Thuja sutchuenensis Franch. Essential Oil Ameliorates Atopic Dermatitis Symptoms in Mice by Modulating Skin Microbiota Composition and Reducing Inflammation
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Analysis via Gas Chromatography Coupled with Mass Spectrometry
2.3. Animals
2.3.1. Atopic Dermatitis Model
2.3.2. Scratching Behavior Assessment
2.3.3. Blood Analysis
2.3.4. Skin Microbiota Composition
2.3.5. Skin Tissue Assessment
2.3.6. Immunohistochemistry
2.4. Cell Culture and Cell Viability Assay
2.5. Quantitative Real-Time Pcr Analysis
2.6. Western Blot Quantification
2.7. Network Pharmacology Analysis
2.8. Molecular Docking and Molecular Dynamics
2.9. Statistical Analysis
3. Results
3.1. Teo Reduces Ova-Induced AD-like Changes
3.2. Teo Regulates Serum Biochemical Parameters in AD Mice
3.3. Teo Suppresses the Cytokine Response in AD Mice
3.4. Teo Restores Skin Microbiota Homeostasis in AD Mice
3.5. Network Pharmacology Prediction of Teo for AD
3.6. Teo Attenuates Lps-Induced Inflammation in Raw 264.7 by Suppressing JAK1/STAT3 Signaling
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AD | Atopic dermatitis |
| ALT | Alanine aminotransferase |
| AST | Aspartate aminotransferase |
| ALB | Albumin |
| CCR-5 | C-C chemokine receptor type 5 |
| COX-2 | Cyclooxygenase 2 |
| DMEM | Dulbecco’s modified eagle medium |
| EGFR | Epidermal growth factor receptor |
| Flg | Filaggrin |
| HE | Hematoxylin–eosin |
| HDL-C | High density lipoprotein cholesterol |
| IL-13 | Interleukin-13 |
| IL-4 | Interleukin-4 |
| IL-10 | Interleukin-10 |
| IL-1β | Interleukin-1β |
| IgE | Immunoglobulin E |
| IgG | Immunoglobulin G |
| IFN-γ | Interferon-γ |
| JAK | Janus kinase |
| LDL-C | Low-density lipoprotein cholesterol |
| MAPK | Mitogen-activated protein kinase |
| MD | Molecular dynamics |
| NF-κB | Nuclear factor kappa-B |
| OVA | Ovalbumin |
| PTPRC | Receptor-type tyrosine-protein phosphatase C |
| PPI | Protein–protein interaction |
| RMSD | Root–mean–square deviation |
| RMSF | Root–mean–square fluctuation |
| SOCS1/3 | Suppressor of cytokine signaling 1/3 |
| STAT | Signal transducer and activator of transcription |
| TB | Toluidine blue |
| TCR | T-cell receptor |
| TEO | Thuja sutchuenensis Franch. Essential Oil |
| TNF-α | Tumor necrosis factor-α |
| TG | Triglyceride |
| KEGG | Kyoto encyclopedia of genes and genomes |
| GO | Gene ontology |
Appendix A
| NO | RT | Library | MF | Ref | CAS | Qual |
|---|---|---|---|---|---|---|
| 1 | 3.813 | p-Xylene | C8H10 | 5631 | 106-42-3 | 95 |
| 2 | 5.3589 | γ-Terpinene | C10H16 | 17,501 | 99-85-4 | 90 |
| 3 | 5.7149 | 3-Carene | C10H16 | 17,457 | 13466-78-9 | 91 |
| 4 | 6.7463 | β-pinene | C10H16 | 17,719 | 18172-67-3 | 97 |
| 5 | 7.3266 | β-Myrcene | C10H16 | 17,490 | 123-35-3 | 96 |
| 6 | 9.2372 | D-Limonene | C10H16 | 17,468 | 5989-27-5 | 99 |
| 7 | 9.805 | trans-β-Ocimene | C10H16 | 17,523 | 3779-61-1 | 93 |
| 8 | 10.4796 | β-Ocimene | C10H16 | 17,485 | 13877-91-3 | 95 |
| 9 | 12.9332 | 2-Nonanone | C9H18O | 22,228 | 821-55-6 | 91 |
| 10 | 13.4666 | Linalool | C10H18O | 29,730 | 78-70-6 | 97 |
| 11 | 14.3915 | (E)-para-2-menthen-1-ol | C10H18O | 30,100 | 29803-81-4 | 93 |
| 12 | 14.7275 | 1,4-Hexadiene, 5-methyl-3-(1-methylethylidene) | C10H16 | 17,671 | 113687-24-4 | 95 |
| 13 | 15.2602 | (+)-2-Bornanone | C10H16O | 28,038 | 464-49-3 | 97 |
| 14 | 15.8664 | n-Amylbenzene | C11H16 | 25,418 | 538-68-1 | 93 |
| 15 | 16.3263 | endo-Borneol | C10H18O | 29,771 | 507-70-0 | 97 |
| 16 | 16.4436 | α-phellandren-8-ol | C10H16O | 28,061 | 1686-20-0 | 86 |
| 17 | 16.7744 | Terpinen-4-ol | C10H18O | 29,794 | 562-74-3 | 96 |
| 18 | 17.3717 | (+)-α-terpineol | C10H18O | 30,147 | 7785-53-7 | 90 |
| 19 | 17.9409 | (-)-Verbenone | C10H14O | 26,717 | 1196-01-6 | 98 |
| 20 | 18.3181 | Fenchyl acetate | C12H20O2 | 66,894 | 13851-11-1 | 99 |
| 21 | 18.7694 | Citronellol | C10H20O | 31,575 | 106-22-9 | 98 |
| 22 | 18.8572 | Bicyclo [3.1.1]hept-2-en-6-ol, 2,7,7-trimethyl-, acetate, [1S-(1.alpha.,5.alpha.,6.beta.)]- | C12H18O2 | 64,905 | 50764-55-1 | 87 |
| 23 | 19.6085 | Linalyl acetate | C12H20O2 | 66,887 | 115-95-7 | 91 |
| 24 | 19.6606 | Geraniol | C10H18O | 29,729 | 106-24-1 | 96 |
| 25 | 19.7834 | Methyl citronellate | C11H20O2 | 55,451 | 2270-60-2 | 95 |
| 26 | 20.1424 | Geranial | C10H16O | 28,159 | 141-27-5 | 91 |
| 27 | 20.3388 | (Z)-Undec-6-en-2-one | C11H20O | 41,321 | 107853-70-3 | 95 |
| 28 | 20.5797 | Bicyclo[2.2.1]heptan-2-ol, 1,7,7-trimethyl-, acetate, (1S-endo)- | C10H18O | 67,036 | 5655-61-8 | 99 |
| 29 | 20.8713 | 2-Undecanone | C11H22O | 43,210 | 112-12-9 | 96 |
| 30 | 21.0343 | trans-Pinocarvyl acetate | C12H18O2 | 64,731 | 1686-15-3 | 83 |
| 31 | 21.6221 | Phthalic anhydride | C8H4O3 | 25,847 | 85-44-9 | 95 |
| 32 | 21.808 | Decanoic acid, methyl ester | C11H22O2 | 57,296 | 110-42-9 | 86 |
| 33 | 22.3384 | 1H-Indene-4-carboxaldehyde, 2,3-dihydro- | C10H10O | 24,097 | 51932-70-8 | 91 |
| 34 | 22.5552 | 1,3-Cyclohexadiene, 1-methyl-4-(1-methylethyl)- | C10H16 | 17,678 | 99-86-5 | 94 |
| 35 | 22.6838 | 2,4,6-Cycloheptatrien-1-one | C7H6O | 5627 | 539-80-0 | 93 |
| 36 | 22.9905 | β-Bisabolene | C15H24 | 74,662 | 495-61-4 | 93 |
| 37 | 23.3117 | Copaene | C15H24 | 74,561 | 3856-25-5 | 98 |
| 38 | 23.4286 | α-Amorphene | C15H24 | 74,835 | 483-75-0 | 89 |
| 39 | 23.5437 | Geranyl acetate | C12H20O2 | 66,885 | 105-87-3 | 91 |
| 40 | 23.7192 | γ-Muurolene | C15H24 | 74,670 | 30021-74-0 | 99 |
| 41 | 23.8015 | β-Elemene | C15H24 | 74,940 | 515-13-9 | 91 |
| 42 | 23.9956 | Aromandendrene | C15H24 | 74,618 | 489-39-4 | 98 |
| 43 | 24.0693 | Di-epi-α-cedrene | C15H24 | 74,706 | 50894-66-1 | 93 |
| 44 | 24.1662 | Longifolene | C15H24 | 74,595 | 475-20-7 | 99 |
| 45 | 24.4161 | (1R,5R)-1-Isopropyl-8-methyl-4-methylenespiro[4.5]dec-7-ene | C15H24 | 74,791 | 55732-78-0 | 86 |
| 46 | 24.5724 | Caryophyllene | C15H24 | 74,603 | 87-44-5 | 99 |
| 47 | 24.7056 | 3,5,5,9-Tetramethyl-4a,5,6,7,8,9-hexahydro-2H-benzo[7]annulene | C15H24 | 74,804 | 1000412-94-8 | 87 |
| 48 | 24.8758 | cis-Thujopsene | C15H24 | 74,623 | 470-40-6 | 99 |
| 49 | 25.2532 | Paeonol | C9H10O3 | 40,302 | 552-41-0 | 95 |
| 50 | 25.3652 | α-himachalene | C15H24 | 74,937 | 3853-83-6 | 99 |
| 51 | 25.5049 | 1,4,7,-Cycloundecatriene, 1,5,9,9-tetramethyl-, Z,Z,Z- | C15H24 | 74,761 | 1000062-61-9 | 98 |
| 52 | 25.5731 | Dimethyl phthalate | C10H10O4 | 64,177 | 131-11-3 | 95 |
| 53 | 25.839 | (1R,4R,5S)-1,8-Dimethyl-4-(prop-1-en-2-yl)spiro[4.5]dec-7-ene | C15H24 | 74,799 | 729602-94-2 | 98 |
| 54 | 26.0591 | Amorphadiene | C15H24 | 74,926 | 92692-39-2 | 93 |
| 55 | 26.1456 | γ-Himachalene | C15H24 | 74,879 | 53111-25-4 | 92 |
| 56 | 26.258 | α-Curcumene | C15H22 | 72,773 | 644-30-4 | 99 |
| 57 | 26.3722 | β-Selinene | C15H24 | 74,958 | 17066-67-0 | 99 |
| 58 | 26.5667 | (-)-α-Cedrene | C15H24 | 75,004 | 469-61-4 | 93 |
| 59 | 26.721 | β-Himachalene | C15H24 | 74,857 | 1461-03-6 | 99 |
| 60 | 27.0426 | Butylated Hydroxytoluene | C15H24O | 91,358 | 128-37-0 | 98 |
| 61 | 27.1622 | Bicyclo[4.4.0]dec-1-ene, 2-isopropyl-5-methyl-9-methylene- | C15H24 | 74,782 | 150320-52-8 | 91 |
| 62 | 27.2951 | β-Sesquiphellandrene | C15H24 | 74,824 | 20307-83-9 | 98 |
| 63 | 27.4642 | (E)-1-Methyl-4-(6-methylhept-5-en-2-ylidene)cyclohex-1-ene | C15H24 | 74,778 | 53585-13-0 | 93 |
| 64 | 27.669 | α-Muurolene | C15H24 | 74,668 | 10208-80-7 | 90 |
| 65 | 27.7362 | (E)-α-bisabolene | C15H24 | 74,803 | 25532-79-0 | 93 |
| 66 | 27.8196 | α-Calacorene | C15H20 | 71,052 | 21391-99-1 | 98 |
| 67 | 28.2962 | Nerolidol | C15H26O | 93,705 | 142-50-7 | 90 |
| 68 | 28.4516 | Globulol | C15H26O | 93,714 | 489-41-8 | 80 |
| 69 | 28.7264 | Spathulenol | C15H24O | 91,515 | 6750-60-3 | 99 |
| 70 | 28.8091 | Caryophyllene oxide | C15H24O | 91,338 | 1139-30-6 | 94 |
| 71 | 29.0399 | Allocedrol | C15H26O | 93,827 | 50657-30-2 | 94 |
| 72 | 29.2214 | Longiborneol | C15H26O | 93,880 | 465-24-7 | 99 |
| 73 | 29.3142 | Cedrol | C15H26O | 93,690 | 77-53-2 | 96 |
| 74 | 29.4445 | Humulene epoxide ii | C15H24O | 91,455 | 19888-34-7 | 99 |
| 75 | 29.6753 | (+)-Ledene | C15H24 | 75,023 | 21747-46-6 | 89 |
| 76 | 29.8335 | α-Elemene | C15H24 | 74,896 | 5951-67-7 | 96 |
| 77 | 30.1273 | (-)-Spathulenol | C15H24O | 91,306 | 77171-55-2 | 95 |
| 78 | 30.2109 | T-Cadinol | C15H26O | 93,720 | 5937-11-1 | 96 |
| 79 | 30.4515 | 3-Butylisobenzofuran-1(3H)-one | C12H14O2 | 60,757 | 6066-49-5 | 95 |
| 80 | 30.8091 | β-Carotene | C15H26O | 93,766 | 1000374-17-9 | 87 |
| 81 | 30.9389 | Z-Butylidenephthalide | C12H12O2 | 59,093 | 72917-31-8 | 98 |
| 82 | 31.3559 | (±)-Dictyopterene A | C11H18 | 26,814 | 22822-99-7 | 90 |
| 83 | 32.0237 | Senkyunolide | C12H16O2 | 62,518 | 63038-10-8 | 94 |
| 84 | 32.1513 | Neocnidilide | C12H18O2 | 64,871 | 4567-33-3 | 94 |
| 85 | 32.4096 | (E)-Ligustilide | C12H14O2 | 60,851 | 81944-08-3 | 99 |
| 86 | 33.0906 | Cyclopentadecane | C15H30 | 81,273 | 295-48-7 | 95 |
| 87 | 35.074 | 1-Formyl-2,2-dimethyl-3-trans-(3-methyl-but-2-enyl)-6-methylidene-cyclohexane | C15H24O | 91,474 | 1000144-09-7 | 83 |
| 88 | 35.638 | Rimuene | C20H32 | 146,645 | 1686-67-5 | 99 |
| 89 | 36.0701 | Methyl palmitate | C17H34O2 | 144,202 | 112-39-0 | 98 |
| 90 | 36.2955 | (-)-15-Beyerene | C20H32 | 146,582 | 2359-73-1 | 98 |
| 91 | 36.6303 | m-Camphorene | C20H32 | 146,589 | 20016-73-3 | 99 |
| 92 | 36.7133 | (E)-1-(6,10-Dimethylundeca-5,9-dien-2-yl)-4-methylbenzene | C20H30 | 144,404 | 55968-43-9 | 92 |
| 93 | 36.9199 | n-Hexadecanoic acid | C16H32O2 | 129,145 | 00057-10-3 | 99 |
| 94 | 37.3025 | p-Camphorene | C20H32 | 146,590 | 20016-72-2 | 98 |
| 95 | 37.393 | Ethyl palmitate | C18H36O2 | 159,424 | 628-97-7 | 93 |
| 96 | 38.1329 | Senkyunolide H | C12H16O4 | 95,394 | 94596-27-7 | 99 |
| 97 | 38.7307 | 7-Isopropyl-1,1,4a-trimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene | C20H30 | 144,408 | 109680-01-5 | 99 |
| 98 | 39.3893 | trans-13-Octadecenoic acid, methyl ester | C19H36O2 | 172,356 | 1000333-61-3 | 97 |
| 99 | 39.8614 | Methyl stearate | C19H38O2 | 174,782 | 112-61-8 | 97 |
| 100 | 40.1071 | Linoleic acid | C18H32O2 | 154,669 | 60-33-3 | 99 |
| 101 | 40.3638 | 7-Pentadecyne | C15H28 | 79,246 | 22089-89-0 | 80 |
| 102 | 40.4889 | Linoleic acid ethyl ester | C20H36O2 | 185,429 | 544-35-4 | 99 |
| 103 | 40.62 | 13-Tetradecen-1-ol acetate | C16H32O3 | 126,822 | 56221-91-1 | 90 |
| 104 | 42.0539 | Monogynol | C20H32O | 163,791 | 20107-90-8 | 86 |
| 105 | 42.2961 | Monoolein | C21H40O4 | 234,104 | 111-03-5 | 83 |
| 106 | 42.4033 | 2-Heptadecenal | C17H32O | 124,867 | 1000143-48-6 | 90 |
| 107 | 42.8272 | Totarol | C20H30O | 161,805 | 511-15-9 | 91 |
| 108 | 43.5722 | Ferruginol | C20H30O | 161,789 | 514-62-5 | 97 |
| 109 | 43.8788 | 2,4-dimethylbenzo[h]quinoline | C15H13N | 78,098 | 605-67-4 | 87 |
| 110 | 47.3062 | 1,4-Bis(trimethylsilyl)benzene | C12H22Si2 | 93,144 | 13183-70-5 | 83 |
References
- Simpson, E.L.; Sinclair, R.; Forman, S.; Wollenberg, A.; Aschoff, R.; Cork, M.; Bieber, T.; Thyssen, J.P.; Yosipovitch, G.; Flohr, C.; et al. Efficacy and Safety of Abrocitinib in Adults and Adolescents with Moderate-to-Severe Atopic Dermatitis (JADE MONO-1): A Multicentre, Double-Blind, Randomised, Placebo-Controlled, Phase 3 Trial. Lancet 2020, 396, 255–266. [Google Scholar] [CrossRef]
- Schuler, C.F., IV; Billi, A.C.; Maverakis, E.; Tsoi, L.C.; Gudjonsson, J.E. Novel Insights into Atopic Dermatitis. J. Allergy Clin. Immunol. 2022, 151, 1145. [Google Scholar] [CrossRef]
- Sonja Ständer, M.D. Atopic Dermatitis. N. Engl. J. Med. 2021, 384, 1136–1143. [Google Scholar] [CrossRef]
- Hamilton, J.D.; Suárez-Fariñas, M.; Dhingra, N.; Cardinale, I.; Li, X.; Kostic, A.; Ming, J.E.; Radin, A.R.; Krueger, J.G.; Graham, N.; et al. Dupilumab Improves the Molecular Signature in Skin of Patients with Moderate-to-Severe Atopic Dermatitis. J. Allergy Clin. Immunol. 2014, 134, 1293–1300. [Google Scholar] [CrossRef]
- Simpson, E.L.; Bieber, T.; Guttman-Yassky, E.; Beck, L.A.; Blauvelt, A.; Cork, M.J.; Silverberg, J.I.; Deleuran, M.; Kataoka, Y.; Lacour, J.-P.; et al. Two Phase 3 Trials of Dupilumab versus Placebo in Atopic Dermatitis. N. Engl. J. Med. 2016, 375, 2335–2348. [Google Scholar] [CrossRef]
- Dhillon, S. Delgocitinib: First Approval. Drugs 2020, 80, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Salvati, L.; Cosmi, L.; Annunziato, F. From Emollients to Biologicals: Targeting Atopic Dermatitis. Int. J. Mol. Sci. 2021, 22, 10381. [Google Scholar] [CrossRef] [PubMed]
- Azhari, H.; Ng, S.-F.; Razali, R.M.; Loo, H.L. The Use of Essential Oils in Atopic Dermatitis: A Review. Curr. Med. Res. Opin. 2024, 40, 753–763. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xu, Y.; Yu, Y.; Li, W.; Chen, L.; Zhao, B.; Gao, Y.; Gao, J.; Lin, H. Transdermal Delivery of Natural Products against Atopic Dermatitis. Chin. J. Nat. Med. 2024, 22, 1076–1088. [Google Scholar] [CrossRef]
- Li, J.; Duan, J.; Wang, Y.; Zhou, P.; Wang, X.; Xia, N.; Wang, J.; Li, J.; Wang, W.; Wang, X.; et al. The JAK/STAT/NF-κB Signaling Pathway Can Be Regulated by Rosemary Essential Oil, Thereby Providing a Potential Treatment for DNCB-Induced in Mice. Biomed. Pharmacother. 2023, 168, 115727. [Google Scholar] [CrossRef]
- Caruntu, S.; Ciceu, A.; Olah, N.K.; Don, I.; Hermenean, A.; Cotoraci, C. Thuja occidentalis L. (Cupressaceae): Ethnobotany, Phytochemistry and Biological Activity. Molecules 2020, 25, 5416. [Google Scholar] [CrossRef] [PubMed]
- Silva, I.S.; Nicolau, L.A.D.; Sousa, F.B.M.; de Araújo, S.; Oliveira, A.P.; Araújo, T.S.L.; Souza, L.K.M.; Martins, C.S.; Aquino, P.E.A.; Carvalho, L.L.; et al. Evaluation of Anti-Inflammatory Potential of Aqueous Extract and Polysaccharide Fraction of Thuja occidentalis Linn. in Mice. Int. J. Biol. Macromol. 2017, 105, 1105–1116. [Google Scholar] [CrossRef] [PubMed]
- Almarzooqi, S.; Venkataraman, B.; Raj, V.; Alkuwaiti, S.A.A.; Das, K.M.; Collin, P.D.; Adrian, T.E.; Subramanya, S.B. β-Myrcene Mitigates Colon Inflammation by Inhibiting MAP Kinase and NF-κB Signaling Pathways. Molecules 2022, 27, 8744. [Google Scholar] [CrossRef] [PubMed]
- Ku, C.-M.; Lin, J.-Y. Anti-Inflammatory Effects of 27 Selected Terpenoid Compounds Tested through Modulating Th1/Th2 Cytokine Secretion Profiles Using Murine Primary Splenocytes. Food Chem. 2013, 141, 1104–1113. [Google Scholar] [CrossRef]
- Wang, L.; Xian, Y.-F.; Loo, S.K.F.; Ip, S.P.; Yang, W.; Chan, W.Y.; Lin, Z.-X.; Wu, J.C.Y. Baicalin Ameliorates 2,4-Dinitrochlorobenzene-Induced Atopic Dermatitis-like Skin Lesions in Mice through Modulating Skin Barrier Function, Gut Microbiota and JAK/STAT Pathway. Bioorg. Chem. 2022, 119, 105538. [Google Scholar] [CrossRef]
- Lei, H.; Wang, Y.; Su, C.; Liang, F.; Su, W.; Hui, M.; Shaw, P.; Luo, Y. Chemical Composition and Antifungal Activity of Essential Oils of Thuja Sutchuenensis, a Critically Endangered Species Endemic to China. Nat. Prod. Commun. 2010, 5, 1934578X1000501032. [Google Scholar] [CrossRef]
- Miya, G.; Nyalambisa, M.; Oyedeji, O.; Gondwe, M.; Oyedeji, A. Chemical Profiling, Toxicity and Anti-Inflammatory Activities of Essential Oils from Three Grapefruit Cultivars from KwaZulu-Natal in South Africa. Molecules 2021, 26, 3387. [Google Scholar] [CrossRef]
- Guan, J.; Chen, K.; Lu, F.; He, Y. Dissolving Microneedle Patch Loaded with Adipokines-Enriched Adipose Extract Relieves Atopic Dermatitis in Mouse via Modulating Immune Disorders, Microbiota Imbalance, and Skin Barrier Defects. J. Tissue Eng. 2025, 16, 20417314241312511. [Google Scholar] [CrossRef]
- Fu, L.; Shi, S.; Yi, J.; Wang, N.; He, Y.; Wu, Z.; Peng, J.; Deng, Y.; Wang, W.; Wu, C.; et al. ADMETlab 3.0: An Updated Comprehensive Online ADMET Prediction Platform Enhanced with Broader Coverage, Improved Performance, API Functionality and Decision Support. Nucleic Acids Res. 2024, 52, W422–W431. [Google Scholar] [CrossRef]
- Jia, R.; Zheng, H.; Li, S.; Chen, W.; Yang, Y.; Wu, H.; Chen, H.; Qin, S.; Huang, S. QingChang-XiaoPi Decoction Ameliorates Intestinal Inflammation of Ulcerative Colitis by Regulating the Pathogenicity of Th17 Cells. Phytomedicine 2024, 132, 155779. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Olson, A.J. Using AutoDock for Ligand-Receptor Docking. Curr. Protoc. Bioinform. 2008, 24, 8.14.1–8.14.40. [Google Scholar] [CrossRef]
- Luo, L.; Zhong, A.; Wang, Q.; Zheng, T. Structure-Based Pharmacophore Modeling, Virtual Screening, Molecular Docking, ADMET, and Molecular Dynamics (MD) Simulation of Potential Inhibitors of PD-L1 from the Library of Marine Natural Products. Mar. Drugs 2021, 20, 29. [Google Scholar] [CrossRef]
- Atopic Dermatitis Working Group; Immunology Group; Chinese Society of Dermatology; Yao, X.; Song, Z.Q.; Li, W.; Liang, Y.S.; Zhao, Y.; Cao, H.; Chen, T.; et al. Guideline for Diagnosis and Treatment of Atopic Dermatitis in China (2020). Chin. J. Dermatol. 2020, 53, 81–88. (In Chinese) [Google Scholar] [CrossRef]
- Nakatsuji, T.; Hata, T.R.; Tong, Y.; Cheng, J.Y.; Shafiq, F.; Butcher, A.M.; Salem, S.S.; Brinton, S.L.; Spergel, A.K.R.; Johnson, K.; et al. Development of a Human Skin Commensal Microbe for Bacteriotherapy of Atopic Dermatitis and Use in a Phase 1 Randomized Clinical Trial. Nat. Med. 2021, 27, 700–709. [Google Scholar] [CrossRef]
- Laux, C.; Peschel, A.; Krismer, B. Staphylococcus aureus Colonization of the Human Nose and Interaction with Other Microbiome Members. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef]
- Cordeiro, L.; Figueiredo, P.; Souza, H.; Sousa, A.; Andrade-Júnior, F.; Medeiros, D.; Nóbrega, J.; Silva, D.; Martins, E.; Barbosa-Filho, J.; et al. Terpinen-4-Ol as an Antibacterial and Antibiofilm Agent against Staphylococcus aureus. Int. J. Mol. Sci. 2020, 21, 4531. [Google Scholar] [CrossRef]
- O’Loughlin, C.T.; Miller, L.C.; Siryaporn, A.; Drescher, K.; Semmelhack, M.F.; Bassler, B.L. A Quorum-Sensing Inhibitor Blocks Pseudomonas Aeruginosa Virulence and Biofilm Formation. Proc. Natl. Acad. Sci. USA 2013, 110, 17981–17986. [Google Scholar] [CrossRef]
- Nicolaou, A.; Kendall, A.C. Bioactive Lipids in the Skin Barrier Mediate Its Functionality in Health and Disease. Pharmacol. Ther. 2024, 260, 108681. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.S.; Yeo, H.; Jung, E.; Ou, S.; Lee, Y.H.; Lim, Y.; Shin, S.Y. β-Caryophyllene Ameliorates 2,4-Dinitrochlorobenzene-Induced Atopic Dermatitis through the Downregulation of Mitogen-Activated Protein Kinase/EGR1/TSLP Signaling Axis. Int. J. Mol. Sci. 2022, 23, 14861. [Google Scholar] [CrossRef] [PubMed]
- Bagher, A.M. Topical β-Caryophyllene for Dermatologic Disorders: Mechanisms, Human Evidence, and Clinical Translation. Pharmaceuticals 2025, 18, 1605. [Google Scholar] [CrossRef]
- Nogueira, M.N.M.; Aquino, S.G.; Rossa Junior, C.; Spolidorio, D.M.P. Terpinen-4-Ol and Alpha-Terpineol (Tea Tree Oil Components) Inhibit the Production of IL-1β, IL-6 and IL-10 on Human Macrophages. Inflamm. Res. 2014, 63, 769–778. [Google Scholar] [CrossRef]
- Meng, Y.L.; Liu, Z.R.; Zhai, C.Y.; Di, T.T.; Zhang, L.; Zhang, L.; Xie, X.R.; Lin, Y.; Wang, N.; Zhao, J.X.; et al. Paeonol Inhibits the Development of 1-chloro-2,4-dinitrobenzene-induced Atopic Dermatitis via Mast and T Cells in BALB/c Mice. Mol. Med. Rep. 2019, 19, 3217–3229. [Google Scholar] [CrossRef]
- Abignano, G.; Green, L.; Eng, S.; Emery, P.; Del Galdo, F. Nailfold Microvascular Imaging by Dynamic Optical Coherence Tomography in Systemic Sclerosis: A Case-Controlled Pilot Study. J. Investig. Dermatol. 2022, 142, 1050–1057. [Google Scholar] [CrossRef]
- Brunner, P.M.; Pavel, A.B.; Khattri, S.; Leonard, A.; Malik, K.; Rose, S.; Jim On, S.; Vekaria, A.S.; Traidl-Hoffmann, C.; Singer, G.K.; et al. Baseline IL-22 Expression in Patients with Atopic Dermatitis Stratifies Tissue Responses to Fezakinumab. J. Allergy Clin. Immunol. 2019, 143, 142–154. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Zhao, W.; Zhang, Y.; Zou, Z.; Zhang, Q.; Chen, D.; Du, B.; Li, P. Dendrobium officinale Kimura et Migo Polysaccharide Ameliorated DNFB-Induced Atopic Dermatitis in Mice Associated with Suppressing MAPK/NF-κB/STAT3 Signaling Pathways. J. Ethnopharmacol. 2024, 335, 118677, Erratum in J Ethnopharmacol. 2025, 353 Pt A, 119827. https://doi.org/10.1016/j.jep.2025.119827. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-B.; Lee, W.S.; Shin, J.-S.; Jang, D.S.; Lee, K.T. Xanthotoxin Suppresses LPS-Induced Expression of iNOS, COX-2, TNF-α, and IL-6 via AP-1, NF-κB, and JAK-STAT Inactivation in RAW 264.7 Macrophages. Int. Immunopharmacol. 2017, 49, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Kubo, M.; Hanada, T.; Yoshimura, A. Suppressors of Cytokine Signaling and Immunity. Nat. Immunol. 2003, 4, 1169–1176. [Google Scholar] [CrossRef]
- O’Shea, J.J.; Schwartz, D.M.; Villarino, A.V.; Gadina, M.; McInnes, I.B.; Laurence, A. The JAK-STAT Pathway: Impact on Human Disease and Therapeutic Intervention. Annu. Rev. Med. 2015, 66, 311–328. [Google Scholar] [CrossRef]
- Aggarwal, B.B.; Kunnumakkara, A.B.; Harikumar, K.B.; Gupta, S.R.; Tharakan, S.T.; Koca, C.; Dey, S.; Sung, B. Signal Transducer and Activator of Transcription-3, Inflammation, and Cancer. Ann. N. Y. Acad. Sci. 2009, 1171, 59–76. [Google Scholar] [CrossRef]
- Murray, P.J. Understanding and Exploiting the Endogenous Interleukin-10/STAT3-Mediated Anti-Inflammatory Response. Curr. Opin. Pharmacol. 2006, 6, 379–386. [Google Scholar] [CrossRef]





| NO | Library | MF | Structural Class | CAS | Peak Area (%) | SMILES |
|---|---|---|---|---|---|---|
| 1 | γ-Terpinene | C10H16 | Monocyclic monoterpene | 99-85-4 | 33.3779 | CC1=CCC(=CC1)C(C)C |
| 2 | β-Myrcene | C10H16 | Acyclic monoterpene | 123-35-3 | 7.0674 | CC(=CCCC(=C)C=C)C |
| 3 | (E)-Ligustilide | C12H14O2 | Phthalide | 81944-08-3 | 5.7084 | CCC/C=C\1/C2=C(C=CCC2)C(=O)O1 |
| 4 | 3-Carene | C10H16 | Bicyclic monoterpene | 13466-78-9 | 3.1011 | CC1=CCC2C(C1)C2(C)C |
| 5 | Linalool | C10H18O | Oxygenated monoterpene | 78-70-6 | 3.0748 | CC(=CCCC(C)(C=C)O)C |
| 6 | Fenchyl acetate | C12H20O2 | Oxygenated monoterpene | 13851-11-1 | 2.9793 | CC(=O)OC1C(C2CCC1(C2)C)(C)C |
| 7 | Bicyclo [2.2.1]heptan-2-ol, 1,7,7-trimethyl-, acetate, (1S-endo) | C12H20O2 | Oxygenated monoterpene | 5655-61-8 | 2.4582 | CC(=O)O[C@@H]1C[C@@H]2CC[C@]1(C2(C)C)C |
| 8 | D-Limonene | C10H16 | Monocyclic monoterpene | 5989-27-5 | 2.4024 | CC1=CC[C@@H](CC1)C(=C)C |
| 9 | Caryophyllene | C15H24 | Bicyclic sesquiterpene | 87-44-5 | 2.0254 | C/C/1=C\CCC(=C)[C@H]2CC([C@@H]2CC1)(C)C |
| 10 | β-pinene | C10H16 | Bicyclic monoterpene | 18172-67-3 | 1.7858 | CC1(C2CCC(=C)C1C2)C |
| 11 | 1,4,7,-Cycloundecatriene, 1,5,9,9-tetramethyl-, Z,Z,Z- | C15H24 | Monocyclic sesquiterpene | 1000062-61-9 | 1.307 | CC1=CCC=C(C)CC=CC(C)(C)CC1 |
| 12 | Z-Butylidenephthalide | C12H12O2 | Phthalide | 72917-31-8 | 1.231 | CCC/C=C\1/C2=CC=CC=C2C(=O)O1 |
| 13 | Longiborneol | C15H26O | Oxygenated sesquiterpene | 465-24-7 | 0.9812 | CC1(CCCC2(C3C1[C@@H](C2(CC3)C)O)C)C |
| 14 | Paeonol | C9H10O3 | Phenolic | 552-41-0 | 0.9512 | CC(=O)C1=C(C=C(C=C1)OC)O |
| 15 | β-Bisabolene | C15H24 | Acyclic sesquiterpene | 495-61-4 | 0.903 | CC1=CC[C@H](CC1)C(=C)CCC=C(C)C |
| 16 | β-Sesquiphellandrene | C15H24 | Acyclic sesquiterpene | 20307-83-9 | 0.8934 | C[C@@H](CCC=C(C)C)[C@H]1CCC(=C)C=C1 |
| 17 | Senkyunolide A | C12H16O2 | Phthalide | 63038-10-8 | 0.8522 | CCCC[C@H]1C2=C(C=CCC2)C(=O)O1 |
| 18 | 3-Butylisobenzofuran-1(3H)-one | C12H14O2 | Phthalide | 6066-49-5 | 0.8441 | CCCCC1C2=CC=CC=C2C(=O)O1 |
| 19 | α-Curcumene | C15H22 | Acyclic sesquiterpene | 644-30-4 | 0.8387 | CC1=CC=C(C=C1)C(C)CCC=C(C)C |
| 20 | (-)-α-Cedrene | C15H24 | Bicyclic sesquiterpene | 469-61-4 | 0.7608 | C[C@@H]1CC[C@@H]2[C@]13CC=C([C@H](C3)C2(C)C)C |
| 21 | Longifolene | C15H24 | Bicyclic sesquiterpene | 475-20-7 | 0.7458 | C[C@]12CCCC([C@H]3[C@H]1CC[C@@H]3C2=C)(C)C |
| 22 | Caryophyllene oxide | C15H24O | Oxygenated sesquiterpene | 1139-30-6 | 0.6608 | C[C@@]12CC[C@@H]3[C@H](CC3(C)C)C(=C)CC[C@H]1O2 |
| 23 | (+)-α-terpineol | C10H18O | Oxygenated monoterpene | 7785-53-7 | 0.6039 | CC1=CC[C@@H](CC1)C(C)(C)O |
| 24 | γ-Himachalene | C15H24 | Bicyclic sesquiterpene | 53111-25-4 | 0.5088 | CC1=C[C@H]2[C@@H](CC1)C(=CCCC2(C)C)C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, N.; Zuo, Y.; Li, J.; Yao, R.; Yang, Q.; Deng, H. Thuja sutchuenensis Franch. Essential Oil Ameliorates Atopic Dermatitis Symptoms in Mice by Modulating Skin Microbiota Composition and Reducing Inflammation. Microorganisms 2025, 13, 2653. https://doi.org/10.3390/microorganisms13122653
Long N, Zuo Y, Li J, Yao R, Yang Q, Deng H. Thuja sutchuenensis Franch. Essential Oil Ameliorates Atopic Dermatitis Symptoms in Mice by Modulating Skin Microbiota Composition and Reducing Inflammation. Microorganisms. 2025; 13(12):2653. https://doi.org/10.3390/microorganisms13122653
Chicago/Turabian StyleLong, Nana, Youwei Zuo, Jian Li, Renxiu Yao, Quan Yang, and Hongping Deng. 2025. "Thuja sutchuenensis Franch. Essential Oil Ameliorates Atopic Dermatitis Symptoms in Mice by Modulating Skin Microbiota Composition and Reducing Inflammation" Microorganisms 13, no. 12: 2653. https://doi.org/10.3390/microorganisms13122653
APA StyleLong, N., Zuo, Y., Li, J., Yao, R., Yang, Q., & Deng, H. (2025). Thuja sutchuenensis Franch. Essential Oil Ameliorates Atopic Dermatitis Symptoms in Mice by Modulating Skin Microbiota Composition and Reducing Inflammation. Microorganisms, 13(12), 2653. https://doi.org/10.3390/microorganisms13122653

