Ferulic Acid Esterase-Producing Inoculant Improves Fiber Degradation and Modulates Microbial Diversity in Corn Bran Silage and Whole-Plant Corn Silage
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials and Silage Additives
2.2. Ensiling and Sampling
2.3. Analytical Methods
2.3.1. Fermentation Profile
2.3.2. Nutritional Quality and Fiber Degradation Analyses
2.3.3. Determination of Microorganism Populations
2.3.4. Determination of FAE and Cellulase Activity
2.3.5. Analysis of the Microbial Diversity
2.4. Statistical Analysis
3. Results
3.1. Fermentation Characteristics
3.2. Nutritional Quality and Fiber Degradation
3.3. Microorganism Quantity
3.4. Enzyme Activity
3.5. Microbial Diversity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| FM | Fresh weight |
| DM | Dry matter |
| CP | Crude protein |
| ASP | Acid-soluble protein |
| Fat | Crude fat |
| LAB | Lactic acid bacteria |
| NDF | Neutral detergent fiber |
| ADF | Acid detergent fiber |
| ADL | Acid detergent lignin |
| CEL | Cellulase |
| A30 | Bacillus amyloliquefaciens strain A30 |
| CEL + A30 | Cellulase and Bacillus amyloliquefaciens strain A30 |
| FAE | Ferulic acid esterase |
References
- Mastroeni, C.; Fiorbelli, E.; Sigolo, S.; Novara, V.; Carboni, E.; Eisner, I.; Fantinati, P.; Gallo, A. Improving the quality of whole-plant corn silage in the top layer of a silo by using an inoculant in combination with sodium benzoate. Anim. Feed Sci. Technol. 2025, 319, 116176. [Google Scholar] [CrossRef]
- Ye, M.; Sun, L.H.; Yang, R.; Wang, Z.G.; Qi, K.Z. The optimization of fermentation conditions for producing cellulase of Bacillus amyloliquefaciens and its application to goose feed. R. Soc. Open Sci. 2017, 4, 171012. [Google Scholar] [CrossRef]
- So, S.; Cherdthong, A.; Wanapat, M. Improving sugarcane bagasse quality as ruminant feed with Lactobacillus, cellulase, and molasses. J. Anim. Sci. Technol. 2020, 62, 648–658. [Google Scholar] [CrossRef]
- Yang, M.; Long, S.F.; He, T.F.; Piao, X.S. Research progress on application of corn starch wet processing by-products in livestock and poultry production. Chin. J. Anim. Nutr. 2021, 33, 2504–2514. [Google Scholar]
- de Vries, P.R.; Visser, J. Aspergiiius enzymes involved in degradation of plant cell polysaccharides. Microbiol. Mol. Biol. Rev. 2001, 65, 497–522. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, D.M.; Finger-Teixeira, A.; Rodrigues Mota, T.; Salvador, V.H.; Moreira-Vilar, F.C.; Correa Molinari, H.B.; Craig Mitchell, R.A.; Marchiosi, R.; Ferrarese-Filho, O.; Dantas dos Santos, W. Ferulic acid: A key component in grass lignocellulose recalcitrance to hydrolysis. Plant Biotechnol. J. 2015, 13, 1224–1232. [Google Scholar] [CrossRef] [PubMed]
- Krueger, N.A.; Adesogan, A.T.; Staples, C.R.; Krueger, W.K.; Dean, D.B.; Littell, R.C. The potential to increase digestibility of tropical grasses with a fungal, ferulic acid esterase enzyme preparation. Anim. Feed Sci. Technol. 2008, 145, 95–108. [Google Scholar] [CrossRef]
- Addah, W.; Baah, J.; Okine, E.K.; McAllister, T.A. A third-generation esterase inoculant alters fermentation pattern and improves aerobic stability of barley silage and the efficiency of body weight gain of growing feedlot cattle. J. Anim. Sci. 2012, 90, 1541. [Google Scholar] [CrossRef]
- Dilokpimol, A.; Mäkelä, R.M.; Aguilar-Pontes, V.M.; Benoit-Gelber, I.; Hildén, S.K.; de Vries, P.R. Diversity of fungal feruloyl esterases: Updated phylogenetic classification properties and industrial applications. Biotechnol. Biofuels 2016, 9, 231–238. [Google Scholar] [CrossRef]
- Andrada, E.; AbeijónMukdsi, M.C.; Vinderola, G.; Medina, R.B. Ferulic acid esterase-producing lactobacilli as silage inoculants: A review on the efficacy of improving fiber composition and digestibility of forages. Fermentation 2024, 10, 614. [Google Scholar] [CrossRef]
- Pattnaik, P.; Kaushik, J.K.; Grover, S.; Batish, V.K. Purification and characterization of a bacteriocin-like compound (Lichenin) produced anaerobically by Bacillus licheniformis isolated from water buffalo. J. Appl. Microbiol. 2001, 91, 636–645. [Google Scholar] [CrossRef] [PubMed]
- Li, S.N.; Ke, W.C.; Zhang, Q.; Undersander, D.; Zhang, G.J. Effects of Bacillus coagulans and Lactobacillus plantarum on the fermentation quality, aerobic stability and microbial community of triticale silage. Chem. Biol. Technol. Agric. 2023, 10, 79. [Google Scholar] [CrossRef]
- Cavazzoni, V.; Adami, A.; Castrovilli, C. Performance of broiler chickens supplemented with Bacillus coagulans as probiotic. Br. Poult. Sci. 1998, 39, 526–529. [Google Scholar] [CrossRef]
- Manhar, A.K.; Saikia, D.; Bashir, Y.; Mech, R.K.; Nath, D.; Konwar, B.K.; Mandal, M. In vitro evaluation of celluloytic Bacillus amyloliquefaciens AMS1 isolated from traditional fermented soybean (Churpi) as an animal probiotic. Res. Vet. Sci. 2015, 99, 149–156. [Google Scholar] [CrossRef]
- Bai, J.; Franco, M.; Ding, Z.; Hao, L.; Ke, W.; Wang, M.; Xie, D.; Li, Z.; Zhang, Y.; Ai, L.; et al. Effect of Bacillus amyloliquefaciens and Bacillus subtilis on fermentation, dynamics of bacterial community and their functional shifts of whole-plant corn silage. J. Anim. Sci. Biotechnol. 2022, 13, 7. [Google Scholar] [CrossRef]
- Donaghy, J.; Kelly, P.F.; Mckay, A.M. Detection of ferulic acid esterase production by Bacillus spp. and lactobacilli. Appl. Microbiol. Biotechnol. 1998, 50, 257–260. [Google Scholar] [CrossRef]
- Gezginc, Y.; Topcal, F.; Comertpay, S.; Akyol, I. Quantitative analysis of the lactic acid and acetaldehyde produced by Streptococcus thermophilus and Lactobacillus bulgaricus strains isolated from traditional Turkish yogurts using HPLC. J. Dairy Sci. 2015, 98, 1426–1434. [Google Scholar] [CrossRef]
- Dong, B.Y.; Chen, Y.F.; Zhao, C.C.; Zhang, S.J.; Guo, X.W.; Xiao, D.G. Simultaneous determination of furfural, acetic acid, and 5-hydroxymethylfurfural in corncob hydrolysates using liquid chromatography with ultraviolet detection. J. AOAC Int. 2013, 96, 1239–1244. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Terré, M.; Devant, M.; Bach, A. Effect of level of milk replacer fed to Holstein calves on performance during the preweaning period and starter digestibility at weaning. Livest. Sci. 2007, 110, 82–88. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Guo, X.; Guo, W.; Yang, M.; Sun, Y.; Wang, Y.; Yan, Y.; Zhu, B. Effect of Bacillus Additives on Fermentation Quality and Bacterial Community during the Ensiling Process of Whole-Plant Corn Silage. Processes 2022, 10, 978. [Google Scholar] [CrossRef]
- Li, X.; Chen, F.; Xu, J.; Guo, L.; Xiong, Y.; Lin, Y.; Ni, K.; Yang, F. Exploring the addition of herbal residues on fermentation quality, bacterial communities, and ruminal greenhouse gas emissions of paper mulberry silage. Front. Microbiol. 2022, 12, 820011. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zhang, B.; Zhang, Y.; Zhang, X.; Usman, S.; Ding, Z.; Hao, L.; Guo, X. Probiotic effect of ferulic acid esterase-producing Lactobacillus plantarum inoculated alfalfa silage on digestion, antioxidant, and immunity status of lactating dairy goats. Anim. Nutr. 2022, 11, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Rinne, M.; Winquist, E.; Pihlajaniemi, V.; Niemi, P.; Seppälä, A.; Siika-aho, M. Fibrolytic enzyme treatment prior to ensiling increased press-juice and crude protein yield from grass silage. Bioresour. Technol. 2020, 299, 122572. [Google Scholar] [CrossRef]
- Dong, J.; Li, S.; Chen, X.; Sun, Z.; Sun, Y.; Zhen, Y.; Qin, G.; Wang, T.; Demelash, N.; Zhang, X. Effects of Lactiplantibacillus plantarum inoculation on the quality and bacterial community of whole-crop corn silage at different harvest Stages. Chem. Biol. Technol. Agric. 2022, 9, 57. [Google Scholar] [CrossRef]
- Zhao, M.; Bao, J.; Wang, Z.; Sun, P.; Liu, J.; Yan, Y.; Ge, G. Utilisation of Lactiplantibacillus plantarum and propionic acid to improve silage quality of amaranth before and after wilting: Fermentation quality, microbial communities, and their metabolic pathway. Front. Microbiol. 2024, 15, 1415290. [Google Scholar] [CrossRef]
- Xu, J.; Ma, J.; Sa, R.; Sui, H.; Wang, X.; Li, Q.; Zhu, X.; Wu, B.; Hu, Z.; Niu, H. Effects of lactic acid bacteria inoculants on the nutrient composition, fermentation quality, and microbial diversity of whole-plant soybean-corn mixed silage. Front. Microbiol. 2024, 15, 1347293. [Google Scholar] [CrossRef]
- Li, F.; Ding, Z.; Chen, X.; Zhang, Y.; Ke, W.; Zhang, X.; Li, Z.; Usman, S.; Guo, X. The effects of Lactobacillus plantarum with feruloyl esterase-producing ability or high antioxidant activity on the fermentation, chemical composition, and antioxidant status of alfalfa silage. Anim. Feed Sci. Technol. 2021, 273, 114835. [Google Scholar] [CrossRef]
- Zhao, J.; Dong, Z.; Li, J.; Chen, L.; Bai, Y.; Jia, Y.; Shao, T. Ensiling as pretreatment of rice straw: The effect of hemicellulase and Lactobacillus plantarum on hemicellulose degradation and cellulose conversion. Bioresour. Technol. 2018, 266, 158–165. [Google Scholar] [CrossRef]
- Dewar, W.A.; Mcdonald, P.; Whittenbury, R. The hydrolysis of grass hemicelluloses during ensilage. J. Sci. Food Agric. 1963, 14, 411–417. [Google Scholar] [CrossRef]
- Chi, Z.; Deng, M.; Tian, H.; Liu, D.; Li, Y.; Liu, G.; Sun, B.; Guo, Y. Effects of mulberry leaves and Pennisetum hybrid mix-silage on fermentation parameters and bacterial community. Fermentation 2022, 8, 197. [Google Scholar] [CrossRef]
- Wang, S.R.; Li, J.F.; Zhao, J.; Dong, Z.H.; Shao, T. Exploring the ensiling characteristics and bacterial community of red clover inoculated with the epiphytic bacteria from temperate gramineous grasses. J. Appl. Microbiol. 2022, 132, 77–188. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.M.; Zhang, X.; Usman, S.; Bai, J.; Sheoran, N.; Guo, X.S. Reducing transmission of high-risk antibiotic resistance genes in whole-crop corn silage through lactic acid bacteria inoculation and increasing ensiling temperature. Sci. Total Environ. 2024, 926, 172114. [Google Scholar] [CrossRef] [PubMed]
- Bruisson, S.; Zufferey, M.; L’haridon, F.; Trutmann, E.; Anand, A.; Dutartre, A.; De Vrieze, M.; Weisskopf, L. Endophytes and epiphytes from the grapevine leaf microbiome as potential biocontrol agents against phytopathogens. Front. Microbiol. 2019, 10, 02726. [Google Scholar] [CrossRef]
- Gao, H.; Niu, J.F.; Yang, H.; Lu, Z.X.; Chen, M.R.; Lu, F.X. High-throughput sequencing analysis of vomitoxin-degrading bacteria in bacterial consortium. Food Sci. 2021, 42, 123–130. [Google Scholar]
- Okoye, C.O.; Wu, Y.; Wang, Y.; Gao, L.; Li, X.; Jiang, J. Fermentation profile, aerobic stability, and microbial community dynamics of corn straw ensiled with Lactobacillus buchneri PC-C1 and Lactobacillus plantarum PC1-1. Microbiol. Res. 2023, 270, 127329. [Google Scholar] [CrossRef]
- Dominic, W.S.W. Feruloyl esterase: A key enzyme in biomass degradation. Appl. Biochem. Biotechnol. 2006, 133, 87–112. [Google Scholar] [CrossRef]





| Items | Corn Bran | Whole-Plant Corn |
|---|---|---|
| DM (g/kg FW) | 449.73 ± 0.42 | 351.12 ± 0.71 |
| CP (g/kg DM) | 145.34 ± 2.12 | 81.11 ± 1.37 |
| ASP (g/kg CP) | 488.37 ± 2.87 | 4.02 ± 0.25 |
| Fat (g/kg DM) | 51.77 ± 1.14 | 25.36 ± 0.63 |
| NDF (g/kg DM) | 589.48 ± 3.29 | 575.45 ± 2.58 |
| ADF (g/kg DM) | 292.05 ± 2.31 | 294.53 ± 1.13 |
| ADL (g/kg DM) | 60.55 ± 1.52 | 23.23 ± 0.36 |
| Hemicellulose (g/kg DM) | 316.17 ± 2.82 | 280.93 ± 1.74 |
| Cellulose (g/kg DM) | 231.90 ± 2.19 | 271.30 ± 1.43 |
| Item | No Cellulase | Cellulase | p-Value | ||||
|---|---|---|---|---|---|---|---|
| No A30 | A30 | No A30 | A30 | CEL | A30 | A × C | |
| (CK) | (A30) | (CEL) | (CEL + A30) | ||||
| pH | 4.28 ± 0.01 A,a | 4.27 ± 0.01 A,a | 4.28 ± 0.01 A,a | 4.25 ± 0.01 B,b | 0.076 | 0.001 | 0.021 |
| Lactic acid (g/kg DM) | 44.83 ± 0.08 | 46.72 ± 1.54 | 46.33 ± 0.45 | 47.71 ± 1.27 | 0.069 | 0.024 | 0.680 |
| Acetic acid (g/kg DM) | 5.66 ± 0.09 B,b | 8.06 ± 0.13 A,b | 6.21 ± 0.16 B,a | 8.62 ± 0.15 A,a | <0.001 | <0.001 | 1.000 |
| Item | No Cellulase | Cellulase | p-Value | ||||
|---|---|---|---|---|---|---|---|
| No A30 | A30 | No A30 | A30 | CEL | A30 | A × C | |
| (CK) | (A30) | (CEL) | (CEL + A30) | ||||
| pH | 4.12 ± 0.01 B,a | 4.14 ± 0.01 A,b | 4.10 ± 0.01 B,b | 4.17 ± 0.01 A,a | 0.172 | <0.001 | <0.001 |
| Lactic acid (g/kg DM) | 80.67 ± 0.96 | 81.09 ± 1.08 | 82.66 ± 0.65 | 81.12 ± 1.45 | 0.142 | 0.397 | 0.152 |
| Acetic acid (g/kg DM) | 23.62 ± 0.78 | 23.96 ± 1.08 | 23.16 ± 0.95 | 22.91 ± 0.91 | 0.201 | 0.936 | 0.600 |
| Item | No Cellulase | Cellulase | p-Value | ||||
|---|---|---|---|---|---|---|---|
| No A30 | A30 | No A30 | A30 | CEL | A30 | A × C | |
| (CK) | (A30) | (CEL) | (CEL + A30) | ||||
| DM (g/kg FW) | 451.88 ± 1.32 A,a | 450.33 ± 0.69 A,a | 449.15 ± 1.01 A,b | 449.23 ± 1.88 A,a | 0.034 | 0.357 | 0.308 |
| CP (g/kg DM) | 150.77 ± 2.51 A,a | 153.23 ± 2.30 A,b | 153.18 ± 0.72 B,a | 161.67 ± 1.58 A,a | 0.001 | 0.001 | 0.026 |
| ASP (g/kg CP) | 491.13 ± 1.75 B,b | 511.34 ± 4.33 A,b | 505.22 ± 1.38 B,a | 530.12 ± 4.14 A,a | <0.001 | <0.001 | 0.240 |
| Fat (g/kg DM) | 50.87 ± 0.60 | 53.02 ± 2.19 | 51.89 ± 1.63 | 53.23 ± 0.95 | 0.493 | 0.075 | 0.650 |
| NDF (g/kg DM) | 526.29 ± 7.45 A,a | 524.48 ± 2.73 A,a | 472.80 ± 3.06 A,b | 454.15 ± 2.88 B,b | <0.001 | 0.004 | 0.012 |
| ADF (g/kg DM) | 235.64 ± 7.20 A,a | 217.80 ± 2.49 B,a | 202.17 ± 2.35 A,b | 207.25 ± 1.71 A,b | <0.001 | 0.027 | 0.001 |
| ADL (g/kg DM) | 47.35 ± 1.70 A,b | 43.04 ± 0.64 A,a | 40.96 ± 4.41 A,a | 41.98 ± 0.13 A,a | 0.027 | 0.266 | 0.089 |
| Hemicellulose (g/kg DM) | 290.64 ± 4.41 B,a | 306.67 ± 2.78 A,a | 270.62 ± 2.79 A,b | 246.89 ± 2.77 B,b | <0.001 | 0.076 | <0.001 |
| Cellulose (g/kg DM) | 188.29 ± 6.09 A,a | 175.82 ± 3.03 B,a | 167.88 ± 2.22 A,b | 160.32 ± 0.66 B,b | <0.001 | 0.001 | 0.271 |
| Item | No Cellulase | Cellulase | p-Value | ||||
|---|---|---|---|---|---|---|---|
| No A30 | A30 | No A30 | A30 | CEL | A30 | A × C | |
| (CK) | (A30) | (CEL) | (CEL + A30) | ||||
| DM (g/kg FW) | 325.60 ± 1.40 | 351.30 ± 1.87 | 353.30 ± 3.58 | 351.50 ± 3.09 | 0.774 | 0.340 | 0.873 |
| CP (g/kg DM) | 93.08 ± 2.36 | 92.63 ± 1.61 | 92.07 ± 0.91 | 93.02 ± 0.99 | 0.743 | 0.794 | 0.467 |
| ASP (g/kg CP) | 2.50 ± 0.32 | 2.50 ± 0.33 | 2.59 ± 0.31 | 2.49 ± 0.06 | 0.795 | 0.765 | 0.780 |
| Fat (g/kg DM) | 31.68 ± 1.23 | 32.11 ± 0.30 | 32.67 ± 0.78 | 32.51 ± 0.92 | 0.204 | 0.799 | 0.574 |
| NDF (g/kg DM) | 557.60 ± 1.08 A,a | 538.70 ± 3.25 B,a | 492.60 ± 1.92 A,b | 461.50 ± 1.50 B,b | <0.001 | <0.001 | 0.001 |
| ADF (g/kg DM) | 279.40 ± 2.06 A,a | 273.90 ± 1.45 B,a | 267.30 ± 1.13 A,b | 249.70 ± 1.61 B,b | <0.001 | <0.001 | <0.001 |
| ADL (g/kg DM) | 22.24 ± 0.25 A,a | 21.73 ± 0.63 A,a | 21.91 ± 0.44 A,a | 21.71 ± 0.40 A,a | 0.240 | 0.464 | 0.990 |
| Hemicellulose (g/kg DM) | 278.20 ± 2.24 A,a | 264.80 ± 1.69 B,a | 225.30 ± 2.51 A,b | 211.80 ± 2.42 B,b | <0.001 | <0.001 | 0.972 |
| Cellulose (g/kg DM) | 257.16 ± 2.12 A,a | 251.86 ± 1.27 B,a | 245.40 ± 1.55 A,b | 227.99 ± 1.52 B,b | <0.001 | <0.001 | <0.001 |
| Item | Treatments | Degradation Ratio (%) | |
|---|---|---|---|
| Corn Bran Silage | Whole-Plant Corn Silage | ||
| NDF | CK | 10.72 ± 0.31 c | 3.10 ± 0.25 d |
| CEL | 19.79 ± 0.12 b | 14.40 ± 0.22 b | |
| A30 | 11.03 ± 0.17 c | 6.39 ± 0.41 c | |
| CEL + A30 | 22.96 ± 0.12 a | 19.80 ± 0.39 a | |
| ADF | CK | 19.32 ± 0.33 c | 5.14 ± 0.32 c |
| CEL | 30.78 ± 0.52 a | 9.24 ± 0.57 b | |
| A30 | 25.42 ± 0.41 b | 7.01 ± 0.41 c | |
| CEL + A30 | 29.04 ± 0.47 a | 15.22 ± 0.30 a | |
| ADL | CK | 21.79 ± 1.21 b | 4.26 ± 0.38 b |
| CEL | 32.35 ± 2.15 a | 5.70 ± 0.20 a | |
| A30 | 28.92 ± 2.33 a | 5.14 ± 0.34 a | |
| CEL + A30 | 30.66 ± 2.60 a | 6.54 ± 0.29 a | |
| Hemicellulose | CK | 8.07 ± 1.72 c | 0.97 ± 0.84 d |
| CEL | 14.41 ± 0.94 b | 19.80 ± 1.03 b | |
| A30 | 3.00 ± 0.75 d | 5.74 ± 0.74 c | |
| CEL + A30 | 21.91 ± 1.66 a | 24.61 ± 1.14 a | |
| Cellulose | CK | 18.81 ± 0.64 d | 5.21 ± 0.27 d |
| CEL | 27.61 ± 0.53 b | 9.55 ± 0.35 b | |
| A30 | 24.18 ± 0.68 c | 7.17 ± 0.30 c | |
| CEL + A30 | 30.87 ± 0.37 a | 15.96 ± 0.21 a | |
| Item | No Cellulase | Cellulase | p-Value | ||||
|---|---|---|---|---|---|---|---|
| No A30 | A30 | No A30 | A30 | CEL | A30 | A × C | |
| (CK) | (A30) | (CEL) | (CEL + A30) | ||||
| Bacteria lg(CFU/g) | 8.14 ± 0.09 | 8.31 ± 0.08 | 8.11 ± 0.25 | 8.31 ± 0.20 | 0.895 | 0.099 | 0.869 |
| LAB lg(CFU/g) | 8.46 ± 0.14 | 8.34 ± 0.10 | 8.45 ± 0.21 | 8.56 ± 0.15 | 0.278 | 0.957 | 0.264 |
| Mold lg(CFU/g) | 4.28 ± 0.09 | 4.32 ± 0.13 | 4.18 ± 0.11 | 4.28 ± 0.06 | 0.272 | 0.251 | 0.678 |
| Item | No Cellulase | Cellulase | p-value | ||||
|---|---|---|---|---|---|---|---|
| No A30 | A30 | No A30 | A30 | CEL | A30 | A × C | |
| (CK) | (A30) | (CEL) | (CEL + A30) | ||||
| Bacteria lg(CFU/g) | 5.90 ± 0.09 B,a | 6.41 ± 0.08 A,a | 6.00 ± 0.16 B,a | 6.49 ± 0.18 A,a | 0.284 | <0.001 | 0.883 |
| LAB lg(CFU/g) | 8.86 ± 0.13 | 8.85 ± 0.14 | 8.88 ± 0.21 | 8.89 ± 0.16 | 0.744 | 0.986 | 0.959 |
| Mold lg(CFU/g) | 3.40 ± 0.15 | 3.50 ± 0.10 | 3.45 ± 0.10 | 3.40 ± 0.08 | 0.767 | 0.694 | 0.275 |
| Day | Treatments | Shannon | Simpson | Chao | Ace | Coverage |
|---|---|---|---|---|---|---|
| 0 d | CK | 3.26 | 0.13 | 384.51 | 369.36 | 0.9986 |
| CEL | 3.01 | 0.12 | 374.91 | 361.51 | 0.9987 | |
| A30 | 3.02 | 0.18 | 377.76 | 364.90 | 0.9987 | |
| CEL + A30 | 2.94 | 0.19 | 370.71 | 357.90 | 0.9986 | |
| 14 d | CK | 2.42 a | 0.31 b | 314.22 a | 323.17 a | 0.9987 |
| CEL | 2.74 a | 0.26 b | 322.25 a | 329.53 a | 0.9988 | |
| A30 | 1.87 b | 0.68 a | 265.86 b | 264.01 b | 0.9987 | |
| CEL + A30 | 1.90 b | 0.59 a | 268.79 b | 265.64 b | 0.9985 |
| Day | Treatments | Shannon | Simpson | Chao | Ace | Coverage |
|---|---|---|---|---|---|---|
| 0 d | CK | 3.52 | 0.09 | 775.6 | 741.6 | 0.9969 |
| CEL | 3.48 | 0.07 | 778.0 | 774.2 | 0.9977 | |
| A30 | 3.58 | 0.07 | 784.6 | 737.1 | 0.9970 | |
| CEL + A30 | 3.60 | 0.06 | 783.0 | 750.5 | 0.9975 | |
| 60 d | CK | 2.14 a | 0.25 b | 478.0 a | 437.9 a | 0.9975 |
| CEL | 2.17 a | 0.23 b | 485.2 a | 426.4 a | 0.9976 | |
| A30 | 2.05 b | 0.34 a | 430.7 b | 404.3 b | 0.9975 | |
| CEL + A30 | 2.02 b | 0.35 a | 424.1 b | 403.7 b | 0.9973 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Guo, X.; Li, H.; Yu, C.; Liu, H.; Guo, W. Ferulic Acid Esterase-Producing Inoculant Improves Fiber Degradation and Modulates Microbial Diversity in Corn Bran Silage and Whole-Plant Corn Silage. Microorganisms 2025, 13, 2439. https://doi.org/10.3390/microorganisms13112439
Yu Y, Guo X, Li H, Yu C, Liu H, Guo W. Ferulic Acid Esterase-Producing Inoculant Improves Fiber Degradation and Modulates Microbial Diversity in Corn Bran Silage and Whole-Plant Corn Silage. Microorganisms. 2025; 13(11):2439. https://doi.org/10.3390/microorganisms13112439
Chicago/Turabian StyleYu, Yang, Xiaojun Guo, Haoer Li, Chen Yu, Hao Liu, and Wei Guo. 2025. "Ferulic Acid Esterase-Producing Inoculant Improves Fiber Degradation and Modulates Microbial Diversity in Corn Bran Silage and Whole-Plant Corn Silage" Microorganisms 13, no. 11: 2439. https://doi.org/10.3390/microorganisms13112439
APA StyleYu, Y., Guo, X., Li, H., Yu, C., Liu, H., & Guo, W. (2025). Ferulic Acid Esterase-Producing Inoculant Improves Fiber Degradation and Modulates Microbial Diversity in Corn Bran Silage and Whole-Plant Corn Silage. Microorganisms, 13(11), 2439. https://doi.org/10.3390/microorganisms13112439

