Bacterial Community Characteristics of Kengyilia thoroldiana Rhizosphere Soil in Different Topographic Habitats of the Yellow River Source Region and Their Response to Vegetation-Soil Factors
Abstract
1. Introduction
2. Materials and Methods
2.1. Basic Characteristics of Test Area
2.2. Sample Plot Setting
2.3. Plant Community Investigation and Soil Sample Collection
2.4. Indicator Measurement
2.4.1. Vegetation Characterization
2.4.2. Soil Characteristics
2.4.3. DNA Extraction, PCR Amplification, and High-Throughput Sequencing
2.5. Data Processing and Statistical Analysis
3. Results and Analysis
3.1. 5 Characteristics of Rhizosphere Soil and Vegetation Community of Kengyilia thoroldiana in Five Topographic Environments
3.2. 5 Sequencing Quality, Venn Analysis, and Species Composition of Bacteria in Kengyilia thoroldiana Rhizosphere Soil Samples
3.2.1. Sequencing Results and Changes in Soil Bacterial OTU Quantity
3.2.2. Analysis of Bacterial Community Composition and Relative Abundance
3.3. Bacterial Community LEfSe Analysis
3.4. Differences in Diversity of Soil Bacterial Communities in Five Topographic Types of Kengyilia thoroldiana Habitats
3.4.1. Variations in α Diversity of Bacteria in Kengyilia thoroldiana Rhizosphere Soil Samples
3.4.2. Analysis of β Diversity (PCoA) of Bacterial Community
3.4.3. Clustering Characteristics of Soil Bacterial Communities
3.5. Single-Factor Molecular Network Analysis of Bacteria in Kengyilia thoroldiana Rhizosphere Soil Samples
3.6. Prediction of Soil Bacterial Community Function in Kengyilia thoroldiana Rhizosphere Soil Samples from Five Types of Topographic Habitats
3.7. Correlations Between Rhizosphere Soil Bacterial Community and Habitat Factors of Kengyilia thoroldiana
3.7.1. Mantel Test Analysis of Rhizosphere Soil Bacterial Community and Habitat Factors of Kengyilia thoroldiana
3.7.2. Redundance Analysis of the Relationship Between Rhizosphere Soil Bacterial Community and Habitat Factors of Kengyilia thoroldiana
4. Discussion
4.1. Changes in Soil Physical and Chemical Properties and Vegetation Community Characteristics in Kengyilia thoroldiana Rhizosphere Samples from Five Types of Topographic Habitats
4.2. Composition and Structural Characteristics of Bacterial Community in Kengyilia thoroldiana Rhizosphere Soil in Five Topographic Habitats
4.3. Coupling Relationships Between Bacterial Community Structure in Kengyilia thoroldiana Rhizosphere Soil and Plant and Soil Factors
5. Conclusions
- (1)
- Among the five topographic habitats, the water content and nutrient indicators such as organic carbon, total nitrogen, total phosphorus, and total potassium in the Kengyilia thoroldiana rhizosphere soil of the depression and transition zone were significantly higher than those of the sunny and shady slopes. Correspondingly, their community coverage, biomass, and plant height also performed better.
- (2)
- The rhizosphere bacterial community of Kengyilia thoroldiana showed a differentiated response to five types of topographic habitats: the number of endemic bacteria in shady slope habitats was the highest, and the transitional zone habitats were the most abundant. The analysis of network topology shows that the bacterial community in shady slope and transitional zone habitats has a more complex co-occurrence network structure, and the number of network edges is significantly higher than that in other topographic habitats.
- (3)
- Based on the hierarchical clustering distance, the rhizosphere soil bacterial community of Kengyilia thoroldiana was divided into two groups: habitat H3 was clustered into one group (group 1), and the other four habitats were classified into another group (group 2). The function prediction showed that the metabolic pathways of heterotrophic chemical energy and heterotrophic aerobic energy were dominant in all habitats, especially in depressions, mountain passes, and transitional zones, with relative abundance exceeding 93% (standardized value > 9300).
- (4)
- Redundancy analysis (RDA) revealed that pH value and organic carbon were the core environmental factors driving the succession of soil bacterial communities in the rhizosphere of Kengyilia thoroldiana in five types of topographic habitats in the Yellow River source basin unit, and that they not only directly promoted bacterial diversity, but also indirectly affected bacterial metabolic function by regulating soil nutrient content.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, X.; Xie, Y.; Qiao, J.; Chai, S.; Chen, L. Rhizobacteria strain from a hypersaline environment promotes plant growth of kengyilia thoroldiana. Microbiology 2019, 88, 220–231. [Google Scholar] [CrossRef]
- Yang, S.; Li, X.; Ma, Y.; Sun, X.; Yang, Y.; Yang, Y. Proteome response of wild wheat relative Kengyilia thoroldiana to drought stress. Can. J. Plant Sci. 2015, 95, 237–249. [Google Scholar] [CrossRef]
- Li, C.H.; Li, S.J.; Zhang, J.; Sun, Q.Z. Observations on spike differentiation of Kengyilia thoroldiana. Grassl. Sci. 2013, 30, 1189–1193. [Google Scholar]
- Zhang, J.; Caiwen, D.J.; Sonan, C.R.; Wen, X.C.; Wang, S.C.; Yang, M.J.; Renzeng, O.Z.; Sun, H.Q. The correlation and niche of survival community of Kengyilia thoroldiana in Maduo County, Qinghai Province. Grassl. Sci. 2019, 36, 2752–2765. [Google Scholar]
- Lopes, L.D.; Wang, P.; Futrell, S.L.; Schachtman, D.P. Sugars and jasmonic scid concentration in root exudates affect maize rhizosphere bacterial communities. Appl. Environ. Microbiol. 2022, 88, e0097122. [Google Scholar] [CrossRef]
- Fang, Y.; Zhang, L.; Jiao, Y.; Liao, J.; Luo, L.; Ji, S.; Li, J.; Dai, K.; Zhu, S.; Yang, M. Tobacco rotated with rapeseed for soil-borne Phytophthora pathogen biocontrol: Mediated by rapeseed root exudates. Front. Microbiol. 2016, 7, 894, Erratum in Front. Microbiol. 2018, 9, 372.. [Google Scholar] [CrossRef]
- Yan, D.; Tajima, H.; Cline, L.C.; Fong, R.Y.; Ottaviani, J.I.; Shapiro, H.Y.; Blumwald, E. Genetic modification of flavone biosynthesis in rice enhances biofilm formation of soil diazotrophic bacteria and biological nitrogen fixation. Plant Biotechnol. J. 2022, 20, 2135–2148. [Google Scholar] [CrossRef]
- Suleimanova, A.; Bulmakova, D.; Sokolnikova, L.; Egorova, E.; Itkina, D.; Kuzminova, O.; Gizatullina, A.; Sharipova, M. Phosphate solubilization and plant growth promotion by pantoea brenneri soil isolates. Microorganisms 2023, 11, 1136. [Google Scholar] [CrossRef]
- Jasim, B.; Joseph, A.; John, C.; Mathew, J.; Radhakrishnan, E. Isolation and characterization of plant growth promoting endophytic bacteria from the rhizome of Zingiber officinale. 3 Biotech 2014, 4, 197–204. [Google Scholar] [CrossRef]
- Shahid, M.; Singh, U.; Khan, M.; Singh, P.; Kumar, R.; Singh, R.; Kumar, A.; Singh, H. Bacterial ACC deaminase: Insights into enzymology, biochemistry, genetics, and potential role in amelioration of environmental stress in crop plants. Front. Microbiol. 2023, 141, 132770. [Google Scholar] [CrossRef]
- Aira, M.; Gómez-Brandón, M.; Lazcano, C.; Bååth, E.; Domínguez, J. Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities. Soil Biol. Biochem. 2010, 42, 2276–2281. [Google Scholar] [CrossRef]
- Zhou, X.; Tahvanainen, T.; Malard, L.; Chen, L.; Pérez Pérez, J.; Berninger, F. Global analysis of soil bacterial genera and diversity in response to pH. Soil Biol. Biochem. 2024, 198, 109552. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, J.; Yu, P.; Zhang, W.; Lin, Y.; Ma, D. The rhizosphere bacterial community contributes to the nutritional competitive advantage of weedy rice over cultivated rice in paddy soil. BMC Microbiol. 2022, 22, 232. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.C.; Chen, S.J.; Hong, X.Y.; Wang, L.Z.; Wu, H.M.; Tang, Y.Y.; Gao, Y.Y.; Hao, G.F. Plant exudates driven microbiome recruitment and assembly facilitates plant health Management. FEMS Microbiol. Rev. 2025, 49, fuaf008. [Google Scholar] [CrossRef] [PubMed]
- Lyu, L.; Gao, P.; Cai, Z.; Li, F.; Shi, J. Topographic habitat drive the change of soil fungal community and vegetation soil characteristics in the rhizosphere of Kengyilia thoroldiana in the Sanjiangyuan region. J. Fungi 2025, 11, 531. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, L.; Liu, Y.; Huang, Z.; Shi, J.; Wang, Y.; Ma, Y.; Lucas-Borja, M.E.; López-Vicente, M.; Wu, G.L. Restoration of a hillslope grassland with an ecological grass species (Elymus tangutorum) favors rainfall interception and water infiltration and reduces soil loss on the Qinghai-Tibetan Plateau. Catena 2022, 219, 106632. [Google Scholar] [CrossRef]
- Lyu, L.; Shi, J.; Gao, P.; Fu, S.; Li, F.; Cai, Z. Research status of Kengyilia thoroldiana, an ecological grass species in alpine desert grassland, and research progress of forage high-yield cultivation techniques. Feed Ind. 2025, 46, 1–15. [Google Scholar]
- He, G.; Liu, X.; Li, Y.; Ji, T. Response of plant life forms and soil physical properties to near-natural restoration measures in alpine grassland, Tibetan plateau. Front. Plant Sci. 2025, 15, 1504754. [Google Scholar] [CrossRef]
- Bao, S.D. Soil Agrochemical Analysis; China Agriculture Press: Beijing, China, 2005; pp. 39–97. [Google Scholar]
- Zhao, Z.; Qiu, X.; Yin, J.; Zhao, R.; Yang, Q. Effect of fluoride pollution on the bacterial community in the water-soil system of the Qingshui River basin in Ningxia. J. Lake Sci. 2025, 38, 1–15. [Google Scholar]
- Lyu, L.; Shi, J.; Gao, P.; Cai, Z.; Li, F. EM biofertilizer and organic fertilizer co-application modulate vegetation-soil-bacteria interaction networks in artificial grasslands of alpine mining regions. Front. Microbiol. 2025, 16, 1659475. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; Li, Y.; Cheng, H. Influences of alpine ecosystem responses to climatic change on soil properties on the Qinghai–Tibet Plateau, China. Catena 2007, 70, 506–514. [Google Scholar] [CrossRef]
- Liu, T.S. Study on Community Structure Characteristics of Ulmus Pumila in Southern Edge of Hunshandake Sandy Land. Master’s Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2019; pp. 28–31. [Google Scholar]
- Wang, J.; Lyu, Z.Z.; Qian, Y.; Song, J.; Zhong, X.Y. Soil nutrients under vegetation cover of different desert landscapes in junggar basin, Xinjiang. China Desert. 2010, 30, 1367–1373. [Google Scholar]
- Li, X.; Li, X.; Shi, Y.; Zhao, S.; Liu, J.; Lin, Y.; Li, C.; Zhang, C. Effects of microtopography on soil microbial communities in alpine meadows on the Qinghai-Tibetan Plateau. Catena 2024, 239, 107945. [Google Scholar] [CrossRef]
- Jamshidi, A.H.; Sun, L.; Niu, Y.; Liu, X.; Fan, Z.; Yi, W.; Zhang, S. Slope gradient altered microbial community composition in the sloping cropland in black soil. Catena 2023, 232, 107416. [Google Scholar] [CrossRef]
- Liu, W.; Wang, J.; Shi, M.; Zhang, W.; Wang, Z.; Guo, G.; Zhang, Y. Relationship between soil microbial community structure and soil physicochemical factors of shady slope and sunny slope of tea garden. Jiangsu J. Agric. Sci. 2024, 40, 251–259. [Google Scholar]
- Zhang, Q.; Yao, B.H.; Wang, C.; Kang, Y.K.; Guo, H.L.; Yang, Y.B.; Su, J.H. Soil physical and chemical characteristics and microbial proportions in an alpine meadow with different slopes. Acta Ecol. Sin. 2019, 39, 3167–3174. [Google Scholar] [CrossRef]
- Cao, Y.; Ai, Z.; Dang, X.; Chen, Q.; Wang, T.; Li, J.; Deng, Y.; Liu, H.; Li, Q.; Zhao, M. The addition of rhizosphere soil can affect the plant-soil-microbial nutrients of Bothriochloa ischaemum. Rhizosphere 2025, 33, 101042. [Google Scholar] [CrossRef]
- Yu, J.; Li, S.; Sun, X.; Zhou, W.; He, L.; Zhao, G.; Chen, Z.; Bai, X.; Zhang, J. The impact and determinants of mountainous topographical factors on soil microbial community characteristics. Microorganisms 2023, 11, 2878. [Google Scholar] [CrossRef]
- Chen, L.F.; Kong, J.Q.; He, Z.B.; Zhao, W.Z.; Song, M.D.; Li, Y.M.; Gao, Y.; Yang, S.P. A fundamental role of slope aspect and elevation in controlling diversity patterns of soil bacterial communities: Insights from an Arid-Montane Ecosystem in China. J. Soil Sci. Plant Nutr. 2022, 22, 3996–4007. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, L.; Lu, J.; Chen, W.; Wei, G.; Lin, Y. Topography affects the soil conditions and bacterial communities along a restoration gradient on Loess-Plateau. Appl. Soil Ecol. 2020, 150, 1034711. [Google Scholar] [CrossRef]
- Wang, W. Effects of Earthworms on Soil Organic Carbon Sequestration and Microbial Characteristics in Black Soils Under Straw Carbon Input. Ph.D. Thesis, Northeast Normal University, Changchun, China, 2022; pp. 67–68. [Google Scholar]
- Zou, S.; Wu, A.; Pan, Z.; Rao, X.; Wu, L.; Feng, R.; Yang, W. Effects of different fertilization treatments on soil chemical and microbial characteristics in pomelo orchards. J. Nucl. Agron. 2025, 39, 827–838. [Google Scholar]
- Jiang, C.; Shui, W.; Jian, X.M.; Guo, P.P.; Cheng, Y.P. Soil microbial community characteristics in degraded karst tiankeng invaded by Eupatorium adenophorum. Acta Appl. Ecol. 2019, 30, 2002–2010. [Google Scholar]
- Lu, J.; Tian, H.; Xiong, J.; Wu, X.; Liu, Y.; Zhang, H. Effects of N and P fertilization on soil N-cycling microbial community structure in white clover grasslands. Curr. Microbiol. 2025, 82, 195. [Google Scholar] [CrossRef]
- Yu, M.; Wang, Q.; Su, Y.; Xi, H.; Qiao, Y.; Guo, Z.; Wang, Y.; Shen, A. Response of soil environment and microbial community structure to different ratios of long-term straw return and nitrogen fertilizer in wheat–maize system. Sustainability 2023, 15, 1986. [Google Scholar] [CrossRef]
- Yang, S.; Xu, Y.; Tang, Z.; Jin, S.; Yang, S. The impact of alkaline stress on plant growth and its alkaline resistance mechanisms. Int. J. Mol. Sci. 2024, 25, 13719. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Zhang, F.; Zhu, X.; Lamlom, S.F.; Zhao, K.; Zhang, B.; Wang, J. Manipulating rhizosphere microorganisms to improve crop yield in saline-alkali soil: A study on soybean growth and development. Front. Microbiol. 2023, 14, 1233351. [Google Scholar] [CrossRef]
- Li, M.; Wang, K.; Zheng, W.; Maddela, N.R.; Xiao, Y.; Li, Z.; Tawfik, A.; Chen, Y.; Zhou, Z. Metagenomics and network analysis decipher profiles and co-occurrence patterns of bacterial taxa in soils amended with biogas slurry. Sci. Total Environ. 2023, 877, 162911. [Google Scholar] [CrossRef]
- Yu, Z.; Hu, X.; Wei, D.; Liu, J.; Zhou, B.; Jin, J.; Liu, X.; Wang, G. Long-term inorganic fertilizer use influences bacterial communities in Mollisols of Northeast China based on high-throughput sequencing and network analyses. Arch. Agron. Soil Sci. 2019, 65, 1331–1340. [Google Scholar] [CrossRef]
- Yan, F.; Zhao, X.; Shao, L.J.; Wang, X.Y.; Liang, Y.B.; Chen, Y.H. Impact of different vegetation restoration types on soil microbial community structure in the restoration area of quarries in northern Hebei Province. Environ. Sci. 2025, 46, 1213–1224. [Google Scholar]
- Yan, F.; Shi, J.; Han, B.; Zhao, X.; Liang, Y.; Chen, Y.; Zhu, Z. Effects of different restoration rerrains on the inter-root soil environment and bacterial communities of Pinus tabuliformis: A case study of the quarry restoration area in northern Hebei, China. Environ. Sci. 2024, 46, 1–15. [Google Scholar]
- Lyu, G.; Hu, J.; Ma, J. Variation in bacterial and fungal communities in soils from three major apple pear (Pyrus bretschneideri Rehd) orchards. Microorganisms 2024, 12, 1751. [Google Scholar] [CrossRef]
- Li, Y.; Li, Q.; Li, W.; Pengmao, D.; Lyu, J. Study on soil microbial community diversity of typical plant communities in the Qaidam Haloxylon Ecosystem Reserve. Acta Grassl. 2025, 33, 2227–2237. [Google Scholar]
- Cui, Y.; Ren, F.; Wu, Y.; Liu, H.; Sun, Z.; Wang, Y.; Peter-Contesse, H.; Han, S.; Wan, S.; Zheng, J. Impact of plant carbon inputs on soil bacterial communities and nitrogen cycle functions in temperate steppe. Plant Soil 2024, 513, 435–452. [Google Scholar] [CrossRef]
- Xue, P.; Minasny, B.; Mcbratney, A.; Wilson, N.L.; Tang, Y.; Luo, Y. Distinctive role of soil type and land use in driving bacterial communities and carbon cycling functions down soil profiles. Catena 2023, 223, 106903. [Google Scholar] [CrossRef]
- An, X.; Wang, Z.; Teng, X.; Zhou, R.; Wang, X.; Xu, M.; Lian, B. Rhizosphere bacterial diversity and environmental function prediction of wild salt-tolerant plants in coastal silt soil. Ecol. Indic. 2022, 134, 108503. [Google Scholar] [CrossRef]
- Qi, J.; Chen, B.; Gao, J.; Peng, Z.; Jiao, S.; Wei, G. Responses of soil bacterial community structure and function to dry–wet cycles more stable in paddy than in dryland agricultural ecosystems. Glob. Ecol. Biogeogr. 2021, 31, 362–377. [Google Scholar] [CrossRef]
- Gao, P.; Li, X.; Chai, Y.; Li, C.; Li, X.; Wang, Y.; Zhao, X.; Miao, J. Effects of microbial agents combined with sheep manure on community characteristics and soil fungal diversity of degraded grassland in the source region of the three rivers. China Environ. Sci. 2025, 45, 5823–5835. [Google Scholar]
- Zhu, M.; Song, Y.; Li, M.; Gong, C.; Liu, Z.; Yuan, J.; Li, X.; Song, C. Ammonia nitrogen and dissolved organic carbon regulate soil microbial gene abundances and enzyme activities in wetlands under different vegetation types. Appl. Soil Ecol. 2024, 196, 105310. [Google Scholar] [CrossRef]
- Ni, Y.; Yang, T.; Ma, Y.; Zhang, K.; Soltis, P.S.; Soltis, D.E.; Gilbert, J.A.; Zhao, Y.; Fu, C.; Chu, H. Soil pH determines bacterial distribution and assembly processes in natural mountain forests of eastern China. Glob. Ecol. Biogeogr. 2021, 30, 2164–2177. [Google Scholar] [CrossRef]
- Carrino-Kyker, S.R.; Coyle, K.P.; Kluber, L.A.; Burke, D.J. Fungal and bacterial communities exhibit consistent responses to reversal of soil acidification and phosphorus limitation over Time. Microorganisms 2019, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Qi, D.; Wieneke, X.; Tao, J.; Zhou, X.; Desilva, U. Soil pH is the primary factor correlating with soil microbiome in karst rocky desertification regions in the wushan county, Chongqing, China. Front. Microbiol. 2018, 9, 1027. [Google Scholar] [CrossRef] [PubMed]













| Habitat Samples | Coverage /(%) | Height /(cm) | Biomass /(g·m−2) | SWC /(%) | SEC /(μs·cm−1) | pH | SOC /(g·kg−1) | TN /(g·kg−1) | TP /(g·kg−1) | TK /(g·kg−1) |
|---|---|---|---|---|---|---|---|---|---|---|
| n = 60 | n = 60 | n = 60 | n = 3 | n = 60 | n = 60 | n = 3 | n = 3 | n = 3 | n = 3 | |
| H1 | 35.11 ± 3.9 c | 18.63 ± 2.34 d | 346.21 ± 20.97 d | 23.13 ± 3.34 c | 1098.36 ± 63.67 a | 8.66 ± 0.05 a | 5.60 ± 0.46 d | 0.77 ± 0.16 d | 0.32 ± 0.02 b | 19.08 ± 2.12 c |
| H2 | 70.81 ± 6.82 a | 34.87 ± 1.65 a | 652.49 ± 20.65 a | 40.38 ± 4.16 a | 599.41 ± 38.50 c | 7.97 ± 0.12 c | 15.30 ± 1.53 a | 1.55 ± 0.07 a | 0.58 ± 0.06 a | 25.28 ± 0.82 a |
| H3 | 44.05 ± 2.69 c | 24.18 ± 1.60 c | 395.31 ± 30.94 c | 27.34 ± 2.85 c | 932.54 ± 120.11 b | 8.35 ± 0.02 b | 5.84 ± 0.25 d | 1.06 ± 0.14 b | 0.36 ± 0.05 b | 20.00 ± 0.46 bc |
| H4 | 56.12 ± 6.14 b | 28.16 ± 2.07 b | 468.17 ± 37.23 b | 27.83 ± 1.27 c | 832.02 ± 80.23 b | 8.23 ± 0.03 b | 8.43 ± 0.37 c | 0.82 ± 0.02 d | 0.39 ± 0.03 b | 20.01 ± 1.21 bc |
| H5 | 70.25 ± 4.29 a | 31.69 ± 1.36 a | 623.71 ± 10.64 a | 35.43 ± 3.23 b | 648.72 ± 62.92 c | 8.08 ± 0.06 c | 10.75 ± 0.60 b | 1.20 ± 0.08 b | 0.52 ± 0.01 a | 22.05 ± 1.41 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, L.; Gao, P.; Xing, Y.; Ma, J.; Liu, Y.; Yang, Z.; Wang, X.; Shi, J. Bacterial Community Characteristics of Kengyilia thoroldiana Rhizosphere Soil in Different Topographic Habitats of the Yellow River Source Region and Their Response to Vegetation-Soil Factors. Microorganisms 2025, 13, 2438. https://doi.org/10.3390/microorganisms13112438
Lyu L, Gao P, Xing Y, Ma J, Liu Y, Yang Z, Wang X, Shi J. Bacterial Community Characteristics of Kengyilia thoroldiana Rhizosphere Soil in Different Topographic Habitats of the Yellow River Source Region and Their Response to Vegetation-Soil Factors. Microorganisms. 2025; 13(11):2438. https://doi.org/10.3390/microorganisms13112438
Chicago/Turabian StyleLyu, Liangyu, Pei Gao, Yunfei Xing, Jun Ma, Yan Liu, Zhijie Yang, Xin Wang, and Jianjun Shi. 2025. "Bacterial Community Characteristics of Kengyilia thoroldiana Rhizosphere Soil in Different Topographic Habitats of the Yellow River Source Region and Their Response to Vegetation-Soil Factors" Microorganisms 13, no. 11: 2438. https://doi.org/10.3390/microorganisms13112438
APA StyleLyu, L., Gao, P., Xing, Y., Ma, J., Liu, Y., Yang, Z., Wang, X., & Shi, J. (2025). Bacterial Community Characteristics of Kengyilia thoroldiana Rhizosphere Soil in Different Topographic Habitats of the Yellow River Source Region and Their Response to Vegetation-Soil Factors. Microorganisms, 13(11), 2438. https://doi.org/10.3390/microorganisms13112438

