Current Scientific Advances in Vaccines Against UTIs: Challenges and Prospects
Abstract
1. Introduction
2. Pathogenesis of UTI
2.1. UPEC Infection Mechanisms
2.2. Virulence Factors of Other Uropathogens
3. Advances in UTI Vaccine Development
3.1. Pathogen-Specific Vaccine Strategies
3.2. Polysaccharide-Based Conjugate Vaccines
3.3. Subunit Vaccines
4. Manufacturing Technologies for Polysaccharide Conjugate Vaccines of UTI
4.1. Traditional Chemical-Based Vaccinology
4.2. Biotechnology-Enabled Vaccine Manufacturing
4.2.1. Oligosaccharyltransferase (OST) System
4.2.2. Protein-Glycan Conjugation Technique (PGCT) In Vivo
4.2.3. Metabolic Engineering-Directed Biosynthesis of Polysaccharide-Based Conjugate Vaccines
4.3. Lessons from Other Pathogens: The Real-World Impact of Polysaccharide Conjugate Vaccines
4.4. Integrated Strategies and Future Directions for UTI Management
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hof, H. Candiduria! What now? Therapy of urinary tract infections with Candida. Der Urol. 2017, 56, 172–179. [Google Scholar] [CrossRef]
- Hannan, T.J.; Totsika, M.; Mansfield, K.J.; Moore, K.H.; Schembri, M.A.; Hultgren, S.J. Host-pathogen checkpoints and population bottlenecks in persistent and intracellular uropathogenic Escherichia coli bladder infection. FEMS Microbiol. Rev. 2012, 36, 616–648. [Google Scholar] [CrossRef] [PubMed]
- Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.; Hultgren, S.J. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 2015, 13, 269–284. [Google Scholar] [CrossRef] [PubMed]
- Hanna-Wakim, R.H.; Ghanem, S.T.; El Helou, M.W.; Khafaja, S.A.; Shaker, R.A.; Hassan, S.A.; Saad, R.K.; Hedari, C.P.; Khinkarly, R.W.; Hajar, F.M.; et al. Epidemiology and characteristics of urinary tract infections in children and adolescents. Front. Cell. Infect. Microbiol. 2015, 5, 45. [Google Scholar] [CrossRef] [PubMed]
- Zorc, J.J.; Levine, D.A.; Platt, S.L.; Dayan, P.S.; Macias, C.G.; Krief, W.; Schor, J.; Bank, D.; Shaw, K.N.; Kuppermann, N. Clinical and demographic factors associated with urinary tract infection in young febrile infants. Pediatrics 2005, 116, 644–648. [Google Scholar] [CrossRef]
- Shaikh, N.; Morone, N.E.; Bost, J.E.; Farrell, M.H. Prevalence of urinary tract infection in childhood: A meta-analysis. Pediatr. Infect. Dis. J. 2008, 27, 302–308. [Google Scholar] [CrossRef]
- Kanellopoulos, T.A.; Salakos, C.; Spiliopoulou, I.; Ellina, A.; Nikolakopoulou, N.M.; Papanastasiou, D.A. First urinary tract infection in neonates, infants and young children: A comparative study. Pediatr. Nephrol. 2006, 21, 1131–1137. [Google Scholar] [CrossRef]
- Mattoo, T.K.; Shaikh, N.; Nelson, C.P. Contemporary Management of Urinary Tract Infection in Children. Pediatrics 2021, 147, e2020012138. [Google Scholar] [CrossRef]
- Tullus, K.; Shaikh, N. Urinary tract infections in children. Lancet 2020, 395, 1659–1668. [Google Scholar] [CrossRef]
- Hellström, A.; Hanson, E.; Hansson, S.; Hjälmås, K.; Jodal, U. Association between urinary symptoms at 7 years old and previous urinary tract infection. Arch. Dis. Child. 1991, 66, 232–234. [Google Scholar] [CrossRef]
- Foxman, B. Urinary tract infection syndromes: Occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect. Dis. Clin. N. Am. 2014, 28, 1–13. [Google Scholar] [CrossRef]
- Kaur, R.; Kaur, R. Symptoms, risk factors, diagnosis and treatment of urinary tract infections. Postgrad. Med. J. 2021, 97, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Hooton, T.M. Clinical practice. Uncomplicated urinary tract infection. N. Engl. J. Med. 2012, 366, 1028–1037. [Google Scholar] [CrossRef] [PubMed]
- Schappert, S.M.; Rechtsteiner, E.A. Ambulatory medical care utilization estimates for 2007. Vital Health Stat. 13 2011, 169, 1–38. [Google Scholar]
- Chen, Y.-C.; Lee, W.-C.; Chuang, Y.-C. Emerging non-antibiotic options targeting uropathogenic mechanisms for recurrent uncomplicated urinary tract infection. Int. J. Mol. Sci. 2023, 24, 7055. [Google Scholar] [CrossRef]
- Worby, C.J.; Schreiber IV, H.L.; Straub, T.J.; van Dijk, L.R.; Bronson, R.A.; Olson, B.S.; Pinkner, J.S.; Obernuefemann, C.L.; Muñoz, V.L.; Paharik, A.E. Longitudinal multi-omics analyses link gut microbiome dysbiosis with recurrent urinary tract infections in women. Nat. Microbiol. 2022, 7, 630–639. [Google Scholar] [CrossRef]
- Suskind, A.M.; Saigal, C.S.; Hanley, J.M.; Lai, J.; Setodji, C.M.; Clemens, J.Q. Incidence and Management of Uncomplicated Recurrent Urinary Tract Infections in a National Sample of Women in the United States. Urology 2016, 90, 50–55. [Google Scholar] [CrossRef]
- O’Brien, V.P.; Hannan, T.J.; Nielsen, H.V.; Hultgren, S.J. Drug and Vaccine Development for the Treatment and Prevention of Urinary Tract Infections. Microbiol. Spectr. 2016, 4, UTI-0013-2012. [Google Scholar] [CrossRef]
- Alam, M.; Anwar, M.; Akhtar, M.; Alam, P.; Mohammad, A.; Almutairy, A.; Nazmi, A.; Mukherjee, T. A systematic review of recent advances in urinary tract infection interventions and treatment technology. Eur. Rev. Med. Pharmacol. Sci. 2024, 28, 4238–4254. [Google Scholar]
- Stamm, W.E.; Hooton, T.M.; Johnson, J.R.; Johnson, C.; Stapleton, A.; Roberts, P.L.; Moseley, S.L.; Fihn, S.D. Urinary tract infections: From pathogenesis to treatment. J. Infect. Dis. 1989, 159, 400–406. [Google Scholar] [CrossRef]
- Johansen, T.E.; Botto, H.; Cek, M.; Grabe, M.; Tenke, P.; Wagenlehner, F.M.; Naber, K.G. Critical review of current definitions of urinary tract infections and proposal of an EAU/ESIU classification system. Int. J. Antimicrob. Agents 2011, 38, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Foxman, B. Epidemiology of urinary tract infections: Incidence, morbidity, and economic costs. Am. J. Med. 2002, 113 (Suppl. S1A), 5–13. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Torosis, M.; Kim, J.H.; Ackerman, A.L. U.S. primary care physician perceptions on barriers to providing guideline-driven care for UTI and recurrent UTI: A qualitative study. BMC Prim. Care 2024, 25, 234. [Google Scholar] [CrossRef] [PubMed]
- Reissier, S.; Penven, M.; Amara, M.; Dortet, L.; Riverain, E.; Caspar, Y.; Degand, N.; Farfour, E.; Corvec, S.; Barraud, O. Bacterial epidemiology and antibiotic resistance rates in male urinary tract infections in France, 2019–2023. Infect. Dis. Now 2025, 55, 105123. [Google Scholar] [CrossRef]
- Gupta, K.; Grigoryan, L.; Trautner, B. Urinary Tract Infection. Ann. Intern. Med. 2017, 167, Itc49–Itc64. [Google Scholar] [CrossRef]
- Chu, C.M.; Lowder, J.L. Diagnosis and treatment of urinary tract infections across age groups. Am. J. Obstet. Gynecol. 2018, 219, 40–51. [Google Scholar] [CrossRef]
- Muller, A.E.; Verhaegh, E.M.; Harbarth, S.; Mouton, J.W.; Huttner, A. Nitrofurantoin’s efficacy and safety as prophylaxis for urinary tract infections: A systematic review of the literature and meta-analysis of controlled trials. Clin. Microbiol. Infect. 2017, 23, 355–362. [Google Scholar] [CrossRef]
- Zykov, I.N.; Frimodt-Møller, N.; Småbrekke, L.; Sundsfjord, A.; Samuelsen, Ø. Efficacy of mecillinam against clinical multidrug-resistant Escherichia coli in a murine urinary tract infection model. Int. J. Antimicrob. Agents 2020, 55, 105851. [Google Scholar] [CrossRef]
- Milano, A.; Sulejmani, A.; Intra, J.; Sala, M.R.; Leoni, V.; Carcione, D. Antimicrobial Resistance Trends of Escherichia coli Isolates from Outpatient and Inpatient Urinary Infections over a 20-Year Period. Microb. Drug Resist. 2022, 28, 63–72. [Google Scholar] [CrossRef]
- Car, J. Urinary tract infections in women: Diagnosis and management in primary care. BMJ 2006, 332, 94–97. [Google Scholar] [CrossRef]
- Chardavoyne, P.C.; Kasmire, K.E. Appropriateness of Antibiotic Prescriptions for Urinary Tract Infections. West. J. Emerg. Med. 2020, 21, 633–639. [Google Scholar] [CrossRef]
- Holm, A.; Cordoba, G.; Aabenhus, R. Prescription of antibiotics for urinary tract infection in general practice in Denmark. Scand. J. Prim. Health Care 2019, 37, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Hooton, T.M.; Naber, K.G.; Wullt, B.; Colgan, R.; Miller, L.G.; Moran, G.J.; Nicolle, L.E.; Raz, R.; Schaeffer, A.J.; et al. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin. Infect. Dis. 2011, 52, e103–e120. [Google Scholar] [CrossRef] [PubMed]
- Anger, J.; Lee, U.; Ackerman, A.L.; Chou, R.; Chughtai, B.; Clemens, J.Q.; Hickling, D.; Kapoor, A.; Kenton, K.S.; Kaufman, M.R.; et al. Recurrent Uncomplicated Urinary Tract Infections in Women: AUA/CUA/SUFU Guideline. J. Urol. 2019, 202, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Kodner, C.M.; Thomas Gupton, E.K. Recurrent urinary tract infections in women: Diagnosis and management. Am. Acad. Fam. Physicians 2010, 82, 638–643. [Google Scholar]
- Brubaker, L.; Carberry, C.; Nardos, R.; Carter-Brooks, C.; Lowder, J.L. American Urogynecologic Society Best-Practice Statement: Recurrent Urinary Tract Infection in Adult Women. Female Pelvic Med. Reconstr. Surg. 2018, 24, 321–335. [Google Scholar] [CrossRef]
- Tucker, A. P16 UTI Friday: A review of antibiotic prophylaxis in the management of recurrent UTI in primary care. JAC-Antimicrob. Resist. 2023, 5, dlad066.020. [Google Scholar] [CrossRef]
- Alrosan, S.; Al Mse’adeen, M.; Alkhawaldeh, I.M.; Mishael, J.; Aljarab’ah, N.; Aljarajreh, M.; Yamin, M.; Abu-Jeyyab, M. An Audit to Reevaluate the Adherence to the Guidelines in Patients with Urinary Tract Infection at the Al-Karak Hospital in Jordan. Cureus 2023, 15, e39509. [Google Scholar] [CrossRef]
- Fisher, S.J.; Graham, C.; Kennard, J.; Jonker, L. Management of urinary tract infections in the community: A clinical audit and patient survey. BJGP Open 2023, 7, BJGPO.2022.0191. [Google Scholar] [CrossRef]
- Clark, A.W.; Durkin, M.J.; Olsen, M.A.; Keller, M.; Ma, Y.; O’Neil, C.A.; Butler, A.M. Rural-urban differences in antibiotic prescribing for uncomplicated urinary tract infection. Infect. Control. Hosp. Epidemiol. 2021, 42, 1437–1444. [Google Scholar] [CrossRef]
- Langner, J.L.; Chiang, K.F.; Stafford, R.S. Current prescribing practices and guideline concordance for the treatment of uncomplicated urinary tract infections in women. Am. J. Obstet. Gynecol. 2021, 225, 272.e1–272.e11. [Google Scholar] [CrossRef] [PubMed]
- Bedri, A.; Mulderij-Jansen, V.; Aits, I.; Berends, M.; Freitag, M.H.; van der Worp, H.; Glasner, C.; Blanker, M.H. General practitioners’ perspectives on diagnosis and treatment of uncomplicated urinary tract infections: A qualitative study in the Northern Dutch–German cross-border region. Eur. J. Gen. Pract. 2025, 31, 2536227. [Google Scholar] [CrossRef] [PubMed]
- Llor, C.; Bjerrum, L. Antimicrobial resistance: Risk associated with antibiotic overuse and initiatives to reduce the problem. Ther. Adv. Drug Saf. 2014, 5, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef]
- Mak, Q.; Greig, J.; Dasgupta, P.; Malde, S.; Raison, N. Bacterial vaccines for the management of recurrent urinary tract infections: A systematic review and meta-analysis. Eur. Urol. Focus 2024, 10, 761–769. [Google Scholar] [CrossRef]
- Flores, C.; Rohn, J.L. Bacterial adhesion strategies and countermeasures in urinary tract infection. Nat. Microbiol. 2025, 10, 627–645. [Google Scholar] [CrossRef]
- Timm, M.R.; Russell, S.K.; Hultgren, S.J. Urinary tract infections: Pathogenesis, host susceptibility and emerging therapeutics. Nat. Rev. Microbiol. 2025, 23, 72–86. [Google Scholar] [CrossRef]
- Klein, R.D.; Hultgren, S.J. Urinary tract infections: Microbial pathogenesis, host-pathogen interactions and new treatment strategies. Nat. Rev. Microbiol. 2020, 18, 211–226. [Google Scholar] [CrossRef]
- Eto, D.S.; Jones, T.A.; Sundsbak, J.L.; Mulvey, M.A. Integrin-mediated host cell invasion by type 1–piliated uropathogenic Escherichia coli. PLoS Pathog. 2007, 3, e100. [Google Scholar] [CrossRef]
- Wu, X.-R.; Sun, T.-T.; Medina, J.J. In vitro binding of type 1-fimbriated Escherichia coli to uroplakins Ia and Ib: Relation to urinary tract infections. Proc. Natl. Acad. Sci. USA 1996, 93, 9630–9635. [Google Scholar] [CrossRef]
- Pang, Y.; Cheng, Z.; Zhang, S.; Li, S.; Li, X.; Li, X.; Zhang, X.; Li, X.; Feng, Y.; Cui, H. Bladder epithelial cell phosphate transporter inhibition protects mice against uropathogenic Escherichia coli infection. Cell Rep. 2022, 39, 110698. [Google Scholar] [CrossRef]
- Mittal, S.; Sharma, M.; Chaudhary, U. Biofilm and multidrug resistance in uropathogenic Escherichia coli. Pathog. Glob. Health 2015, 109, 26–29. [Google Scholar] [CrossRef]
- Beebout, C.J.; Robertson, G.L.; Reinfeld, B.I.; Blee, A.M.; Morales, G.H.; Brannon, J.R.; Chazin, W.J.; Rathmell, W.K.; Rathmell, J.C.; Gama, V. Uropathogenic Escherichia coli subverts mitochondrial metabolism to enable intracellular bacterial pathogenesis in urinary tract infection. Nat. Microbiol. 2022, 7, 1348–1360. [Google Scholar] [CrossRef] [PubMed]
- Tamadonfar, K.O.; Omattage, N.S.; Spaulding, C.N.; Hultgren, S.J. Reaching the end of the line: Urinary tract infections. Microbiol. Spectr. 2019, 7, bai-0014-2019. [Google Scholar] [CrossRef] [PubMed]
- Medina, M.; Castillo-Pino, E. An introduction to the epidemiology and burden of urinary tract infections. Ther. Adv. Urol. 2019, 11, 1756287219832172. [Google Scholar] [CrossRef] [PubMed]
- Abe, C.M.; Salvador, F.A.; Falsetti, I.N.; Vieira, M.A.; Blanco, J.; Blanco, J.E.; Blanco, M.; Machado, A.M.; Elias, W.P.; Hernandes, R.T.; et al. Uropathogenic Escherichia coli (UPEC) strains may carry virulence properties of diarrhoeagenic E. coli. FEMS Immunol. Med. Microbiol. 2008, 52, 397–406. [Google Scholar] [CrossRef]
- Uehling, D.T.; Hopkins, W.J.; Elkahwaji, J.E.; Schmidt, D.M.; Leverson, G.E. Phase 2 clinical trial of a vaginal mucosal vaccine for urinary tract infections. J. Urol. 2003, 170, 867–869. [Google Scholar] [CrossRef]
- Kochiashvili, D.; Khuskivadze, A.; Kochiashvili, G.; Koberidze, G.; Kvakhajelidze, V. Role of the bacterial vaccine Solco-Urovac® in treatment and prevention of recurrent urinary tract infections of bacterial origin. Georgian Med. News 2014, 231, 11–16. [Google Scholar]
- Uehling, D.T.; Hopkins, W.J.; Dahmer, L.A.; Balish, E. Phase I clinical trial of vaginal mucosal immunization for recurrent urinary tract infection. J. Urol. 1994, 152, 2308–2311. [Google Scholar] [CrossRef]
- Nestler, S. Harnwegsinfektprophylaxe mit StroVac. Uro-News 2024, 28, 20–21. [Google Scholar] [CrossRef]
- Nestler, S.; Grüne, B.; Schilchegger, L.; Suna, A.; Perez, A.; Neisius, A. Efficacy of vaccination with StroVac for recurrent urinary tract infections in women: A comparative single-centre study. Int. Urol. Nephrol. 2021, 53, 2267–2272. [Google Scholar] [CrossRef]
- Nestler, S.; Peschel, C.; Horstmann, A.H.; Vahlensieck, W.; Fabry, W.; Neisius, A. Correction to: Prospective multicentre randomized double-blind placebo-controlled parallel group study on the efficacy and tolerability of StroVac® in patients with recurrent symptomatic uncomplicated bacterial urinary tract infections. Int. Urol. Nephrol. 2023, 55, 1159. [Google Scholar] [CrossRef]
- Nestler, S.; Grüne, B.; Schilchegger, L.; Neisius, A. P0176—Prophylaxis for recurrent urinary tract infections in women with StroVac—Efficacy and patient’s compliance in a 2-year follow-up. Eur. Urol. 2021, 79, S254. [Google Scholar] [CrossRef]
- Wade, D.; Cooper, J.; Derry, F.; Taylor, J. Uro-Vaxom® versus placebo for the prevention of recurrent symptomatic urinary tract infections in participants with chronic neurogenic bladder dysfunction: A randomised controlled feasibility study. Trials 2019, 20, 223. [Google Scholar] [CrossRef]
- Cruz, F.; Dambros, M.; Naber, K.G.; Bauer, H.W.; Cozma, G. Recurrent Urinary Tract Infections: Uro-Vaxom®, a New Alternative. Eur. Urol. Suppl. 2009, 8, 762–768. [Google Scholar] [CrossRef]
- Porto, B.C.; Almeida, A.S.; Terada, B.D.; Gonçalves, F.G.; Passerotti, C.C.; Sardenberg, R.A.; Otoch, J.P.; Cruz, J.A.D. Uro-vaxom (OM-89) for chronic UTI prevention: An updated meta-analysis, meta-regression and trial sequential analysis of recent clinical evidence. Minerva Urol. Nephrol. 2025, 77, 618–628. [Google Scholar] [CrossRef] [PubMed]
- Magasi, P.; Pánovics, J.; Illés, A.; Nagy, M. Uro-Vaxom and the management of recurrent urinary tract infection in adults: A randomized multicenter double-blind trial. Eur. Urol. 1994, 26, 137–140. [Google Scholar] [CrossRef]
- Magistro, G.; Stief, C.G. Vaccine Development for Urinary Tract Infections: Where Do We Stand? Eur. Urol. Focus 2019, 5, 39–41. [Google Scholar] [CrossRef]
- Marinova, S.; Nenkov, P.; Markova, R.; Nikolaeva, S.; Kostadinova, R.; Mitov, I.; Vretenarska, M. Cellular and humoral systemic and mucosal immune responses stimulated by an oral polybacterial immunomodulator in patients with chronic urinary tract infections. Int. J. Immunopathol. Pharmacol. 2005, 18, 457–473. [Google Scholar] [CrossRef] [PubMed]
- Russo, T.A.; Beanan, J.M.; Olson, R.; Genagon, S.A.; MacDonald, U.; Cope, J.J.; Davidson, B.A.; Johnston, B.; Johnson, J.R. A killed, genetically engineered derivative of a wild-type extraintestinal pathogenic E. coli strain is a vaccine candidate. Vaccine 2007, 25, 3859–3870. [Google Scholar] [CrossRef]
- Russo, T.A.; Beanan, J.M.; Olson, R.; MacDonald, U.; Cope, J.J. Capsular polysaccharide and the O-specific antigen impede antibody binding: A potential obstacle for the successful development of an extraintestinal pathogenic Escherichia coli vaccine. Vaccine 2009, 27, 388–395. [Google Scholar] [CrossRef]
- Billips, B.K.; Forrestal, S.G.; Rycyk, M.T.; Johnson, J.R.; Klumpp, D.J.; Schaeffer, A.J. Modulation of host innate immune response in the bladder by uropathogenic Escherichia coli. Infect. Immun. 2007, 75, 5353–5360. [Google Scholar] [CrossRef] [PubMed]
- Saade, E.; Gravenstein, S.; Donskey, C.J.; Wilson, B.; Spiessens, B.; Abbanat, D.; Poolman, J.; Ibarra de Palacios, P.; Hermans, P. Characterization of Escherichia coli isolates potentially covered by ExPEC4V and ExPEC10V, that were collected from post-transrectal ultrasound-guided prostate needle biopsy invasive urinary tract and bloodstream infections. Vaccine 2020, 38, 5100–5104. [Google Scholar] [CrossRef] [PubMed]
- Frenck, R.W., Jr.; Ervin, J.; Chu, L.; Abbanat, D.; Spiessens, B.; Go, O.; Haazen, W.; van den Dobbelsteen, G.; Poolman, J.; Thoelen, S.; et al. Safety and immunogenicity of a vaccine for extra-intestinal pathogenic Escherichia coli (ESTELLA): A phase 2 randomised controlled trial. Lancet Infect. Dis. 2019, 19, 631–640. [Google Scholar] [CrossRef] [PubMed]
- Smith, W.B.; Abbanat, D.; Spiessens, B.; Go, O.; Haazen, W.; de Rosa, T.; Fae, K.; Poolman, J.; Thoelen, S.; de Palacios, P.I. 2712. Safety and Immunogenicity of two Doses of ExPEC4V Vaccine Against Extraintestinal Pathogenic Escherichia coli Disease in Healthy Adult Participants. Open Forum Infect. Dis. 2019, 6, S954. [Google Scholar] [CrossRef]
- Inoue, M.; Ogawa, T.; Tamura, H.; Hagiwara, Y.; Saito, Y.; Abbanat, D.; van den Dobbelsteen, G.; Hermans, P.; Thoelen, S.; Poolman, J.; et al. Safety, tolerability and immunogenicity of the ExPEC4V (JNJ-63871860) vaccine for prevention of invasive extraintestinal pathogenic Escherichia coli disease: A phase 1, randomized, double-blind, placebo-controlled study in healthy Japanese participants. Hum. Vaccines Immunother. 2018, 14, 2150–2157. [Google Scholar] [CrossRef]
- Huttner, A.; Gambillara, V. The development and early clinical testing of the ExPEC4V conjugate vaccine against uropathogenic Escherichia coli. Clin. Microbiol. Infect. 2018, 24, 1046–1050. [Google Scholar] [CrossRef]
- Del Bino, L.; Østerlid, K.E.; Wu, D.-Y.; Nonne, F.; Romano, M.R.; Codée, J.; Adamo, R. Synthetic Glycans to Improve Current Glycoconjugate Vaccines and Fight Antimicrobial Resistance. Chem. Rev. 2022, 122, 15672–15716. [Google Scholar] [CrossRef]
- Janssen Research & Development, LLC. Clinical Trial: A Study of Vaccination with 9-valent Extraintestinal Pathogenic Escherichia coli Vaccine (ExPEC9V) in the Prevention of Invasive Extraintestinal Pathogenic Escherichia coli Disease in Adults Aged 60 Years and Older with a History of Urinary Tract Infection in the Past 2 Years. In US Fed News Service, Including US State News; HT Media Ltd.: New Delhi, India, 2021. [Google Scholar]
- Fierro, C.A.; Sarnecki, M.; Spiessens, B.; Go, O.; Day, T.A.; Davies, T.A.; van den Dobbelsteen, G.; Poolman, J.; Abbanat, D.; Haazen, W. A randomized phase 1/2a trial of ExPEC10V vaccine in adults with a history of UTI. npj Vaccines 2024, 9, 106. [Google Scholar] [CrossRef]
- Behzadi, P. Classical chaperone-usher (CU) adhesive fimbriome: Uropathogenic Escherichia coli (UPEC) and urinary tract infections (UTIs). Folia Microbiol. 2020, 65, 45–65. [Google Scholar] [CrossRef]
- Ong, C.L.; Beatson, S.A.; Totsika, M.; Forestier, C.; McEwan, A.G.; Schembri, M.A. Molecular analysis of type 3 fimbrial genes from Escherichia coli, Klebsiella and Citrobacter species. BMC Microbiol. 2010, 10, 183. [Google Scholar] [CrossRef] [PubMed]
- Zavialov, A.; Zav’yalova, G.; Korpela, T.; Zav’yalov, V. FGL chaperone-assembled fimbrial polyadhesins: Anti-immune armament of Gram-negative bacterial pathogens. FEMS Microbiol. Rev. 2007, 31, 478–514. [Google Scholar] [CrossRef] [PubMed]
- Behzadi, E.; Behzadi, P. The role of toll-like receptors (TLRs) in urinary tract infections (UTIs). Cent. Eur. J. Urol. 2016, 69, 404–410. [Google Scholar] [CrossRef]
- Spaulding, C.N.; Klein, R.D.; Ruer, S.; Kau, A.L.; Schreiber, H.L.; Cusumano, Z.T.; Dodson, K.W.; Pinkner, J.S.; Fremont, D.H.; Janetka, J.W.; et al. Selective depletion of uropathogenic E. coli from the gut by a FimH antagonist. Nature 2017, 546, 528–532. [Google Scholar] [CrossRef]
- Lund, B.; Lindberg, F.; Marklund, B.I.; Normark, S. The PapG protein is the alpha-D-galactopyranosyl-(1----4)-beta-D-galactopyranose-binding adhesin of uropathogenic Escherichia coli. Proc. Natl. Acad. Sci. USA 1987, 84, 5898–5902. [Google Scholar] [CrossRef]
- Wright, K.J.; Hultgren, S.J. Sticky fibers and uropathogenesis: Bacterial adhesins in the urinary tract. Future Microbiol. 2006, 1, 75–87. [Google Scholar] [CrossRef]
- Vigil, P.D.; Stapleton, A.E.; Johnson, J.R.; Hooton, T.M.; Hodges, A.P.; He, Y.; Mobley, H.L. Presence of putative repeat-in-toxin gene tosA in Escherichia coli predicts successful colonization of the urinary tract. mBio 2011, 2, 10–1128. [Google Scholar] [CrossRef]
- Engstrom, M.D.; Alteri, C.J.; Mobley, H.L. A conserved PapB family member, TosR, regulates expression of the uropathogenic Escherichia coli RTX nonfimbrial adhesin TosA while conserved LuxR family members TosE and TosF suppress motility. Infect. Immun. 2014, 82, 3644–3656. [Google Scholar] [CrossRef]
- Johnson, J.R.; Jelacic, S.; Schoening, L.M.; Clabots, C.; Shaikh, N.; Mobley, H.L.; Tarr, P.I. The IrgA homologue adhesin Iha is an Escherichia coli virulence factor in murine urinary tract infection. Infect. Immun. 2005, 73, 965–971. [Google Scholar] [CrossRef]
- Uhlén, P.; Laestadius, Å.; Jahnukainen, T.; Söderblom, T.; Bäckhed, F.; Celsi, G.; Brismar, H.; Normark, S.; Aperia, A.; Richter-Dahlfors, A. α-Haemolysin of uropathogenic E. coli induces Ca2+ oscillations in renal epithelial cells. Nature 2000, 405, 694–697. [Google Scholar] [CrossRef] [PubMed]
- Skaar, E.P. The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog. 2010, 6, e1000949. [Google Scholar] [CrossRef] [PubMed]
- Valdebenito, M.; Bister, B.; Reissbrodt, R.; Hantke, K.; Winkelmann, G. The detection of salmochelin and yersiniabactin in uropathogenic Escherichia coli strains by a novel hydrolysis-fluorescence-detection (HFD) method. Int. J. Med. Microbiol. 2005, 295, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Reigstad, C.S.; Hultgren, S.J.; Gordon, J.I. Functional genomic studies of uropathogenic Escherichia coli and host urothelial cells when intracellular bacterial communities are assembled. J. Biol. Chem. 2007, 282, 21259–21267. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, L.; de Dios Ruiz-Rosado, J.; Stonebrook, E.; Becknell, B.; Spencer, J.D. Uropathogen and host responses in pyelonephritis. Nat. Rev. Nephrol. 2023, 19, 658–671. [Google Scholar] [CrossRef]
- Raetz, C.R.H.; Whitfield, C. Lipopolysaccharide Endotoxins. Annu. Rev. Biochem. 2002, 71, 635–700. [Google Scholar] [CrossRef]
- Maldonado, R.F.; Sá-Correia, I.; Valvano, M.A. Lipopolysaccharide modification in Gram-negative bacteria during chronic infection. FEMS Microbiol. Rev. 2016, 40, 480–493. [Google Scholar] [CrossRef]
- Cohen, D.; Atsmon, J.; Artaud, C.; Meron-Sudai, S.; Gougeon, M.L.; Bialik, A.; Goren, S.; Asato, V.; Ariel-Cohen, O.; Reizis, A.; et al. Safety and immunogenicity of a synthetic carbohydrate conjugate vaccine against Shigella flexneri 2a in healthy adult volunteers: A phase 1, dose-escalating, single-blind, randomised, placebo-controlled study. Lancet Infect. Dis. 2021, 21, 546–558. [Google Scholar] [CrossRef]
- Reinhardt, A.; Yang, Y.; Claus, H.; Pereira, C.L.; Cox, A.D.; Vogel, U.; Anish, C.; Seeberger, P.H. Antigenic potential of a highly conserved Neisseria meningitidis lipopolysaccharide inner core structure defined by chemical synthesis. Chem. Biol. 2015, 22, 38–49. [Google Scholar] [CrossRef]
- Laird, R.M.; Ma, Z.; Dorabawila, N.; Pequegnat, B.; Omari, E.; Liu, Y.; Maue, A.C.; Poole, S.T.; Maciel, M.; Satish, K.; et al. Evaluation of a conjugate vaccine platform against enterotoxigenic Escherichia coli (ETEC), Campylobacter jejuni and Shigella. Vaccine 2018, 36, 6695–6702. [Google Scholar] [CrossRef]
- Hug, I.; Feldman, M.F. Analogies and homologies in lipopolysaccharide and glycoprotein biosynthesis in bacteria. Glycobiology 2010, 21, 138–151. [Google Scholar] [CrossRef]
- Micoli, F.; Del Bino, L.; Alfini, R.; Carboni, F.; Romano, M.R.; Adamo, R. Glycoconjugate vaccines: Current approaches towards faster vaccine design. Expert Rev. Vaccines 2019, 18, 881–895. [Google Scholar] [CrossRef]
- Dow, J.M.; Mauri, M.; Scott, T.A.; Wren, B.W. Improving protein glycan coupling technology (PGCT) for glycoconjugate vaccine production. Expert Rev. Vaccines 2020, 19, 507–527. [Google Scholar] [CrossRef] [PubMed]
- Hasanzadeh, S.; Habibi, M.; Shokrgozar, M.A.; Ahangari Cohan, R.; Ahmadi, K.; Asadi Karam, M.R.; Bouzari, S. In silico analysis and in vivo assessment of a novel epitope-based vaccine candidate against uropathogenic Escherichia coli. Sci. Rep. 2020, 10, 16258. [Google Scholar] [CrossRef] [PubMed]
- Shah, C.; Baral, R.; Bartaula, B.; Shrestha, L.B. Virulence factors of uropathogenic Escherichia coli (UPEC) and correlation with antimicrobial resistance. BMC Microbiol. 2019, 19, 204. [Google Scholar] [CrossRef] [PubMed]
- Rasoulinasab, M.; Shahcheraghi, F.; Feizabadi, M.M.; Nikmanesh, B.; Hajihasani, A.; Sabeti, S.; Aslani, M.M. Distribution of Pathogenicity Island Markers and H-Antigen Types of Escherichia coli O25b/ST131 Isolates from Patients with Urinary Tract Infection in Iran. Microb. Drug Resist. 2021, 27, 369–382. [Google Scholar] [CrossRef]
- Gao, M.; Zhao, T.; Zhang, C.; Li, P.; Wang, J.; Han, J.; Zhang, N.; Pang, B.; Liu, S. Ferritinophagy-mediated iron competition in RUTIs: Tug-of-war between UPEC and host. Biomed. Pharmacother. 2023, 163, 114859. [Google Scholar] [CrossRef]
- Griffith, D.P.; Musher, D.á. Urease: Principal cause of infection stones. In Urolithiasis Research; Springer: Berlin/Heidelberg, Germany, 1976; pp. 451–454. [Google Scholar]
- Armbruster, C.E.; Mobley, H.L. Merging mythology and morphology: The multifaceted lifestyle of Proteus mirabilis. Nat. Rev. Microbiol. 2012, 10, 743–754. [Google Scholar] [CrossRef]
- Stickler, D. Clinical complications of urinary catheters caused by crystalline biofilms: Something needs to be done. J. Intern. Med. 2014, 276, 120–129. [Google Scholar] [CrossRef]
- Zalewska-Piątek, B.; Nagórka, M.; Piątek, R. Role of Uropathogenic Escherichia coli and Other Pathogens in Kidney Stone Formation: From Pathogenesis to Treatment. Pathogens 2025, 14, 991. [Google Scholar] [CrossRef]
- Karam, M.R.; Oloomi, M.; Mahdavi, M.; Habibi, M.; Bouzari, S. Assessment of immune responses of the flagellin (FliC) fused to FimH adhesin of Uropathogenic Escherichia coli. Mol. Immunol. 2013, 54, 32–39. [Google Scholar] [CrossRef]
- Asadi Karam, M.R.; Habibi, M.; Bouzari, S. Use of flagellin and cholera toxin as adjuvants in intranasal vaccination of mice to enhance protective immune responses against uropathogenic Escherichia coli antigens. Biologicals 2016, 44, 378–386. [Google Scholar] [CrossRef]
- Imani Fooladi, A.A.; Bagherpour, G.; Khoramabadi, N.; Fallah Mehrabadi, J.; Mahdavi, M.; Halabian, R.; Amin, M.; Izadi Mobarakeh, J.; Einollahi, B. Cellular immunity survey against urinary tract infection using pVAX/fimH cassette with mammalian and wild type codon usage as a DNA vaccine. Clin. Exp. Vaccine Res. 2014, 3, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Saade, F.; Petrovsky, N. Technologies for enhanced efficacy of DNA vaccines. Expert Rev. Vaccines 2012, 11, 189–209. [Google Scholar] [CrossRef] [PubMed]
- Habibi, M.; Asadi Karam, M.R.; Bouzari, S. Evaluation of the effect of MPL and delivery route on immunogenicity and protectivity of different formulations of FimH and MrpH from uropathogenic Escherichia coli and Proteus mirabilis in a UTI mouse model. Int. Immunopharmacol. 2015, 28, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Asadi Karam, M.R.; Oloomi, M.; Mahdavi, M.; Habibi, M.; Bouzari, S. Vaccination with recombinant FimH fused with flagellin enhances cellular and humoral immunity against urinary tract infection in mice. Vaccine 2013, 31, 1210–1216. [Google Scholar] [CrossRef] [PubMed]
- Stins, M.F.; Prasadarao, N.V.; Ibric, L.; Wass, C.A.; Luckett, P.; Kim, K.S. Binding characteristics of S fimbriated Escherichia coli to isolated brain microvascular endothelial cells. Am. J. Pathol. 1994, 145, 1228–1236. [Google Scholar]
- Roberts, J.A.; Kaack, M.B.; Baskin, G.; Chapman, M.R.; Hunstad, D.A.; Pinkner, J.S.; Hultgren, S.J. Antibody responses and protection from pyelonephritis following vaccination with purified Escherichia coli PapDG protein. J. Urol. 2004, 171, 1682–1685. [Google Scholar] [CrossRef]
- O’Hanley, P.; Lark, D.; Falkow, S.; Schoolnik, G. Molecular basis of Escherichia coli colonization of the upper urinary tract in BALB/c mice. Gal-Gal pili immunization prevents Escherichia coli pyelonephritis in the BALB/c mouse model of human pyelonephritis. J. Clin. Investig. 1985, 75, 347–360. [Google Scholar] [CrossRef]
- Roberts, J.A.; Hardaway, K.; Kaack, B.; Fussell, E.N.; Baskin, G. Prevention of pyelonephritis by immunization with P-fimbriae. J. Urol. 1984, 131, 602–607. [Google Scholar] [CrossRef]
- Savar, N.S.; Jahanian-Najafabadi, A.; Mahdavi, M.; Shokrgozar, M.A.; Jafari, A.; Bouzari, S. In silico and in vivo studies of truncated forms of flagellin (FliC) of enteroaggregative Escherichia coli fused to FimH from uropathogenic Escherichia coli as a vaccine candidate against urinary tract infections. J. Biotechnol. 2014, 175, 31–37. [Google Scholar] [CrossRef]
- Valle, J.; Mabbett, A.N.; Ulett, G.C.; Toledo-Arana, A.; Wecker, K.; Totsika, M.; Schembri, M.A.; Ghigo, J.M.; Beloin, C. UpaG, a new member of the trimeric autotransporter family of adhesins in uropathogenic Escherichia coli. J. Bacteriol. 2008, 190, 4147–4161. [Google Scholar] [CrossRef]
- Durant, L.; Metais, A.; Soulama-Mouze, C.; Genevard, J.M.; Nassif, X.; Escaich, S. Identification of candidates for a subunit vaccine against extraintestinal pathogenic Escherichia coli. Infect. Immun. 2007, 75, 1916–1925. [Google Scholar] [CrossRef]
- Garcia, E.C.; Brumbaugh, A.R.; Mobley, H.L. Redundancy and specificity of Escherichia coli iron acquisition systems during urinary tract infection. Infect. Immun. 2011, 79, 1225–1235. [Google Scholar] [CrossRef] [PubMed]
- O’Hanley, P.; Lalonde, G.; Ji, G. Alpha-hemolysin contributes to the pathogenicity of piliated digalactoside-binding Escherichia coli in the kidney: Efficacy of an alpha-hemolysin vaccine in preventing renal injury in the BALB/c mouse model of pyelonephritis. Infect. Immun. 1991, 59, 1153–1161. [Google Scholar] [CrossRef] [PubMed]
- Moriel, D.G.; Bertoldi, I.; Spagnuolo, A.; Marchi, S.; Rosini, R.; Nesta, B.; Pastorello, I.; Corea, V.A.M.; Torricelli, G.; Cartocci, E. Identification of protective and broadly conserved vaccine antigens from the genome of extraintestinal pathogenic Escherichia coli. Proc. Natl. Acad. Sci. USA 2010, 107, 9072–9077. [Google Scholar] [CrossRef]
- Rippere-Lampe, K.E.; Lang, M.; Ceri, H.; Olson, M.; Lockman, H.A.; O’Brien, A.D. Cytotoxic necrotizing factor type 1-positive Escherichia coli causes increased inflammation and tissue damage to the prostate in a rat prostatitis model. Infect. Immun. 2001, 69, 6515–6519. [Google Scholar] [CrossRef]
- Smith, Y.C.; Rasmussen, S.B.; Grande, K.K.; Conran, R.M.; O’Brien, A.D. Hemolysin of uropathogenic Escherichia coli evokes extensive shedding of the uroepithelium and hemorrhage in bladder tissue within the first 24 hours after intraurethral inoculation of mice. Infect. Immun. 2008, 76, 2978–2990. [Google Scholar] [CrossRef]
- Smith, M.A.; Weingarten, R.A.; Russo, L.M.; Ventura, C.L.; O’Brien, A.D. Antibodies against hemolysin and cytotoxic necrotizing factor type 1 (CNF1) reduce bladder inflammation in a mouse model of urinary tract infection with toxigenic uropathogenic Escherichia coli. Infect. Immun. 2015, 83, 1661–1673. [Google Scholar] [CrossRef]
- Aziminia, N.; Hadjipavlou, M.; Philippou, Y.; Pandian, S.S.; Malde, S.; Hammadeh, M.Y. Vaccines for the prevention of recurrent urinary tract infections: A systematic review. BJU Int. 2019, 123, 753–768. [Google Scholar] [CrossRef]
- Nickel, J.C.; Kelly, K.L.; Griffin, A.; Elterman, D.; Clark-Pereira, J.; Doiron, R.C. MV140 sublingual vaccine reduces recurrent urinary tract infection in women Results from the first North American clinical experience study. Can. Urol. Assoc. J. 2024, 18, 25–31. [Google Scholar] [CrossRef]
- Palladino, B.; O’Shea-Farren, D.; Boan, P.; Ho, S.; Irish, A.; Pereira, L.; Robinson, J.O.; Swaminathan, R. Safety and Efficacy of MV140 Sublingual Vaccine (Uromune) in Preventing Recurrent Urine Infections Post Renal Transplant: A Case Series. Transpl. Infect. Dis. Off. J. Transplant. Soc. 2025, e70114. [Google Scholar] [CrossRef]
- Billips, B.K.; Yaggie, R.E.; Cashy, J.P.; Schaeffer, A.J.; Klumpp, D.J. A live-attenuated vaccine for the treatment of urinary tract infection by uropathogenic Escherichia coli. J. Infect. Dis. 2009, 200, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Sevilla, C.; Gómez-Lanza, E.; Llopis-Manzanera, J.; Cetina-Herrando, A.; Puyol-Pallàs, J.M. Effectiveness and health cost analysis between immunoprophylaxis with MV140 autovaccine, MV140 vaccine and continuous treatment with antibiotics to prevent recurrent urinary tract infections. Actas Urol. Esp. 2023, 47, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Kay, E.; Cuccui, J.; Wren, B.W. Recent advances in the production of recombinant glycoconjugate vaccines. npj Vaccines 2019, 4, 16. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, R.H.S.; Dias, R.C.B.; Orsi, H.; de Lira, D.R.P.; Vieira, M.A.; Dos Santos, L.F.; Ferreira, A.M.; Rall, V.L.M.; Mondelli, A.L.; Gomes, T.A.T.; et al. Characterization of Uropathogenic Escherichia coli Reveals Hybrid Isolates of Uropathogenic and Diarrheagenic (UPEC/DEC) E. coli. Microorganisms 2022, 10, 645. [Google Scholar] [CrossRef]
- Liu, B.; Furevi, A.; Perepelov, A.V.; Guo, X.; Cao, H.; Wang, Q.; Reeves, P.R.; Knirel, Y.A.; Wang, L.; Widmalm, G. Structure and genetics of Escherichia coli O antigens. FEMS Microbiol. Rev. 2020, 44, 655–683. [Google Scholar] [CrossRef]
- Lacerda Mariano, L.; Ingersoll, M.A. The immune response to infection in the bladder. Nat. Rev. Urol. 2020, 17, 439–458. [Google Scholar] [CrossRef]
- Sun, X.; Stefanetti, G.; Berti, F.; Kasper, D.L. Polysaccharide structure dictates mechanism of adaptive immune response to glycoconjugate vaccines. Proc. Natl. Acad. Sci. USA 2019, 116, 193–198. [Google Scholar] [CrossRef]
- Avci, F.Y.; Li, X.; Tsuji, M.; Kasper, D.L. A mechanism for glycoconjugate vaccine activation of the adaptive immune system and its implications for vaccine design. Nat. Med. 2011, 17, 1602–1609. [Google Scholar] [CrossRef]
- Li, J.; Ma, X.; Lin, A.; Pan, H.; Hao, B.; Shao, J.; Li, Y.; Xu, Y.; Shao, Z.; Xu, A. Development and application of polysaccharide conjugate vaccine carrier protein. Zhonghua Yu Fang Yi Xue Za Zhi Chin. J. Prev. Med. 2025, 59, 1–10. [Google Scholar]
- Arconada Nuin, E.; Vilken, T.; Xavier, B.B.; Doua, J.; Morrow, B.; Geurtsen, J.; Go, O.; Spiessens, B.; Sarnecki, M.; Poolman, J.; et al. A microbiological and genomic perspective of globally collected Escherichia coli from adults hospitalized with invasive E. coli disease. J. Antimicrob. Chemother. 2024, 79, 2142–2151. [Google Scholar] [CrossRef] [PubMed]
- Lipworth, S.; Vihta, K.D.; Chau, K.K.; Kavanagh, J.; Davies, T.; George, S.; Barker, L.; Vaughan, A.; Andersson, M.; Jeffery, K.; et al. Ten Years of Population-Level Genomic Escherichia coli and Klebsiella pneumoniae Serotype Surveillance Informs Vaccine Development for Invasive Infections. Clin. Infect. Dis. 2021, 73, 2276–2282. [Google Scholar] [CrossRef] [PubMed]
- Foroogh, N.; Rezvan, M.; Ahmad, K.; Mahmood, S. Structural and functional characterization of the FimH adhesin of uropathogenic Escherichia coli and its novel applications. Microb. Pathog. 2021, 161, 105288. [Google Scholar] [CrossRef] [PubMed]
- Karam, M.R.A.; Habibi, M.; Bouzari, S. Urinary tract infection: Pathogenicity, antibiotic resistance and development of effective vaccines against Uropathogenic Escherichia coli. Mol. Immunol. 2019, 108, 56–67. [Google Scholar] [CrossRef]
- Alteri, C.J.; Mobley, H.L. Quantitative profile of the uropathogenic Escherichia coli outer membrane proteome during growth in human urine. Infect. Immun. 2007, 75, 2679–2688. [Google Scholar] [CrossRef]
- Alteri, C.J.; Hagan, E.C.; Sivick, K.E.; Smith, S.N.; Mobley, H.L. Mucosal immunization with iron receptor antigens protects against urinary tract infection. PLoS Pathog. 2009, 5, e1000586. [Google Scholar] [CrossRef]
- Habibi, M.; Karam, M.R.A.; Bouzari, S. Evaluation of prevalence, immunogenicity and efficacy of FyuA iron receptor in uropathogenic Escherichia coli isolates as a vaccine target against urinary tract infection. Microb. Pathog. 2017, 110, 477–483. [Google Scholar] [CrossRef]
- Mike, L.A.; Smith, S.N.; Sumner, C.A.; Eaton, K.A.; Mobley, H.L. Siderophore vaccine conjugates protect against uropathogenic Escherichia coli urinary tract infection. Proc. Natl. Acad. Sci. USA 2016, 113, 13468–13473. [Google Scholar] [CrossRef]
- Verez-Bencomo, V.; Fernández-Santana, V.; Hardy, E.; Toledo, M.E.; Rodríguez, M.C.; Heynngnezz, L.; Rodriguez, A.; Baly, A.; Herrera, L.; Izquierdo, M.; et al. A synthetic conjugate polysaccharide vaccine against Haemophilus influenzae type b. Science 2004, 305, 522–525. [Google Scholar] [CrossRef]
- Gruber, W.C.; Scott, D.A.; Emini, E.A. Development and clinical evaluation of Prevnar 13, a 13-valent pneumocococcal CRM197 conjugate vaccine. Ann. N. Y. Acad. Sci. 2012, 1263, 15–26. [Google Scholar] [CrossRef]
- Croxtall, J.D.; Keating, G.M. Pneumococcal Polysaccharide Protein D-Conjugate Vaccine (Synflorix™; PHiD-CV). Pediatr. Drugs 2009, 11, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Romano, M.R.; Berti, F.; Rappuoli, R. Classical-and bioconjugate vaccines: Comparison of the structural properties and immunological response. Curr. Opin. Immunol. 2022, 78, 102235. [Google Scholar] [CrossRef]
- Frasch, C.E. Preparation of bacterial polysaccharide-protein conjugates: Analytical and manufacturing challenges. Vaccine 2009, 27, 6468–6470. [Google Scholar] [CrossRef]
- Terra, V.S.; Mills, D.C.; Yates, L.E.; Abouelhadid, S.; Cuccui, J.; Wren, B.W. Recent developments in bacterial protein glycan coupling technology and glycoconjugate vaccine design. J. Med. Microbiol. 2012, 61, 919–926. [Google Scholar] [CrossRef]
- Wacker, M.; Feldman, M.F.; Callewaert, N.; Kowarik, M.; Clarke, B.R.; Pohl, N.L.; Hernandez, M.; Vines, E.D.; Valvano, M.A.; Whitfield, C.; et al. Substrate specificity of bacterial oligosaccharyltransferase suggests a common transfer mechanism for the bacterial and eukaryotic systems. Proc. Natl. Acad. Sci. USA 2006, 103, 7088–7093. [Google Scholar] [CrossRef]
- Iwashkiw, J.A.; Vozza, N.F.; Kinsella, R.L.; Feldman, M.F. Pour some sugar on it: The expanding world of bacterial protein O-linked glycosylation. Mol. Microbiol. 2013, 89, 14–28. [Google Scholar] [CrossRef]
- Kowarik, M.; Numao, S.; Feldman, M.F.; Schulz, B.L.; Callewaert, N.; Kiermaier, E.; Catrein, I.; Aebi, M. N-linked glycosylation of folded proteins by the bacterial oligosaccharyltransferase. Science 2006, 314, 1148–1150. [Google Scholar] [CrossRef]
- Kowarik, M.; Young, N.M.; Numao, S.; Schulz, B.L.; Hug, I.; Callewaert, N.; Mills, D.C.; Watson, D.C.; Hernandez, M.; Kelly, J.F.; et al. Definition of the bacterial N-glycosylation site consensus sequence. EMBO J. 2006, 25, 1957–1966. [Google Scholar] [CrossRef] [PubMed]
- Faridmoayer, A.; Fentabil, M.A.; Mills, D.C.; Klassen, J.S.; Feldman, M.F. Functional Characterization of Bacterial Oligosaccharyltransferases Involved in O-Linked Protein Glycosylation. J. Bacteriol. 2007, 189, 8088–8098. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Sun, P.; Liu, B.; Liang, H.; Peng, Z.; Dong, Y.; Wang, D.; Liu, X.; Wang, B.; Zeng, M.; et al. Biosynthesis of Conjugate Vaccines Using an O-Linked Glycosylation System. mBio 2016, 7, e00443-00416. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Ma, G.; Xie, L.; Liu, D.; Wang, Y.; Zhao, X.; Su, Y.; Perepelov, A.V.; Ding, P.; et al. Sustainable production of a polysaccharide-based glycoprotein by simultaneous conversion of glucose and glycerol in engineered Escherichia coli. Green Chem. 2023, 25, 4818–4832. [Google Scholar] [CrossRef]
- Rappuoli, R.; De Gregorio, E.; Costantino, P. On the mechanisms of conjugate vaccines. Proc. Natl. Acad. Sci. USA 2019, 116, 14–16. [Google Scholar] [CrossRef] [PubMed]
- Feldman, M.F.; Wacker, M.; Hernandez, M.; Hitchen, P.G.; Marolda, C.L.; Kowarik, M.; Morris, H.R.; Dell, A.; Valvano, M.A.; Aebi, M. Engineering N-linked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coli. Proc. Natl. Acad. Sci. USA 2005, 102, 3016–3021. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Wu, J.; Wang, K.; Li, X.; Sun, P.; Zhang, L.; Huang, J.; Liu, Y.; Hua, X.; Yu, Y.; et al. Production of a Promising Biosynthetic Self-Assembled Nanoconjugate Vaccine against Klebsiella Pneumoniae Serotype O2 in a General Escherichia Coli Host. Adv. Sci. 2021, 8, 2100549. [Google Scholar] [CrossRef]
- Feldman, M.F.; Mayer Bridwell, A.E.; Scott, N.E.; Vinogradov, E.; McKee, S.R.; Chavez, S.M.; Twentyman, J.; Stallings, C.L.; Rosen, D.A.; Harding, C.M. A promising bioconjugate vaccine against hypervirulent Klebsiella pneumoniae. Proc. Natl. Acad. Sci. USA 2019, 116, 18655–18663. [Google Scholar] [CrossRef]
- Hao, L.; Huang, W.; Guo, Y.; Liu, X.; Wu, J.; Zhu, L.; Pan, C.; Wang, H. A Bioconjugate Vaccine Against Extra-Intestinal Pathogenic Escherichia coli (ExPEC). Vaccines 2025, 13, 362. [Google Scholar] [CrossRef]
- Pan, C.; Wu, J.; Qing, S.; Zhang, X.; Zhang, L.; Yue, H.; Zeng, M.; Wang, B.; Yuan, Z.; Qiu, Y.; et al. Biosynthesis of Self-Assembled Proteinaceous Nanoparticles for Vaccination. Adv. Mater. 2020, 32, e2002940. [Google Scholar] [CrossRef]
- Jiang, X.; Bai, J.; Zhang, H.; Yuan, J.; Lu, G.; Wang, Y.; Jiang, L.; Liu, B.; Huang, D.; Feng, L. Development of an O-polysaccharide based recombinant glycoconjugate vaccine in engineered E. coli against ExPEC O1. Carbohydr. Polym. 2022, 277, 118796. [Google Scholar] [CrossRef]
- Jiang, X.; Bai, J.; Yuan, J.; Zhang, H.; Lu, G.; Wang, Y.; Jiang, L.; Liu, B.; Wang, L.; Huang, D.; et al. High efficiency biosynthesis of O-polysaccharide-based vaccines against extraintestinal pathogenic Escherichia coli. Carbohydr. Polym. 2021, 255, 117475. [Google Scholar] [CrossRef]
- Wang, Y.; Perepelov, A.V.; Senchenkova, S.N.; Lu, G.; Wang, X.; Ma, G.; Yang, Q.; Yuan, J.; Wang, Y.; Xie, L.; et al. Glycoengineering directs de novo biomanufacturing of UPEC O21 O-antigen polysaccharide based glycoprotein. Int. J. Biol. Macromol. 2023, 253, 126993. [Google Scholar] [CrossRef]
- Watt, J.P.; Levine, O.S.; Santosham, M. Global reduction of Hib disease: What are the next steps? Proceedings of the meeting: Scottsdale, Arizona, September 22–25, 2002. J. Pediatr. 2003, 143, 163–187. [Google Scholar] [CrossRef] [PubMed]
- Jefferies, J.M.; Macdonald, E.; Faust, S.N.; Clarke, S.C. 13-valent pneumococcal conjugate vaccine (PCV13). Hum. Vaccines 2011, 7, 1012–1018. [Google Scholar] [CrossRef] [PubMed]
- Dagan, R. Serotype replacement in perspective. Vaccine 2009, 27, C22–C24. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.E.; Shutt, K.A.; Moore, M.R.; Beall, B.W.; Bennett, N.M.; Craig, A.S.; Farley, M.M.; Jorgensen, J.H.; Lexau, C.A.; Petit, S. Effect of pneumococcal conjugate vaccine on pneumococcal meningitis. N. Engl. J. Med. 2009, 360, 244–256. [Google Scholar] [CrossRef]
- Sze, C.; Attia, S.; Zimmern, P. Effective risk reduction strategies and pharmacological treatment for uncomplicated recurrent urinary tract infections. Expert Opin. Pharmacother. 2025, 360, 244–256. [Google Scholar] [CrossRef]
- Schiøtz, H.A.; Guttu, K. Value of urinary prophylaxis with methenamine in gynecologic surgery. Acta Obstet. Gynecol. Scand. 2002, 81, 743–746. [Google Scholar] [CrossRef]
- Carmain, M.; Sappenfield, E.C.; Tunitsky-Bitton, E. Probiotics: Utility, benefits, and risks for gynecologic conditions. Curr. Opin. Obstet. Gynecol. 2025, 37, 426–431. [Google Scholar] [CrossRef]
- Chaudhary, N.; Kaur, H.; Modgil, V.; Singh, D.; Maurya, R.K.; Mohan, B.; Taneja, N. In vitro and In vivo evaluation of phage-antibiotic synergy for the treatment of urinary tract infections. Microb. Pathog. 2025, 37, 108005. [Google Scholar] [CrossRef]
- Siddiqui, N.Y.; Bradley, M.S. Updates in clinical management of recurrent urinary tract infections. Obstet. Gynecol. 2022, 146, 631–644. [Google Scholar] [CrossRef]
- Foxman, B.; Cronenwett, A.E.; Spino, C.; Berger, M.B.; Morgan, D.M. Cranberry juice capsules and urinary tract infection after surgery: Results of a randomized trial. Am. J. Obstet. Gynecol. 2015, 213, 194.e1–194.e8. [Google Scholar] [CrossRef]
- Kostiala, A.A.; Nyrén, P.; Runeberg, L. Effect of nitrofurantoin and methenamine hippurate prophylaxis on bacteria and yeasts in the urine of patients with an indwelling catheter. J. Hosp. Infect. 1982, 3, 357–364. [Google Scholar] [CrossRef]
- Norrman, K.; Wibell, L. Treatment with methenamine hippurate† in the patient with a catheter. J. Int. Med. Res. 1976, 4, 115–117. [Google Scholar] [CrossRef]
- Murali Krishna, M.; Joseph, M.; Pereira, V.; Nizami, A.; Ezenna, C.; Sadasivan Sreemathy, L. D-Mannose for prevention of recurrent urinary tract infection in adult women: An updated systematic review and meta-analysis of randomized controlled trials. J. Infect. Prev. 2024, 3, 17571774251394869. [Google Scholar] [CrossRef] [PubMed]
- Bossa, L.; Kline, K.; McDougald, D.; Lee, B.B.; Rice, S.A. Urinary catheter-associated microbiota change in accordance with treatment and infection status. PLoS ONE 2017, 12, e0177633. [Google Scholar] [CrossRef] [PubMed]
- Saz-Leal, P.; Ligon, M.M.; Diez-Rivero, C.M.; García-Ayuso, D.; Mohanty, S.; Viñuela, M.; Real-Arévalo, I.; Conejero, L.; Brauner, A.; Subiza, J.L. MV140 mucosal vaccine induces targeted immune response for enhanced clearance of uropathogenic E. coli in experimental urinary tract infection. Vaccines 2024, 12, 535. [Google Scholar] [CrossRef] [PubMed]
- Pichichero, M.E. Protein carriers of conjugate vaccines: Characteristics, development, and clinical trials. Hum. Vaccines Immunother. 2013, 9, 2505–2523. [Google Scholar] [CrossRef]
- Peeters, C.C.; Tenbergen-Meekes, A.M.; Poolman, J.T.; Beurret, M.; Zegers, B.J.; Rijkers, G.T. Effect of carrier priming on immunogenicity of saccharide-protein conjugate vaccines. Infect. Immun. 1991, 59, 3504–3510. [Google Scholar] [CrossRef]
- Dagan, R.; Eskola, J.; Leclerc, C.; Leroy, O. Reduced response to multiple vaccines sharing common protein epitopes that are administered simultaneously to infants. Infect. Immun. 1998, 66, 2093–2098. [Google Scholar] [CrossRef]
- Cuccui, J.; Thomas, R.M.; Moule, M.G.; D’Elia, R.V.; Laws, T.R.; Mills, D.C.; Williamson, D.; Atkins, T.P.; Prior, J.L.; Wren, B.W. Exploitation of bacterial N-linked glycosylation to develop a novel recombinant glycoconjugate vaccine against Francisella tularensis. Open Biol. 2013, 3, 130002. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, H.; Shang, W.; Zhu, F.; Han, W.; Zhao, X.; Han, D.; Wang, P.G.; Chen, M. Glycoconjugate vaccine containing Escherichia coli O157:H7 O-antigen linked with maltose-binding protein elicits humoral and cellular responses. PLoS ONE 2014, 9, e105215. [Google Scholar] [CrossRef]
- Smith, D.M.; Simon, J.K.; Baker, J.R., Jr. Applications of nanotechnology for immunology. Nat. Rev. Immunol. 2013, 13, 592–605. [Google Scholar] [CrossRef]



| Vaccine Type | Name | Development Stage | Constituents | Routes of Administration | Protection Effects | Side Effects |
|---|---|---|---|---|---|---|
| Inactivated vaccines | Solco-Urovac® [57,58,59] | Marketed | 10 strains of killed uropathogens | Vaginal inoculation | Reduced recurrent UTIs in women | Headache, gastrointestinal disturbances, and vaginitis |
| StroVac® [60,61,62,63] | Marketed | 10 strains in different configuration. | Subcutaneous | Significantly reduce the number of clinically relevant UTIs | Redness and systemic reactions (such as fatigue, etc.) | |
| Uro-Vaxom (OM89®) [64,65,66,67] | Marketed | Membrane proteins from 18 strains of UPEC | Oral capsule | Effectively prevents recurrent UTIs in women | Requires continuous use for three months | |
| Urvakol & Urostim [68,69] | Preclinical /Clinical | Inactivated uropathogens | Oral tablet | high stimulation of systemic and mucosal immune responses | Protective efficacy not proven | |
| Attenuated vaccines | CP923 [70,71] | Experimental/Preclinical | Mutations in capsule and O antigen from LPS in UPEC | Intranasal inoculation | Produced significant humoral immune responses in serum | Lack of protection in sepsis model |
| NU14 ΔwaaL [72] | Experimental/Preclinical | Deletion in gene encoding O antigen ligase | Inoculation into the bladder of mice | Protected the bladder | Lack of kidney protection |
| Name | Development Stage | Constituents | Routes of Administration | Protection Effects | Side Effects |
|---|---|---|---|---|---|
| ExPEC4V (NCT03500679) [73,74,75,76,77] | Preclinical | O-antigen polysaccharides of ExPEC serotypes O1A, O2, O6A, and O25B | Subcutaneous | Demonstrated a favorable safety profile in clinical trials, with no serious or adverse events associated with the vaccine | Failed to reach statistical significance in human clinical trials |
| ExPEC9V (NCT04899336) [78,79] | clinical trial stage | O-antigen polysaccharides of ExPEC serotypes O1, O2, O4, O6, O15, O16, O18, O25 and O75 | Subcutaneous | Prevention of Invasive ExPEC Disease in Adults Aged 60 Years and Older with a History of UTI in the Past 2 Years | Trial ongoing (recruiting), expected to end in 2029 |
| ExPEC10V (NCT03819049) [80] | Phase 1/2a Clinical Trial | O-antigen polysaccharides of ExPEC serotypes O1A, O2, O4, O6A, O8, O15, O16, O18A, O25B, and O75 | Subcutaneous | Elicited a robust immunogenic IgG antibody response across all tested vaccine serotypes, demonstrated functional opsonophagocytic killing of E. coli strains for 9 of the 10 vaccine serotypes | Solicited systemic adverse events (AEs) such as myalgia, headache, fever, etc., were reported; unsolicited AEs and serious AEs (SAEs) were also observed |
| Vaccine Type | Name | Development Stage | Constituents | Routes | Protection Effects | Side Effects |
|---|---|---|---|---|---|---|
| Fimbrial adhesin vaccines | FimH-based Vaccine [112] | Phase II clinical trial | Truncated FimH, FimC-FimH Complex | Subcutaneous | Reduced colonization of UPEC strains in bladder; Induced IgG response | Ineffectiveness; Variations in FimH expression; Antibodies do not target mannose-binding region |
| Fusion FimH.FliC with CT Adjuvant [113] | Preclinical | Fusion of FimH adhesin with flagellin (FliC), with CT adjuvant | Intranasal | Induced humoral and mixed Th1/Th2 responses; Significant protection against experimental infection | Not specified | |
| DNA Vaccine [114,115] | Preclinical | Prokaryotic plasmid vector encoding FimH antigen | Subcutaneous | Increased cell proliferation and production of IFN-γ cytokine; Reduced bacterial load in a bladder challenge model | Not specified | |
| Polyvalent Vaccine (FimH and MrpH) [116,117] | Preclinical | Fusion of FimH and MrpH adhesins of UPEC and Proteus mirabilis | Subcutaneous | Induced humoral and cellular responses; Reduced bacterial load in the bladder and kidneys | Not specified | |
| S Pili-based Vaccine [118] | Preclinical | S pili antigen | Subcutaneous | Protect mice against lethal sepsis in a mice model | Not specified | |
| PapG Pili-based Subunit Vaccine [119,120,121] | Preclinical | PapG pili antigen | Subcutaneous | Inhibited UPEC in the kidney of mice and monkey models | Lack of protection in the bladder | |
| Non-fimbrial adhesin vaccines | TLR Ligand-Adjuvanted Vaccines [122] | Preclinical | Fusion of FimH adhesin with FliC of UPEC | Subcutaneous, Intranasal | Induced humoral and cellular responses; Maintained IgG response for 8 months | Not specified |
| TosA-based Vaccine [88] | Preclinical | Mutation in the gene encoding TosA in UPEC strain | Subcutaneous | Caused a defect in the ability of UPEC colonization | Not specified | |
| UpaG Auto-transporter-based Vaccine [123] | Preclinical | UpaG protein | Subcutaneous | Provided protection after active and passive immunization in a sepsis model | Not specified | |
| FdeC Adhesin-based Vaccine [124] | Preclinical | FdeC adhesin | Intranasal | Protected colonization of UPEC strain in the kidneys | Not specified | |
| Iron-scavenger-receptor-based vaccines | Various Iron Absorption Receptor-Based Vaccines [125] | Preclinical | Iron absorption receptors in conjunction with adjuvants or delivery systems | Subcutaneous, Intranasal | Reduced bacterial colonization in the bladder, kidneys, spleen. | Low immunogenicity of subunit recombinant vaccines; need for further clinical trials to assess safety and efficacy |
| Toxins-based vaccines | HlyA-based vaccine [126] | Preclinical | Purified hemolysin (HlyA) from UPEC supernatant | Subcutaneous | Resulted in a nonsignificant decrease in kidney damage in mice | Not specified |
| Recombinant HlyA vaccine (ecp_3827 candidate) [127] | Preclinical | Recombinant hemolysin (ecp_3827 candidate) amplified from UPEC strain 536 | Subcutaneous | Provided 76% protection in a sepsis mice model | Not specified | |
| Mutation-based vaccine (CNF1 and HlyA) [128,129,130] | Preclinical | Mutations in CNF1 and HlyA toxin genes in UPEC strain | Subcutaneous | Reduced cystitis in mice compared to control; CNF1mutation reduced prostatitis severity | Not specified | |
| Toxoid-based vaccine (HlyA and CNF1) [128,129] | Preclinical | Toxoids of HlyA and CNF1 | Subcutaneous | Significant antibody response and reduced bacterial load in urine and bladder; CNF1-vaccinated mice showed increased antibody titer | Inefficiency of CNF1 vaccination due to inadequate titer of neutralizing antibodies in the bladder |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Wang, Y.; Liu, H.; Yu, M.; Wang, S.; Liu, L.; Wang, H.; Zhang, D.; Tan, H. Current Scientific Advances in Vaccines Against UTIs: Challenges and Prospects. Microorganisms 2025, 13, 2714. https://doi.org/10.3390/microorganisms13122714
Wang B, Wang Y, Liu H, Yu M, Wang S, Liu L, Wang H, Zhang D, Tan H. Current Scientific Advances in Vaccines Against UTIs: Challenges and Prospects. Microorganisms. 2025; 13(12):2714. https://doi.org/10.3390/microorganisms13122714
Chicago/Turabian StyleWang, Baoying, Yuhui Wang, Haodi Liu, Mingyang Yu, Shuaishuai Wang, Lele Liu, Hailong Wang, Daizhou Zhang, and Haining Tan. 2025. "Current Scientific Advances in Vaccines Against UTIs: Challenges and Prospects" Microorganisms 13, no. 12: 2714. https://doi.org/10.3390/microorganisms13122714
APA StyleWang, B., Wang, Y., Liu, H., Yu, M., Wang, S., Liu, L., Wang, H., Zhang, D., & Tan, H. (2025). Current Scientific Advances in Vaccines Against UTIs: Challenges and Prospects. Microorganisms, 13(12), 2714. https://doi.org/10.3390/microorganisms13122714

