95 | 0.77 ± 0.29 | 2.60 ± 0.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alford, J.T.; Becker, N.S.; Rapp, J.; Kulik, A.; Kaewbai-ngam, J.; Monshupanee, T.; Link, H.; Forchhammer, K. Controlled Carbon Loss: Threshold-Dependent Overflow Metabolism in Synechocystis sp. PCC 6803. Microorganisms 2025, 13, 2767. https://doi.org/10.3390/microorganisms13122767
Alford JT, Becker NS, Rapp J, Kulik A, Kaewbai-ngam J, Monshupanee T, Link H, Forchhammer K. Controlled Carbon Loss: Threshold-Dependent Overflow Metabolism in Synechocystis sp. PCC 6803. Microorganisms. 2025; 13(12):2767. https://doi.org/10.3390/microorganisms13122767
Chicago/Turabian StyleAlford, Janette T., Nathalie S. Becker, Johanna Rapp, Andreas Kulik, Janine Kaewbai-ngam, Tanakarn Monshupanee, Hannes Link, and Karl Forchhammer. 2025. "Controlled Carbon Loss: Threshold-Dependent Overflow Metabolism in Synechocystis sp. PCC 6803" Microorganisms 13, no. 12: 2767. https://doi.org/10.3390/microorganisms13122767
APA StyleAlford, J. T., Becker, N. S., Rapp, J., Kulik, A., Kaewbai-ngam, J., Monshupanee, T., Link, H., & Forchhammer, K. (2025). Controlled Carbon Loss: Threshold-Dependent Overflow Metabolism in Synechocystis sp. PCC 6803. Microorganisms, 13(12), 2767. https://doi.org/10.3390/microorganisms13122767

