Effects of Different Bacillus subtilis Supplementation Levels on Fecal Microbiota and Metabolites in Goats
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Experimental Design, and Diets
2.2. Sample Collection and Measurement
2.2.1. Fecal Sample Collection
2.2.2. 16S rDNA Gene Sequencing Analysis
2.2.3. Analysis of Non-Target Metabolomics in the Feces
2.3. Data Analysis
3. Results
3.1. Microbial Community Structure of Feces
3.2. Fecal Metabolomics
3.3. Analysis of Differential Metabolites and Fecal Microbial Correlations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Su, M.; Wang, C.; Li, D.; Li, Q.; Liu, Z.; Qi, X.; Wu, Y.; Zhao, Y.; Li, T.; et al. Yeast Culture Repairs Rumen Epithelial Injury by Regulating Microbial Communities and Metabolites in Sheep. Front. Microbiol. 2023, 14, 1305772. [Google Scholar] [CrossRef] [PubMed]
- Jena, R.; Singh, N.A.; Ahmed, N.; Choudhury, P.K. Bifidobacteria in Antibiotic-Associated Dysbiosis: Restoring Balance in the Gut Microbiome. World J. Microbiol. Biotechnol. 2025, 41, 297. [Google Scholar] [CrossRef]
- Bento, J.T.; Gomes-Gonçalves, S.; Cruz, R.; Esteves, F.; Baptista, A.L.; Aires Pereira, M.; Caseiro, P.; Carreira, P.; Figueira, L.; Mesquita, J.R.; et al. The Prevalence of Antimicrobial Resistance Genes in the Environments of Small Ruminant Farms from Central Portugal. Antibiotics 2025, 14, 576. [Google Scholar] [CrossRef]
- Kumar, A.; Panda, A.K.; Sharma, N. Determination of Antibiotic Residues in Bovine Milk by HPLC-DAD and Assessment of Human Health Risks in Northwestern Himalayan Region, India. J. Food Sci. Technol. 2022, 59, 95–104. [Google Scholar] [CrossRef]
- Novotny-Nuñez, I.; Perdigón, G.; Matar, C.; Martínez Monteros, M.J.; Yahfoufi, N.; Cazorla, S.I.; Maldonado-Galdeano, C. Evaluation of Rouxiella badensis Subsp Acadiensis (Canan SV-53) as a Potential Probiotic Bacterium. Microorganisms 2023, 11, 1347. [Google Scholar] [CrossRef]
- Qiu, K.; Li, C.-L.; Wang, J.; Qi, G.-H.; Gao, J.; Zhang, H.-J.; Wu, S.-G. Effects of Dietary Supplementation with Bacillus subtilis, as an Alternative to Antibiotics, on Growth Performance, Serum Immunity, and Intestinal Health in Broiler Chickens. Front. Nutr. 2021, 8, 786878. [Google Scholar] [CrossRef]
- Daneshazari, R.; Rabbani Khorasgani, M.; Hosseini-Abari, A. Preliminary in Vitro Assessment of Probiotic Properties of Bacillus subtilis GM1, a Spore Forming Bacteria Isolated from Goat Milk. Iran. J. Vet. Res. 2023, 24, 65–73. [Google Scholar] [CrossRef]
- Golnari, M.; Bahrami, N.; Milanian, Z.; Rabbani Khorasgani, M.; Asadollahi, M.A.; Shafiei, R.; Fatemi, S.S.-A. Isolation and Characterization of Novel Bacillus Strains with Superior Probiotic Potential: Comparative Analysis and Safety Evaluation. Sci. Rep. 2024, 14, 1457. [Google Scholar] [CrossRef]
- Deka, D.; Bhargavi, P.; Sharma, A.; Goyal, D.; Jawed, M.; Goyal, A. Enhancement of Cellulase Activity from a New Strain of Bacillus subtilis by Medium Optimization and Analysis with Various Cellulosic Substrates. Enzym. Res. 2011, 2011, 151656. [Google Scholar] [CrossRef]
- Yang, X.; Liu, T.; Zhou, J.; An, L.; Pan, F.; Zhang, H.; Wang, X.; Xu, G.; Zheng, C. Effects of Bacillus subtilis Addition to Milk Replacer on Growth Performance, Nutrient Digestibility, Intestinal Microbiota, and Short-Chain Fatty Acid Concentration of Hu Lambs. Anim. Feed Sci. Technol. 2025, 319, 116175. [Google Scholar] [CrossRef]
- Cui, C.; Shen, C.J.; Jia, G.; Wang, K.N. Effect of Dietary Bacillus subtilis on Proportion of Bacteroidetes and Firmicutes in Swine Intestine and Lipid Metabolism. Genet. Mol. Res. GMR 2013, 12, 1766–1776. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.Y.; Zhang, M.; Tu, W.J.; Zhang, Q.; Jin, M.L.; Fang, R.D.; Jiang, S. Bacillus subtilis Inhibits Intestinal Inflammation and Oxidative Stress by Regulating Gut Flora and Related Metabolites in Laying Hens. Anim. Int. J. Anim. Biosci. 2022, 16, 100474. [Google Scholar] [CrossRef]
- Ma, Z.-Z.; Cheng, Y.-Y.; Wang, S.-Q.; Ge, J.-Z.; Shi, H.-P.; Kou, J.-C. Positive Effects of Dietary Supplementation of Three Probiotics on Milk Yield, Milk Composition and Intestinal Flora in Sannan Dairy Goats Varied in Kind of Probiotics. J. Anim. Physiol. Anim. Nutr. 2020, 104, 44–55. [Google Scholar] [CrossRef]
- Liu, H.; Peng, W.; Mao, K.; Yang, Y.; Wu, Q.; Wang, K.; Zeng, M.; Han, X.; Han, J.; Zhou, H. The changes in fecal bacterialcommunities in goats offered rumen-protected fat. Microorganisms 2024, 12, 822. [Google Scholar] [CrossRef]
- Ma, J.; Liu, H.; Liu, M.; Xu, J.; Lu, J.; Cao, S.; Li, S.; Ma, S.; Wang, Z.; Zhu, X.; et al. Effects of Diets Combining Peanut Vine and Whole-Plant Corn Silage on Growth Performance, Meat Quality and Rumen Microbiota of Simmental Crossbred Cattle. Foods 2023, 12, 3786. [Google Scholar] [CrossRef]
- Wu, D.; Vinitchaikul, P.; Deng, M.; Zhang, G.; Sun, L.; Gou, X.; Mao, H.; Yang, S. Host and Altitude Factors Affect Rumen Bacteria in Cattle. Braz. J. Microbiol. Publ. Braz. Soc. Microbiol. 2020, 51, 1573–1583. [Google Scholar] [CrossRef]
- Ley, R.E.; Hamady, M.; Lozupone, C.; Turnbaugh, P.J.; Ramey, R.R.; Bircher, J.S.; Schlegel, M.L.; Tucker, T.A.; Schrenzel, M.D.; Knight, R.; et al. Evolution of Mammals and Their Gut Microbes. Science 2008, 320, 1647–1651. [Google Scholar] [CrossRef] [PubMed]
- Oikonomou, G.; Teixeira, A.G.V.; Foditsch, C.; Bicalho, M.L.; Machado, V.S.; Bicalho, R.C. Fecal Microbial Diversity in Pre-Weaned Dairy Calves as Described by Pyrosequencing of Metagenomic 16S rDNA. Associations of Faecalibacterium Species with Health and Growth. PLoS ONE 2013, 8, e63157. [Google Scholar] [CrossRef] [PubMed]
- Huo, W.; Zhu, W.; Mao, S. Impact of Subacute Ruminal Acidosis on the Diversity of Liquid and Solid-Associated Bacteria in the Rumen of Goats. World J. Microbiol. Biotechnol. 2014, 30, 669–680. [Google Scholar] [CrossRef]
- Poupet, C.; Chassard, C.; Nivoliez, A.; Bornes, S. Caenorhabditis elegans, a Host to Investigate the Probiotic Properties of Beneficial Microorganisms. Front. Nutr. 2020, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Abbas, M.; Hayirli, Z.; Drakesmith, H.; Andrews, S.C.; Lewis, M.C. Effects of Iron Deficiency and Iron Supplementation at the Host-Microbiota Interface: Could a Piglet Model Unravel Complexities of the Underlying Mechanisms? Front. Nutr. 2022, 9, 927754. [Google Scholar] [CrossRef]
- Chen, X.; Hu, B.; Huang, L.; Cheng, L.; Liu, H.; Hu, J.; Hu, S.; Han, C.; He, H.; Kang, B.; et al. The Differences in Intestinal Growth and Microorganisms between Male and Female Ducks. Poult. Sci. 2020, 100, 1167–1177. [Google Scholar] [CrossRef]
- Gruninger, R.J.; Sensen, C.W.; McAllister, T.A.; Forster, R.J. Diversity of Rumen Bacteria in Canadian Cervids. PLoS ONE 2014, 9, e89682. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, J.; Degen, A.; Liu, H.; Cao, X.; Hao, L.; Shang, Z.; Ran, T.; Long, R. A Comparison of Average Daily Gain, Apparent Digestibilities, Energy Balance, Rumen Fermentation Parameters, and Serum Metabolites between Yaks (Bos grunniens) and Qaidam Cattle (Bos taurus) Consuming Diets Differing in Energy Level. Anim. Nutr. 2023, 12, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, J.; Hao, L.; Degen, A.; Wang, D.; Ma, Y.; Niu, J.; Cheng, Y.; Liu, S. Effect of the Ratio of Dietary Metabolizable Energy to Nitrogen Content on Production Performance, Serum Metabolites, Rumen Fermentation Parameters, and Bacterial Diversity in Yaks. Front. Microbiol. 2022, 13, 1013980. [Google Scholar] [CrossRef]
- Zhang, Y.K.; Zhang, X.X.; Li, F.D.; Li, C.; Li, G.Z.; Zhang, D.Y.; Song, Q.Z.; Li, X.L.; Zhao, Y.; Wang, W.M. Characterization of the Rumen Microbiota and Its Relationship with Residual Feed Intake in Sheep. Anim. Int. J. Anim. Biosci. 2021, 15, 100161. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Chen, J.; Wang, X.; Han, L.; Yang, Y.; Wang, Q.; Yu, Q. Metagenomic and Transcriptomic Analyses Reveal the Differences and Associations Between the Gut Microbiome and Muscular Genes in Angus and Chinese Simmental Cattle. Front. Microbiol. 2022, 13, 815915. [Google Scholar] [CrossRef]
- Dong, W.; Mao, Y.; Xiang, Z.; Zhu, J.; Wang, H.; Wang, A.; Jiang, M.; Gu, Y. Traditional Chinese Medicine Formula Jian Pi Tiao Gan Yin Reduces Obesity in Mice by Modulating the Gut Microbiota and Fecal Metabolism. Evid.-Based Complement. Altern. Med. ECAM 2022, 2022, 9727889. [Google Scholar] [CrossRef]
- Wang, Y.; Nan, X.; Zhao, Y.; Wang, Y.; Jiang, L.; Xiong, B. Ruminal Degradation of Rumen-Protected Glucose Influences the Ruminal Microbiota and Metabolites in Early-Lactation Dairy Cows. Appl. Environ. Microbiol. 2021, 87, e01908-20. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Fan, H.; Han, Y.; Zhao, J.; Zhou, Z. Characterization of the Microbial Communities along the Gastrointestinal Tract of Sheep by 454 Pyrosequencing Analysis. Asian-Australas. J. Anim. Sci. 2017, 30, 100–110. [Google Scholar] [CrossRef]
- Zhu, Q.; Qi, N.; Shen, L.; Lo, C.C.; Xu, M.; Duan, Q.; Ollberding, N.J.; Wu, Z.; Hui, D.Y.; Tso, P.; et al. Sexual Dimorphism in Lipid Metabolism and Gut Microbiota in Mice Fed a High-Fat Diet. Nutrients 2023, 15, 2175. [Google Scholar] [CrossRef]
- Biddle, A.S.; Tomb, J.-F.; Fan, Z. Microbiome and Blood Analyte Differences Point to Community and Metabolic Signatures in Lean and Obese Horses. Front. Vet. Sci. 2018, 5, 225. [Google Scholar] [CrossRef]
- Fu, Z.D.; Cui, J.Y. Remote Sensing between Liver and Intestine: Importance of Microbial Metabolites. Curr. Pharmacol. Rep. 2017, 3, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Zhou, X.; Zhang, K.; Huang, S.; Wang, X.; Zhou, S.; Chen, Y. Inactivation of the MSTN Gene Expression Changes the Composition and Function of the Gut Microbiome in Sheep. BMC Microbiol. 2022, 22, 273. [Google Scholar] [CrossRef]
- Peng, C.; Xu, X.; Li, Y.; Li, X.; Yang, X.; Chen, H.; Zhu, Y.; Lu, N.; He, C. Sex-Specific Association between the Gut Microbiome and High-Fat Diet-Induced Metabolic Disorders in Mice. Biol. Sex. Differ. 2020, 11, 5. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Xin, Y.; Ma, Y.; Xu, X.; Zhao, S.; Cao, J. Screening of Microbes Associated With Swine Growth and Fat Deposition Traits Across the Intestinal Tract. Front. Microbiol. 2020, 11, 586776. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Zhu, L.; Xu, Y.; Liu, N.; Sun, X.; Hu, L.; Huang, H.; Wei, K.; Zhu, R. Dynamic Distribution of Gut Microbiota in Goats at Different Ages and Health States. Front. Microbiol. 2018, 9, 2509. [Google Scholar] [CrossRef]
- Kong, F.; Hua, Y.; Zeng, B.; Ning, R.; Li, Y.; Zhao, J. Gut Microbiota Signatures of Longevity. Curr. Biol. CB 2016, 26, R832–R833. [Google Scholar] [CrossRef]
- Liu, S.; Li, S.; Huang, S.; Liu, M.; Zhang, S.; Zhang, L.; Li, S.; Jian, F. Exploring the Anticoccidial Efficacy of Houttuynia Cordata: Insights into Gut Microbiota Modulation and Metabolic Enhancement in Lambs. Res. Vet. Sci. 2025, 194, 105821. [Google Scholar] [CrossRef]
- Vinolo, M.A.R.; Rodrigues, H.G.; Nachbar, R.T.; Curi, R. Regulation of Inflammation by Short Chain Fatty Acids. Nutrients 2011, 3, 858–876. [Google Scholar] [CrossRef]
- Tang, X.; Mao, M.; Zhang, X.; Gao, H.; Wang, Z.; Fang, R.; Cheng, H.-W.; Jiang, S. Cecal Microbiota Transplantation Enhances Calcium Retention through Modulation of Gut Microbiota and Intestinal Calcium Transporter Gene Expression in Chicks. Poult. Sci. 2025, 104, 105437. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wu, C.; Che, Y.; Zhang, T.; Dai, C.; Nguyễn, A.D.; Duan, K.; Huang, Y.; Li, N.; Zhou, H.; et al. Effects of Glycyrrhiza Polysaccharides on Chickens’ Intestinal Health and Homeostasis. Front. Vet. Sci. 2022, 9, 891429. [Google Scholar] [CrossRef]
- Wang, X.; Wu, X.; Cong, X.; Ren, J.; Li, J.; Zhu, J.; Dai, M.; Hrabchenko, N.; Du, Y.; Qi, J. The Functional Role of Fecal Microbiota Transplantation on Salmonella Enteritidis Infection in Chicks. Vet. Microbiol. 2022, 269, 109449. [Google Scholar] [CrossRef]
- Monteiro, H.F.; Faciola, A.P. Ruminal Acidosis, Bacterial Changes, and Lipopolysaccharides. J. Anim. Sci. 2020, 98, skaa248. [Google Scholar] [CrossRef]
- Sarmikasoglou, E.; Sumadong, P.; Roesch, L.F.W.; Halima, S.; Arriola, K.; Yuting, Z.; Jeong, K.C.C.; Vyas, D.; Hikita, C.; Watanabe, T.; et al. Effects of Cashew Nut Shell Extract and Monensin on in Vitro Ruminal Fermentation, Methane Production, and Ruminal Bacterial Community. J. Dairy Sci. 2024, 107, 840–856. [Google Scholar] [CrossRef]
- Díaz-Formoso, L.; Contente, D.; Feito, J.; Hernández, P.E.; Borrero, J.; Muñoz-Atienza, E.; Cintas, L.M. Genomic Sequence of Streptococcus salivarius MDI13 and Latilactobacillus sakei MEI5: Two Promising Probiotic Strains Isolated from European Hakes (Merluccius merluccius, L.). Vet. Sci. 2024, 11, 365. [Google Scholar] [CrossRef]
- Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Hilbert, F.; Lindqvist, R.; et al. Update of the List of QPS-recommended Biological Agents Intentionally Added to Food or Feed as Notified to EFSA 15: Suitability of Taxonomic Units Notified to EFSA until September 2021. EFSA J. 2022, 20, e07045. [Google Scholar] [CrossRef]
- Essa, M.O.A.; Cheng, C.; Li, J.; Han, X.; Wei, Z.K.; Abdelhadi, L.A.M.; Hassan, H.A.; Adam, S.Y.; Husien, H.M.; Saleh, A.A.; et al. Probiotic Administration Correlated with Reduced Diarrheal Incidence and Improved Gut Microbiota Diversity in Young Goats. Front. Vet. Sci. 2025, 12, 1604638. [Google Scholar] [CrossRef] [PubMed]
- Goetz, B.M.; Abeyta, M.A.; Rodriguez-Jimenez, S.; Mayorga, E.J.; Opgenorth, J.; Jakes, G.M.; Freestone, A.D.; Moore, C.E.; Dickson, D.J.; Hergenreder, J.E.; et al. Effects of Bacillus subtilis PB6 Supplementation on Production, Metabolism, Inflammatory Biomarkers, and Gastrointestinal Tract Permeability in Transition Dairy Cows. J. Dairy Sci. 2023, 106, 9793–9806. [Google Scholar] [CrossRef] [PubMed]
- Apás, A.L.; Arena, M.E.; Colombo, S.; González, S.N. Probiotic Administration Modifies the Milk Fatty Acid Profile, Intestinal Morphology, and Intestinal Fatty Acid Profile of Goats. J. Dairy. Sci. 2015, 98, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.M.; Al-Nakkash, L.; Herbst-Kralovetz, M.M. Estrogen-gut microbiome axis: Physiological and clinical implications. Maturitas. 2017, 103, 45–53. [Google Scholar] [CrossRef]
- Franasiak, J.M.; Scott, R.T., Jr. Introduction: Microbiome in human reproduction. Fertil. Steril. 2015, 104, 1341–1343. [Google Scholar] [CrossRef]
- Li, Y.; Ma, N.; Ren, L.; Wang, M.; Hu, L.; Shen, Y.; Cao, Y.; Li, Q.; Li, J.; Gao, Y. Microbiome-Metabolome Responses in Ruminal Content and Feces of Lactating Dairy Cows With N-Carbamylglutamate Supplementation Under Heat Stress. Front. Vet. Sci. 2022, 9, 902001. [Google Scholar] [CrossRef]
- Gao, Y.; Bian, W.; Fang, Y.; Du, P.; Liu, X.; Zhao, X.; Li, F. α-Glucosidase Inhibitory Activity of Fermented Okara Broth Started with the Strain Bacillus amyloliquefaciens SY07. Molecules 2022, 27, 1127. [Google Scholar] [CrossRef] [PubMed]
- Onose, S.; Ikeda, R.; Nakagawa, K.; Kimura, T.; Yamagishi, K.; Higuchi, O.; Miyazawa, T. Production of the α-Glycosidase Inhibitor 1-Deoxynojirimycin from Bacillus Species. Food Chem. 2013, 138, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.-P.; Yamaki, K.; Yoshihashi, T.; Ohnishi Kameyama, M.; Li, X.-T.; Cheng, Y.-Q.; Mori, Y.; Li, L.-T. Purification and Identification of 1-Deoxynojirimycin (DNJ) in Okara Fermented by Bacillus subtilis B2 from Chinese Traditional Food (Meitaoza). J. Agric. Food Chem. 2010, 58, 4097–4103. [Google Scholar] [CrossRef] [PubMed]
- Ryzhak, A.P.; Chalisova, N.I.; Lin’kova, N.S.; Nichik, T.E.; Dudkov, A.V.; Kolchina, N.V.; Ryzhak, G.A.; Khalimov, R.I. Effect of Polypeptides on Cell Proliferation and Apoptosis during Aging. Bull. Exp. Biol. Med. 2017, 162, 534–538. [Google Scholar] [CrossRef]
- Zhang, Y.; He, P.; Zhang, P.; Yi, X.; Xiao, C.; Chen, X. Polypeptides-Drug Conjugates for Anticancer Therapy. Adv. Healthc. Mater. 2021, 10, e2001974. [Google Scholar] [CrossRef]





| Dietary Composition | % |
|---|---|
| Oat hulls | 40.00 |
| Corn | 26.00 |
| Soybean meal | 12.40 |
| Wheat bran | 3.00 |
| Soybean hulls | 7.60 |
| Palm meal | 6.00 |
| Soybean oil | 1.00 |
| Premix (1) | 4.00 |
| Nutritional levels (2) | |
| Metabolizable energy/ME (MJ/kg) | 11.03 |
| Dry matter, DM | 95.91 |
| Crude protein, CP | 12.19 |
| Ether extract, EE | 6.63 |
| Organic matter, OM | 88.18 |
| Neutral detergent fiber, NDF | 51.97 |
| Acid detergent fiber, ADF | 20.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, A.; Liu, H.; Han, J.; Zhu, D.; Huang, S.; Li, M.; Deng, X.; Wang, K.; Wu, Q.; Yang, Y.; et al. Effects of Different Bacillus subtilis Supplementation Levels on Fecal Microbiota and Metabolites in Goats. Microorganisms 2025, 13, 2740. https://doi.org/10.3390/microorganisms13122740
Chen A, Liu H, Han J, Zhu D, Huang S, Li M, Deng X, Wang K, Wu Q, Yang Y, et al. Effects of Different Bacillus subtilis Supplementation Levels on Fecal Microbiota and Metabolites in Goats. Microorganisms. 2025; 13(12):2740. https://doi.org/10.3390/microorganisms13122740
Chicago/Turabian StyleChen, Anmiao, Hu Liu, Jiancheng Han, Donghong Zhu, Shiyang Huang, Mao Li, Xiaoyan Deng, Ke Wang, Qun Wu, Yuanting Yang, and et al. 2025. "Effects of Different Bacillus subtilis Supplementation Levels on Fecal Microbiota and Metabolites in Goats" Microorganisms 13, no. 12: 2740. https://doi.org/10.3390/microorganisms13122740
APA StyleChen, A., Liu, H., Han, J., Zhu, D., Huang, S., Li, M., Deng, X., Wang, K., Wu, Q., Yang, Y., Peng, W., Zeng, M., Wang, W., Zhang, X., & Zhou, H. (2025). Effects of Different Bacillus subtilis Supplementation Levels on Fecal Microbiota and Metabolites in Goats. Microorganisms, 13(12), 2740. https://doi.org/10.3390/microorganisms13122740

