Probiotic Viability Reconsidered: Integrating VBNC Resuscitation and Culture-Independent Methods for Accurate Probiotic Enumeration
Abstract
1. Introduction
2. VBNC Resuscitation in LAB Strains: Case Studies in the Food and Beverage Industry
2.1. Levilactobacillus brevis, Lactobacillus plantarum, Fructilactobacillus (Lactobacillus) lindneri, and Lactobacillus acetotolerans (Oxidative Stress in Beer and Catalase Resuscitation)
2.2. Lacticaseibacillus paracasei (Dairy Culture and Nutrient Uptake)
2.3. Bifidobacterium spp. (Acid Stress in Fermented Dairy)
2.4. Lacticaseibacillus rhamnosus GG (High-Pressure Processing Injury)
2.5. Evidence for VBNC in Encapsulated Probiotics
| LAB Strain | Stress Condition | VBNC Evidence | Resuscitation Method | Key Observation | References |
|---|---|---|---|---|---|
| Levilactobacillus brevis | Cold storage and hop acids (beer) | No CFU on routine agar; viability and spoilage traits retained | Catalase supplemented MRS agar (1000 U/mL) | CFU recovered only on repair medium; spoilage function preserved | [23] |
| Lactiplantibacillus plantarum | Months at 4 °C or ≥30 beer passages | Metabolically active yet non-culturable on standard agar | Catalase supplemented agar | Recovery only with catalase from VBNC pool; oxidative stress implicated | [24] |
| Fructilactobacillus lindneri (formerly Lactobacillus lindneri)/Lactobacillus acetotolerans | Beer and cold stress | VBNC subpopulation; routine agar negative | Catalase supplemented agar | Culturability restored; spoilage retained; taxonomy updated | [25,26] |
| Lacticaseibacillus paracasei Zhang | Low temperature/acidic dairy matrices | VBNC transcriptome; flow-sorted viable cells | Nutrient-rich MRS | Extended lag before CFU rebound; minimal media ineffective | [19,20,27] |
| Bifidobacterium spp. | Acidic yogurt storage | Membrane-intact cells with high rRNA despite CFU loss | Neutral pH and anerobic recovery | VBNC cells revivable; plate counts undercount unless rescued | [30,31,32] |
| Lacticaseibacillus rhamnosus GG | High-pressure processing | Residual esterase activity by flow cytometry despite no CFU | Pyruvate/catalase agar; ≥72 h reads | CFU restored repair media; delayed colony emergence supports resuscitation | [33,34,35] |
3. Reviving the VBNC State: Pathways and Conditions
3.1. Molecular Pathways Underlying VBNC Resuscitation
3.1.1. Sensing and Responding to Resuscitation Signals
3.1.2. Repairing Cellular Damage
3.1.3. Restoration of Metabolism
| Phase | Trigger | Mechanistic | Evidence |
|---|---|---|---|
| Sensing and Responding | Quorum signals (AI-2) | Community-level cues synchronize dormancy exit and accelerate recovery. | AI-2 promotes VBNC resuscitation in Vibrio models; food-micro reviews suggest a potential role in LAB resuscitation [13]. |
| Nutrients upshift | Replenishes ATP and biosynthetic precursors, reversing energy conservation programs and initiating growth. | The BtsSR–BtsT pyruvate-sensing/transport system links nutrient detection to resuscitation cues [46]. | |
| Repairing Cellular Damage | Redox relief (pyruvate, catalase) | Scavenges reactive oxygen species and restores DNA/protein synthesis before cell division resumes. | Pyruvate rescues VBNC cells and restores macromolecular synthesis; catalase similarly relieves oxidative blocks [11,41,46]. |
| Peptidoglycan remodeling (Rpf) | Low-level muralytic activity generates a cell-wall–derived “wake” signal and facilitates cell-cycle re-entry. | Rpf increases culturability in Gram positives and is reviewed as a resuscitation-promoting enzyme [42,43]. | |
| Ribosome reactivation | Disengagement of hibernation factors frees ribosomes for translation after stress release. | Classical RaiA/RMF/HPF models plus the Balon–EF-Tu pathway [44,45] expand known “wake” mechanisms. | |
| 5 Restoration of Metabolism | Programmed stress repair (omics in LAB) | Coordinated upregulation of chaperones/stress pathways and downregulation of translation/ATP synthase during VBNC; metabolite rebounds during recovery. | Lacticaseibacillus paracasei Zhang shows transcriptomic and metabolomic transitions consistent with a repair-first growth-second model [20,27]. |
3.2. Chemical and Biological Factors Enhancing Resuscitation
3.3. Nurturing Environments: Benefits of Prolonged Resuscitation in Liquid Media
4. Discriminating VBNC Resuscitation from Cell Proliferation Growth: Methodological Approaches
4.1. Culture-Independent Quantification of Total Viability
4.2. Establishing Condition-Specific Resuscitation
4.3. Supporting Phenotypic Signatures of VBNC Exit
4.4. Integrated Application in Probiotic Quality Control
4.5. Analytical Perspective: Strengths, Limits, Evidence, and Implications
5. A Dual Measurement Strategy for Accurate Probiotic Potency Assessment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotics. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Wendel, U. Assessing viability and stress tolerance of probiotics—A review. Front. Microbiol. 2022, 12, 818468. [Google Scholar] [CrossRef]
- Liu, J.; Yang, L.; Kjellerup, B.V.; Xu, Z. Viable but nonculturable (VBNC) state, an underestimated and controversial microbial survival strategy. Trends Microbiol. 2023, 31, 1013–1023. [Google Scholar] [CrossRef]
- Dong, K.; Pan, H.; Yang, D.; Rao, L.; Zhao, L.; Wang, Y.; Liao, X. Induction, detection, formation, and resuscitation of viable but non-culturable state microorganisms. Compr. Rev. Food Sci. Food Saf. 2020, 19, 149–183. [Google Scholar] [CrossRef]
- Zhang, X.; Ahmad, W.; Zhu, X.; Chen, J.; Austin, B. Viable but nonculturable bacteria and their resuscitation: Implications for cultivating uncultured marine microorganisms. Mar. Life Sci. Technol. 2020, 3, 189–203. [Google Scholar] [CrossRef]
- Hu, R.; Dong, D.; Hu, J.; Liu, H. Improved viability of probiotics encapsulated in soybean protein isolate matrix microcapsules by coacervation and cross-linking modification. Food Hydrocoll. 2023, 142, 108457. [Google Scholar] [CrossRef]
- Saiz-Gonzalo, G.; Arroyo-Moreno, S.; McSweeney, S.; Bleiel, S.B. Pea protein microencapsulation improves probiotic survival during gastrointestinal digestion. Int. J. Food Sci. Technol. 2025, 60, vvaf154. [Google Scholar] [CrossRef]
- Oliver, J.D. Recent findings on the VBNC state in pathogenic bacteria. FEMS Microbiol. Rev. 2010, 34, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Schottroff, F.; Fröhling, A.; Zunabovic-Pichler, M.; Krottenthaler, A.; Schlüter, O.; Jäger, H. Sublethal injury and VBNC state during food preservation and biological materials by non-thermal Processes. Front. Microbiol. 2018, 9, 2773. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.A.; Schoeni, J.L.; Vegge, C.; Pane, M.; Stahl, B.; Bradley, M.; Goldman, V.S.; Burguière, P.; Atwater, J.B.; Sanders, M.E. Improving trust in commercial probiotic products. Front. Microbiol. 2019, 10, 739. [Google Scholar] [CrossRef] [PubMed]
- Morishige, Y.; Fujimori, K.; Amano, F. Differential resuscitative effect of pyruvate and its analogues on VBNC Salmonella. Microbes Environ. 2013, 28, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Ren, Q. Wake Up! Resuscitation of Viable but Nonculturable Bacteria: Mechanism and Potential Application. Foods 2023, 12, 82. [Google Scholar] [CrossRef]
- Ayrapetyan, M.; Williams, T.C.; Oliver, J.D. Interspecific quorum sensing mediates the resuscitation of VBNC Vibrios. Appl. Environ. Microbiol. 2014, 80, 2478–2483. [Google Scholar] [CrossRef]
- Snaidr, L.; Mühlhahn, P.; Beimfohr, C.; Kreuzer, C.; Richly, C.; Snaidr, J. Specific cultivation-independent enumeration of viable cells in probiotic products using a combination of fluorescence in situ hybridization and flow cytometry. Front. Microbiol. 2024, 15, 1410709. [Google Scholar] [CrossRef]
- Shehata, H.; Pane, M.; Buys, E.; Koshy, B.; Vegge, C.; Schoeni, J. Editorial: Emerging technologies for viability enumeration of live microorganisms. Front. Microbiol. 2025, 15, 1546438. [Google Scholar] [CrossRef]
- Wang, L.; Zhong, X.; Li, S.; Liu, X.; Wang, K.; Cai, R.; Yue, T.; Yuan, Y.; Wang, Z. Probiotics encapsulated by gelatin and hyaluronic acid for enhanced viability. Food Hydrocoll. 2024, 153, 109967, Erratum in Food Hydrocoll. 2025, 159, 110670. [Google Scholar] [CrossRef]
- Tracey, H.; Coates, N.; Hulme, E.; John, D.; Michael, D.R.; Plummer, S.F. Insights into the enumeration of mixtures of probiotic bacteria by flow cytometry. BMC Microbiol. 2023, 23, 48. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, Y.; Dai, L.; Zhang, H.; Wang, J.; Li, X.; Zhang, W. Metabolomic Differences between Viable but Nonculturable and Recovered Lacticaseibacillus paracasei Zhang. Foods 2023, 12, 3472. [Google Scholar] [CrossRef]
- Bao, Q.; Ma, X.; Bo, X.; Zhang, X.; Wang, L.; Liu, H. Transcriptomic analysis of L. paracasei Zhang in VBNC transition to the viable but non-culturable state by RNA sequencing. Front. Microbiol. 2023, 14, 1280350. [Google Scholar] [CrossRef]
- Bao, Q.; Bo, X.; Chen, L.; Zhang, X.; Yuan, B.; Li, Y. Comparative analysis using Raman Spectroscopy of the cellular constituents of Lacticaseibacillus paracasei Zhang in a normal and viable but nonculturable state. Microorganisms 2023, 11, 1266. [Google Scholar] [CrossRef] [PubMed]
- Rajam, R.; Subramanian, P. Encapsulation of probiotics: Past, present and future. J. Basic Appl. Sci. 2022, 11, 46. [Google Scholar] [CrossRef]
- Bouri, M.; Yazici, S.; Şahin, F.; Öztürk, A.; Kocabaş, E. Detecting viable but non-culturable lactic acid bacteria following spray-drying and during storage. Eur. Chem. Biotechnol. J. 2024, 6, ecb-20. [Google Scholar] [CrossRef]
- Liu, J.; Deng, Y.; Soteyome, T.; Li, Y.; Su, J.; Li, L.; Li, B.; Shirtliff, M.E.; Xu, Z.; Peters, B.M. Induction and Recovery of the Viable but Nonculturable State of Hop-Resistance Lactobacillus brevis. Front. Microbiol. 2018, 9, 2076. [Google Scholar] [CrossRef]
- Liu, J.; Peters, B.M.; Li, B.; Deng, Y.; Li, L.; Xu, Z. Study on spoilage capability and VBNC state formation and recovery of Lactobacillus plantarum. Microb. Pathog. 2017, 110, 257–261. [Google Scholar] [CrossRef]
- Liu, J.; Li, L.; Li, B.; Peters, B.M.; Deng, Y.; Xu, Z.; Shirtliff, M.E. First Study on the formation and resuscitation of Viable but Nonculturable State and beer spoilage capability of Lactobacillus lindneri. Microb. Pathog. 2017, 107, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Liu, J.; Li, L.; Fang, H.; Tu, J.; Li, B.; Liu, J.; Li, H.; Xu, Z. Reduction and restoration of culturability of beer-stressed and low-temperature-stressed Lactobacillus acetotolerans strain 2011-8. Int. J. Food Microbiol. 2015, 206, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Bao, Q.; Yuan, B.; Ma, X.; Zhao, X.; Gao, R.; Li, J.; Kwok, L. Osmotic and cold stress-induced VBNC in L. paracasei Zhang: A transcriptome analysis. Int. Dairy J. 2025, 166, 106228. [Google Scholar] [CrossRef]
- Jayamanne, V.S.; Adams, M.R. Determination of survival, identity and stress resistance of bifidobacteria in bio-yoghurts. Lett. Appl. Microbiol. 2006, 42, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Lahtinen, S.J.; Ahokoski, H.; Reinikainen, M.; Gueimonde, M.; Nurmi, J.; Ouwehand, A.C.; Salminen, S.J. Degradation of 16S rRNA and attributes of viability of viable but nonculturable probiotic bacteria. Lett. Appl. Microbiol. 2008, 46, 693–698. [Google Scholar] [CrossRef]
- Naklong, K.; Therdtatha, P.; Sumonsiri, N.; Leksawasdi, N.; Techapun, C.; Rachtanapun, P.; Taesuwan, S.; Nunta, R.; Khemacheewakul, J. Microencapsulation of Bifidobacterium breve to Enhance Microbial Cell Viability in Green Soybean Yogurt. Fermentation 2023, 9, 296. [Google Scholar] [CrossRef]
- Mousa, A.H.; Korma, S.A.; Ali, A.H.; Abdeldaiem, A.M.; Bakry, I.A.; Liu, X.-M.; Zhang, H.; Abed, S.M.; Bakry, A.M. Microencapsulation of Bifidobacterium bifidum F-35 and rheological effects in yogurt. J. Food Sci. Technol. 2023, 60, 2968–2977. [Google Scholar] [CrossRef]
- Sibanda, T.; Marole, T.A.; Thomashoff, U.L.; Thantsha, M.; Buys, E.M. Bifidobacterium species viability in dairy-based probiotic foods: Challenges and innovative approaches for accurate viability determination and monitoring of probiotic functionality. Front. Microbiol. 2024, 15, 1327010. [Google Scholar] [CrossRef] [PubMed]
- Ananta, E.; Knorr, D. Comparison of inactivation pathways of thermal or high pressure inactivated Lactobacillus rhamnosus ATCC 53103 by flow cytometry analysis. Food Microbiol. 2009, 26, 542–546. [Google Scholar] [CrossRef] [PubMed]
- Ananta, E.; Heinz, V.; Knorr, D. Assessment of high pressure induced damage on Lactobacillus rhamnosus GG by flow cytometry. Food Microbiol. 2004, 21, 567–577. [Google Scholar] [CrossRef]
- Suissa, R.; Olender, T.; Malitsky, S.; Golani, O.; Turjeman, S.; Koren, O.; Meijler, M.M.; Kolodkin-Gal, I. Metabolic inputs in Lactobacillus rhamnosus and cell-wall remodeling. NPJ Biofilms Microbiomes 2023, 9, 71. [Google Scholar] [CrossRef]
- Pazos-Rojas, L.A.; Cuellar-Sánchez, A.; Romero-Cerón, A.L.; Rivera-Urbalejo, A.; Van Dillewijn, P.; Luna-Vital, D.A.; Muñoz-Rojas, J.; Morales-García, Y.E.; Bustillos-Cristales, M.R. The Viable but Non-Culturable (VBNC) State, a Poorly Explored Aspect of Beneficial Bacteria. Microorganisms 2024, 12, 39. [Google Scholar] [CrossRef]
- Teymoori, F.; Roshanak, S.; Bolourian, S.; Mozafarpour, R.; Shahidi, F. Microencapsulation of Lactobacillus reuteri by emulsion technique and evaluation of microparticle properties and bacterial viability under storage, processing and digestive system conditions. Food Sci. Nutr. 2024, 12, 4533. [Google Scholar] [CrossRef]
- Yeung, T.W.; Üçok, E.F.; Tiani, K.A.; McClements, D.J.; Sela, D.A. Microencapsulation in alginate and chitosan microgels to enhance viability of Bifidobacterium longum for oral delivery. Front. Microbiol. 2016, 7, 494. [Google Scholar] [CrossRef]
- Oberoi, K.; Tolun, A.; Altintas, Z.; Sharma, S. Effect of Alginate-Microencapsulated hydrogels on the survival of Lactobacillus rhamnosus under Simulated Gastrointestinal Conditions. Foods 2021, 10, 1999. [Google Scholar] [CrossRef]
- Ramamurthy, T.; Ghosh, A.; Pazhani, G.P.; Shinoda, S. Current perspectives on viable but non-culturable (VBNC) pathogenic bacteria. Front. Public Health 2014, 2, 103. [Google Scholar] [CrossRef]
- Kong, H.G.; Bae, J.Y.; Lee, H.J.; Joo, H.J.; Jung, E.J.; Chung, E.; Lee, S.-W. Induction of the Viable but Nonculturable State of Ralstonia solanacearum by Low Temperature in the Soil Microcosm and Its Resuscitation by Catalase. PLoS ONE 2014, 9, e109792. [Google Scholar] [CrossRef] [PubMed]
- Lennon, J.T.; Lehmkuhl, B.K.; Chen, L.; Illingworth, M.; Kuo, V.; Muscarella, M.E. Resuscitation-promoting factor (Rpf) terminates dormancy among diverse soil bacteria. mSystems 2025, 10, e01517-24. [Google Scholar] [CrossRef]
- Guzman, J.; Raval, D.; Hauck, D.; Titz, A.; Poehlein, A.; Degenkolb, T.; Daniel, R.; Vilcinskas, A. The resuscitation-promoting factor (Rpf) from Micrococcus luteus and its putative reaction product 1,6-anhydro-MurNAc increase culturability of environmental bacteria. Access Microbiol. 2023, 5, 000647. [Google Scholar] [CrossRef]
- Maki, Y.; Yoshida, H. Ribosomal Hibernation-Associated Factors in Escherichia coli. Microorganisms 2022, 10, 33. [Google Scholar] [CrossRef]
- Helena-Bueno, K.; Rybak, M.Y.; Ekemezie, C.L.; Sullivan, R.; Brown, C.R.; Dingwall, C.; Baslé, A.; Schneider, C.; Connolly, J.P.R.; Blaza, J.N.; et al. A new family of bacterial ribosome hibernation factors. Nature 2024, 626, 1125–1132. [Google Scholar] [CrossRef]
- Vilhena, C.; Kaganovitch, E.; Grünberger, A.; Motz, M.; Forné, I.; Kohlheyer, D.; Jung, K. Importance of Pyruvate Sensing and Transport for the Resuscitation of Viable but Nonculturable Escherichia coli K-12. J. Bacteriol. 2019, 201, e00610-18. [Google Scholar] [CrossRef] [PubMed]
- López-Marín, M.A.; Strejček, M.; Junkova, P.; Suman, J.; Santrucek, J.; Uhlik, O. Exploring the potential of Micrococcus luteus culture supernatant with resuscitation-promoting factor for enhancing the culturability of soil bacteria. Front. Microbiol. 2021, 12, 685263. [Google Scholar] [CrossRef]
- Debnath, A.; Miyoshi, S. The impact of protease during recovery from viable but non-culturable (VBNC) state in Vibrio cholerae. Microorganisms 2021, 9, 2618. [Google Scholar] [CrossRef]
- Wei, Y.; Zhao, C. Induction of viable but nonculturable Escherichia coli O157:H7 by low temperature and its resuscitation. Front. Microbiol. 2018, 9, 2728. [Google Scholar] [CrossRef]
- Kang, D.H.; Siragusa, G.R. Agar underlay method for recovery of sublethally injured bacteria. App. Environ. Microbiol. 1999, 65, 5334–5337. [Google Scholar] [CrossRef] [PubMed]
- Levin-Reisman, I.; Fridman, O.; Balaban, N.Q. ScanLag: High-throughput quantification of colony growth and lag time. J. Vis. Exp. 2014, 89, e51456. [Google Scholar] [CrossRef]
- ISO 19344 | IDF 232:2015; Milk and Milk Products Starter Cultures, Probiotics and Fermented Products Quantification of Lactic Acid Bacteria by Flow Cytometry. International Organization for Standardization (ISO): Geneva, Switzerland; International Dairy Federation (IDF): Brussels, Belgium, 2015.
- Ou, F.; McGoverin, C.; Swift, S.; Vanholsbeeck, F. Near real-time enumeration of live and dead bacteria. Sci. Rep. 2019, 9, 4807. [Google Scholar] [CrossRef]
- Bertelsen, C.V.; Franco, J.C.; Skands, G.E.; Dimaki, M.; Svendsen, W.E. Investigating the Use of Impedance Flow Cytometry for Classifying the Viability State of E. coli. Sensors 2020, 20, 6339. [Google Scholar] [CrossRef]
- Wideman, N.E.; Oliver, J.D.; Crandall, P.G.; Jarvis, N.A. Detection and Potential Virulence of Viable but Non-Culturable (VBNC) Listeria monocytogenes: A Review. Microorganisms 2021, 9, 194. [Google Scholar] [CrossRef]
- Jordal, P.L.; González Diaz, M.; Morazzoni, C.; Allesina, S.; Zogno, D.; Cattivelli, D.; Galletti, S.; Guidesi, E.; Warzée, J.-P.; Pane, M. Cytometric inter-laboratory ring test for probiotics. Front. Microbiol. 2023, 14, 1285075. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Ze, X.; Jiao, Y.; Song, C.; Zhao, X.; Song, Z.; Mu, S.; Liu, Y.; Ge, Y.; Jing, Y.; et al. Development and validation of a PMA-qPCR method for accurate quantification of viable Lacticaseibacillus paracasei in probiotics. Front. Microbiol. 2024, 15, 1456274. [Google Scholar] [CrossRef]
- Catone, S.; Iannantuono, S.; Genovese, D.; Von Hunolstein, C.; Franciosa, G. Viability-PCR for the selective detection of Lactobacillus acidophilus and Bifidobacterium bifidum in live bacteria-containing products. Front. Microbiol. 2024, 15, 1400529. [Google Scholar] [CrossRef]
- Morazzoni, C.; Sirel, M.; Allesina, S.; Veses Garcia, M.; Kragh, K.; Pane, M.; Beilharz, K. Proof of concept: Real-time viability and metabolic profiling of probiotics with isothermal microcalorimetry. Front. Microbiol. 2024, 15, 1391688. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, J.; Chen, J.; Wang, R.; Liu, H.; Zhao, Y. Conventional versus emerging techniques in probiotic enumeration. Crit. Rev. Food Sci. Nutr. 2025, 3, 1–24. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arroyo-Moreno, S.; Saiz-Gonzalo, G.; McSweeney, S.; Bleiel, S.B. Probiotic Viability Reconsidered: Integrating VBNC Resuscitation and Culture-Independent Methods for Accurate Probiotic Enumeration. Microorganisms 2025, 13, 2479. https://doi.org/10.3390/microorganisms13112479
Arroyo-Moreno S, Saiz-Gonzalo G, McSweeney S, Bleiel SB. Probiotic Viability Reconsidered: Integrating VBNC Resuscitation and Culture-Independent Methods for Accurate Probiotic Enumeration. Microorganisms. 2025; 13(11):2479. https://doi.org/10.3390/microorganisms13112479
Chicago/Turabian StyleArroyo-Moreno, Sara, Gonzalo Saiz-Gonzalo, Seamus McSweeney, and Sinead B. Bleiel. 2025. "Probiotic Viability Reconsidered: Integrating VBNC Resuscitation and Culture-Independent Methods for Accurate Probiotic Enumeration" Microorganisms 13, no. 11: 2479. https://doi.org/10.3390/microorganisms13112479
APA StyleArroyo-Moreno, S., Saiz-Gonzalo, G., McSweeney, S., & Bleiel, S. B. (2025). Probiotic Viability Reconsidered: Integrating VBNC Resuscitation and Culture-Independent Methods for Accurate Probiotic Enumeration. Microorganisms, 13(11), 2479. https://doi.org/10.3390/microorganisms13112479

