Bioengineering Caulobacter vibrioides for Xylanase Applications in the Bakery Industry
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growing Conditions
2.2. Cloning of the xynA1 Gene in the pAS22 Expression Vector
2.3. Construction of the BS-xynA1 Strain
2.4. Growth, Xylose Consumption, and Xylanase Production
2.5. Enzymes Production in Different Agro-Industrial Residues
2.6. Dosages of Different Enzymes
2.7. Commercially Available Xylanases Versus Xylanase of BS-xynA1
2.8. Test for Confirmation of the Absence of Viable Bacteria in Enzyme Extracts
2.9. mRNA xynA1 Gene Expression Analysis: RNA Extraction and RT-qPCR Assay
2.10. Software and IA Tools
2.11. Application of C. vibrioides Cell-Free XynA1 in Bread Formulation
2.12. Alveograph Test: Evaluating Dough Viscoelastic Characteristics
2.13. Statistical Analysis
3. Results and Discussion
3.1. Subcloning of the xynA1 Gene and Construction of the BS-xynA1 Strain
3.2. Growth, Xylose Consumption, and Xylanase Production of BS-XynA1 Strain
3.3. Enzyme Quantification and RT-qPCR Assay Using BS-xynA1 Strain
3.4. XynA1 Production in Different Agro-Industrial Residues
3.5. Commercial Xylanases Versus Xylanase from BS-xynA1
3.6. The Absence of Bacteria in the Enzyme Extracts Was Tested
3.7. Application of XynA1 in Bakery
3.8. Alveograph Test
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manicardi, T.; Baioni e Silva, G.; Longati, A.A.; Paiva, T.D.; Souza, J.P.M.; Pádua, T.F.; Furlan, F.F.; Giordano, R.L.C.; Giordano, R.C.; Milessi, T.S. Xylooligosaccharides: A Bibliometric Analysis and Current Advances of This Bioactive Food Chemical as a Potential Product in Biorefineries’ Portfolios. Foods 2023, 12, 3007. [Google Scholar] [CrossRef] [PubMed]
- Bosetto, A.; Justo, P.I.; Zanardi, B.; Venzon, S.S.; Graciano, L.; dos Santos, E.L.; Simão, R.C.G. Research Progress Concerning Fungal and Bacterial β-Xylosidases. Appl. Biochem. Biotechnol. 2016, 178, 766–795. [Google Scholar] [CrossRef]
- Graciano, L.; Corrêa, J.M.; Vieira, F.G.N.; Bosetto, A.; Loth, E.A.; Kadowaki, M.K.; Gandra, R.F.; Simão, R.C.G. Cloning and Expression of the XynA1 Gene Encoding a Xylanase of the GH10 Group in Caulobacter crescentus. Appl. Biochem. Biotechnol. 2015, 175, 3915–3929. [Google Scholar] [CrossRef]
- Jacomini, D.; Bussler, L.; Corrêa, J.M.; Kadowaki, M.K.; Maller, A.; da-Conceição Silva, J.L.; Simão, R.C.G. Cloning, Expression and Characterization of C. crescentus xynA2 Gene and Application of Xylanase II in the Deconstruction of Plant Biomass. Mol. Biol. Rep. 2020, 47, 4427–4438. [Google Scholar] [CrossRef] [PubMed]
- Chakdar, H.; Kumar, M.; Pandiyan, K.; Singh, A.; Nanjappan, K.; Kashyap, P.L.; Srivastava, A.K. Bacterial Xylanases: Biology to Biotechnology. 3 Biotech 2016, 6, 150. [Google Scholar] [CrossRef]
- Dutta, B.; Banerjee, A.; Chakraborty, P.; Bandopadhyay, R. In Silico Studies on Bacterial Xylanase Enzyme: Structural and Functional Insight. J. Genet. Eng. Biotechnol. 2018, 16, 749–756. [Google Scholar] [CrossRef]
- Fang, C.; Wang, Q.; Selvaraj, J.N.; Zhou, Y.; Ma, L.; Zhang, G.; Ma, Y. High Copy and Stable Expression of the Xylanase XynHB in Saccharomyces cerevisiae by RDNA-Mediated Integration. Sci. Rep. 2017, 7, 8747. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Ming, J.; Brennan, M.; Brennan, C. Enzymes (α-Amylase, Xylanase, and Cellulase) in Steamed Buckwheat Buns: The Effects on Quality and Predicted Glycemic Response. Foods 2025, 14, 2735. [Google Scholar] [CrossRef]
- Putseys, J.A.; Schooneveld-Bergmans, M.E.F. Enzymes Used in Baking. In Industrial Enzyme Applications; Wiley: Hoboken, NJ, USA, 2019; pp. 95–123. [Google Scholar] [CrossRef]
- Kumar, V.; Binod, P.; Sindhu, R.; Gnansounou, E.; Ahluwalia, V. Bioconversion of Pentose Sugars to Value Added Chemicals and Fuels: Recent Trends, Challenges and Possibilities. Bioresour. Technol. 2018, 269, 443–451. [Google Scholar] [CrossRef]
- Kaur, D.; Joshi, A.; Sharma, V.; Batra, N.; Sharma, A.K. An Insight into Microbial Sources, Classification, and Industrial Applications of Xylanases: A Rapid Review. Biotechnol. Appl. Biochem. 2023, 70, 1489–1503. [Google Scholar] [CrossRef]
- Yegin, S.; Altinel, B.; Tuluk, K. Exploitation of Aureobasidium pullulans NRRL Y-2311-1 Xylanase in Mulberry and Rice Flours–Based Gluten-Free Cookie Formulation: Effects on Dough Properties and Cookie Characteristics. J. Food Sci. 2024, 89, 2645–2658. [Google Scholar] [CrossRef]
- Lombard, V.; Golaconda Ramulu, H.; Drula, E.; Coutinho, P.M.; Henrissat, B. The Carbohydrate-Active Enzymes Database (CAZy) in 2013. Nucleic Acids Res. 2014, 42, D490–D495. [Google Scholar] [CrossRef]
- Lu, L.; Liu, Y.; Zhang, Z. Global Characterization of Gh10 Family Xylanase Genes in Rhizoctonia Cerealis and Functional Analysis of Xylanase RcXYN1 During Fungus Infection in Wheat. Int. J. Mol. Sci. 2020, 21, 1812. [Google Scholar] [CrossRef]
- Malgas, S.; Mafa, M.S.; Mathibe, B.N.; Pletschke, B.I. Unraveling Synergism Between Various GH Family Xylanases and Debranching Enzymes During Hetero-Xylan Degradation. Molecules 2021, 26, 6770. [Google Scholar] [CrossRef]
- Glekas, P.D.; Kalantzi, S.; Dalios, A.; Hatzinikolaou, D.G.; Mamma, D. Biochemical and Thermodynamic Studies on a Novel Thermotolerant GH10 Xylanase from Bacillus safensis. Biomolecules 2022, 12, 790. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Sun, Z.; Ni, Z.; Qi, Y.; Sun, Q.; Hu, Y.; Li, C. Molecular Identification and Engineering a Salt-Tolerant GH11 Xylanase for Efficient Xylooligosaccharides Production. Biomolecules 2024, 14, 1188. [Google Scholar] [CrossRef] [PubMed]
- Sly, L.I. A Reforming Force in Bacterial Systematics and Nomenclature. Int. J. Syst. Bacteriol. 1995, 45, 412–413. [Google Scholar] [CrossRef]
- Marks, M.E.; Castro-Rojas, C.M.; Teiling, C.; Du, L.; Kapatral, V.; Walunas, T.L.; Crosson, S. The Genetic Basis of Laboratory Adaptation in Caulobacter Crescentus. J. Bacteriol. 2010, 192, 3678–3688. [Google Scholar] [CrossRef]
- Schober, I.; Koblitz, J.; Carbasse, J.S.; Ebeling, C.; Schmidt, M.L.; Podstawka, A.; Gupta, R.; Ilangovan, V.; Chamanara, J.; Overmann, J.; et al. BacDive in 2025: The Core Database for Prokaryotic Strain Data. Nucleic Acids Res. 2025, 53, D748–D756. [Google Scholar] [CrossRef]
- Hosoi-Tanabe, S.; Zhang, H.; Daochen, Z.; Nagata, S.; Ban, S.; Imura, S. Comprehensive Analysis of an Antarctic Bacterial Community with the Adaptability of Growth at Higher Temperatures than Those in Antarctica. Biocontrol Sci. 2010, 15, 57–62. [Google Scholar] [CrossRef]
- Moore, G.M.; Gitai, Z. Both Clinical and Environmental Caulobacter Species Are Virulent in the Galleria Mellonella Infection Model. PLoS ONE 2020, 15, e0230006. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Huang, J.; Liu, Y.; Chen, X.; Gao, T.; Li, N.; Huang, W.; Wu, M. Directed Modification of a GHF11 Thermostable Xylanase AusM for Enhancing Inhibitory Resistance Towards SyXIP-I and Application of AusMPKK in Bread Making. Foods 2023, 12, 3574. [Google Scholar] [CrossRef]
- Hottes, A.K.; Meewan, M.; Yang, D.; Arana, N.; Romero, P.; McAdams, H.H.; Stephens, C. Transcriptional Profiling of Caulobacter crescentus During Growth on Complex and Minimal Media. J. Bacteriol. 2004, 186, 1448–1461. [Google Scholar] [CrossRef]
- Corrêa, J.M.; Mingori, M.R.; Gandra, R.F.; Loth, E.A.; Seixas, F.A.V.; Simão, R.C.G. Depletion of the xynB2 Gene Upregulates β-Xylosidase Expression in C. crescentus. Appl. Biochem. Biotechnol. 2014, 172, 1085–1097. [Google Scholar] [CrossRef]
- Simon, R.; Priefer, U.; Pühler, A. A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenisis in Gram Negative Bacteria. Res. Pap. 1983, 1, 784–791. [Google Scholar] [CrossRef]
- Green, M.R.; Sambrook, J. Molecular Cloning: A Laboratory Manual, 4th ed.; Cold Spring Harbor Laboratory Press: Woodbury, NY, USA, 2012; ISBN 9781936113422. [Google Scholar]
- Evinger, M.; Agabian, N. Envelope-Associated Nucleoid from Caulobacter crescentus Stalked and Swarmer Cells. J. Bacteriol. 1977, 132, 294–301. [Google Scholar] [CrossRef]
- Meisenzahl, A.C.; Shapiro, L.; Jenal, U. Isolation and Characterization of a Xylose-Dependent Promoter from Caulobacter crescentus. J. Bacteriol. 1997, 179, 592–600. [Google Scholar] [CrossRef]
- Jenal, U. An Essential Protease Involved in Bacterial Cell-Cycle Control. EMBO J. 1998, 17, 5658–5669. [Google Scholar] [CrossRef]
- Herbert, D.; Phipps, P.J.; Strange, R.E. Chapter III Chemical Analysis of Microbial Cells. In Methods in Microbiology; Academic Press: Cambridge, MA, USA, 1971; Volume 5-Part B, pp. 209–344. [Google Scholar]
- dos Santos, A.A.; Deoti, J.R.; Müller, G.; Dário, M.G.; Stambuk, B.U.; Alves Junior, S.L. Dosagem de Açúcares Redutores Com o Reativo DNS Em Microplaca. Braz. J. Food Technol. 2017, 20, e2015113. [Google Scholar] [CrossRef]
- Justo, P.I.; Corrêa, J.M.; Maller, A.; Kadowaki, M.K.; da Conceição-Silva, J.L.; Gandra, R.F.; Simão, R.C.G. Analysis of the XynB5 Gene Encoding a Multifunctional GH3-BglX β-Glucosidase-β-Xylosidase-α-Arabinosidase Member in Caulobacter crescentus. Antonie Van Leeuwenhoek 2015, 108, 993–1007. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Ishiguro-Watanabe, M.; Tanabe, M. KEGG: Integrating Viruses and Cellular Organisms. Nucleic Acids Res. 2021, 49, D545–D551. [Google Scholar] [CrossRef]
- Stothard, P. The Sequence Manipulation Suite: JavaScript Programs for Analyzing and Formatting Protein and DNA Sequences. Biotechniques 2000, 28, 1102–1104. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Glenn, S.; Fragasso, A.; Lin, W.H.; Papagiannakis, A.; Kato, S.; Jacobs-Wagner, C. Coupling of Cell Growth Modulation to Asymmetric Division and Cell Cycle Regulation in Caulobacter crescentus. Proc. Natl. Acad. Sci. USA 2024, 121, e2406397121. [Google Scholar] [CrossRef]
- Corrêa, J.M.; dos Santos, E.L.; Simões, M.R.; Kadowaki, M.K.; Gandra, R.F.; Simão, R.C.G. Optimization of C. Crescentus β-Xylosidases and Expression of XynB1–5 Genes in Response to Agro-Industrial Waste. Waste Biomass Valorization 2020, 11, 6169–6178. [Google Scholar] [CrossRef]
- Rai, R.; Samanta, D.; Goh, K.M.; Chadha, B.S.; Sani, R.K. Biochemical Unravelling of the Endoxylanase Activity in a Bifunctional GH39 Enzyme Cloned and Expressed from Thermophilic Geobacillus sp. WSUCF1. Int. J. Biol. Macromol. 2024, 257, 128679. [Google Scholar] [CrossRef]
- Fatokun, E.N.; Nwodo, U.U.; Okoh, A.I. Classical Optimization of Cellulase and Xylanase Production by a Marine Streptomyces Species. Appl. Sci. 2016, 6, 286. [Google Scholar] [CrossRef]
- Zhu, W.; Qin, L.; Xu, Y.; Lu, H.; Wu, Q.; Li, W.; Zhang, C.; Li, X. Three Molecular Modification Strategies to Improve the Thermostability of Xylanase XynA from Streptomyces rameus L2001. Foods 2023, 12, 879. [Google Scholar] [CrossRef] [PubMed]
- Parenti, O.; Zanoni, B.; Giuffrè, M.R.; Guerrini, L. The Effect of Kneading Speed on Breadmaking from Unrefined Wheat Flour Dough. Eur. Food Res. Technol. 2022, 248, 543–551. [Google Scholar] [CrossRef]
- Hu, G.; Hong, X.; Zhu, M.; Lei, L.; Han, Z.; Meng, Y.; Yang, J. Improving the Quality of Wheat Flour Bread by a Thermophilic Xylanase with Ultra Activity and Stability Reconstructed by Ancestral Sequence and Computational-Aided Analysis. Molecules 2024, 29, 1895. [Google Scholar] [CrossRef]
- de Oliveira Simas, A.L.; de Alencar Guimarães, N.C.; Glienke, N.N.; Galeano, R.M.S.; de Sá Teles, J.S.; Kiefer, C.; de Souza Nascimento, K.M.R.; Masui, D.C.; Zanoelo, F.F.; Giannesi, G.C. Production of Phytase, Protease and Xylanase by Aspergillus niveus with Rice Husk as a Carbon Source and Application of the Enzymes in Animal Feed. Waste Biomass Valorization 2024, 15, 3939–3951. [Google Scholar] [CrossRef]
- Jiang, Z.Q.; Yang, S.Q.; Tan, S.S.; Li, L.T.; Li, X.T. Characterization of a Xylanase from the Newly Isolated Thermophilic Thermomyces lanuginosus CAU44 and Its Application in Bread Making. Lett. Appl. Microbiol. 2005, 41, 69–76. [Google Scholar] [CrossRef]
- De Queiroz Brito Cunha, C.C.; Gama, A.R.; Cintra, L.C.; Bataus, L.A.M.; Ulhoa, C.J. Improvement of Bread Making Quality by Supplementation with a Recombinant Xylanase Produced by Pichia pastoris. PLoS ONE 2018, 13, e0192996. [Google Scholar] [CrossRef] [PubMed]
- Osella, C.; de la Torre, M.; Erbem, M.; Galhardo, A.; Sánchez, H. Effect of Xylanase on the Technological Behaviour of Wheat Flours. Acad. J. Food Res. 2013, 1, 033–039. [Google Scholar] [CrossRef]
- Law n° 11,105 of March 24, 2005 (Biosafety Law). Official Gazette of the Union: Brasília, Brazil. 2005. Available online: http://www.planalto.gov.br/ccivil_03/_ato2004-2006/2005/lei/l11105.htm (accessed on 19 September 2025).
- Trono, D. Recombinant Enzymes in the Food and Pharmaceutical Industries. In Biomass, Biofuels, Biochemicals: Advances in Enzyme Technology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 349–387. ISBN 9780444641144. [Google Scholar]
- Puetz, J.; Wurm, F.M. Recombinant Proteins for industrial versus Pharmaceutical Purposes: A Review of Process and Pricing. Processes 2019, 7, 476. [Google Scholar] [CrossRef]
- Pobiega, K.; Sękul, J.; Pakulska, A.; Latoszewska, M.; Michońska, A.; Korzeniowska, Z.; Macherzyńska, Z.; Pląder, M.; Duda, W.; Szafraniuk, J.; et al. Fungal Proteins: Sources, Production and Purification Methods, Industrial Applications, and Future Perspectives. Appl. Sci. 2024, 14, 6259. [Google Scholar] [CrossRef]
- Fernandes, B.; Dias da Silva Guerra, L. Insegurança Alimentar e Nutricional No Brasil. J. Manag. Prim. Health Care 2023, 15, e003. [Google Scholar] [CrossRef]
Strains/Plasmids | Genotype/Description | Source/Reference |
---|---|---|
E. coli | ||
DH5α | Δ(lacZYA-argF) U169 deoR recA1 endA1 hsdR17 phoA sup144 thi-1 gyrA96 relA1 (ϕ80 lacZDM15). | Invitrogen®. |
S17 | M294::RP4-2 (Tc::Mu) (Km::Tn7) | [26] |
DH5α-pAS22-xynA1 | E. coli DH5α carrying pAS22-xynA1. | This study |
S17-pAS22-xynA1 | E. coli S17 carrying pAS22-xynA1 | This study |
DH5α-pAS22 | E. coli DH5α carrying pAS22 | This study |
S17-pAS22 | E. coli S17 carrying pAS22 | This study |
C. vibrioides | ||
NA1000 | Holdfast mutant derivative of wild-type strain CB15 | [28] |
BS-xynA1 | NA1000 carrying pAS22-xynA1 | This study |
WT-pAS22 | NA1000 carrying pAS22 | This study |
Plasmid | ||
pAS22 | Vector for expression of genes in Caulobacter from the PxylX promoter, ori T, CmR | [29] |
pAS22-xynA1 | pAS22 containing the xynA1 gene under the control of PxylX promoter | This study |
Components | T1 | T2 | T3 |
---|---|---|---|
Flour | 1000 g | 1000 g | 1000 g |
Salt | 20 g | 20 g | 20 g |
Sugar | 60 g | 60 g | 60 g |
Vegetable fat | 40 g | 40 g | 40 g |
Yeast | 20 g | 20 g | 20 g |
Water | 500 mL | 440 mL | 380 mL |
Cell-free XynA1 * | - | 60 mL | 120 mL |
Components | XynA1− | XynA1+ * |
---|---|---|
Flour | 250 g | 250 g |
Water | 127.7 mL | 97.7 mL |
Sodium Chloride | 3192.5 g | 3192.5 g |
Cell-free XynA1 * | no addition | 30 mL |
Parameters | XynA1− (T1) | XynA1+ (T2) | XynA1++ (T3) | ||
---|---|---|---|---|---|
Kneading time to get the veil point (min) | 11 | 10 | 10 | ||
Height of bread after fermentation (cm) | 7.9 ± 0.05 | 8.6 ± 0.04 | 9.3 ± 0.05 | ||
Height of bread after baking (cm) | 8.8 ± 0.07 | 9.8 ± 0.08 | 10.4 ± 0.07 | ||
Anova | Source of Variation | dF | F | p-value ** | Fc |
Between group | 1 | 980.14 | 2.05 × 10−35 | 7.15 | |
Inside group | 52 | ||||
Tukey Test | Between groups | Ma XynA1− (T1) | Ma XynA1+ (T2) | Ma XynA1++ (T3) | LSD |
Kneading/Fermentation | 3.1 | 1.4 | 0.7 | 1.007995 | |
Fermentation/baking | 0.9 | 1.2 | 1.1 | 1.007995 | |
Kneading/baking | 2.2 | 0.2 | 0.4 | 1.007995 |
Parameters | Anova | F | p Value * | Fc | Tukey | LSD | ||
---|---|---|---|---|---|---|---|---|
XynA1 | − | + | dF = 117 | 269.38 | 3.6784 × 10−79 | 2.34 | Ma | |
P (mmH2O) | 134 | 126 | 8 | 6.56447705 | ||||
L (mm) | 69 | 82 | 13 | 6.56447705 | ||||
W (J) | 326 × 10−4 | 353 × 10−4 | 27 | 6.56447705 | ||||
P/L | 1.94 | 1.54 | ||||||
eI | 53.6% | 56.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simioni, B.; Rocha, P.M.C.; Fávero, A.; da Conceição Silva, J.L.; Gandra, R.F.; Maller, A.; Kadowaki, M.K.; Simão, R.d.C.G. Bioengineering Caulobacter vibrioides for Xylanase Applications in the Bakery Industry. Microorganisms 2025, 13, 2367. https://doi.org/10.3390/microorganisms13102367
Simioni B, Rocha PMC, Fávero A, da Conceição Silva JL, Gandra RF, Maller A, Kadowaki MK, Simão RdCG. Bioengineering Caulobacter vibrioides for Xylanase Applications in the Bakery Industry. Microorganisms. 2025; 13(10):2367. https://doi.org/10.3390/microorganisms13102367
Chicago/Turabian StyleSimioni, Bruna, Paula Maria Carneiro Rocha, Adriano Fávero, José Luis da Conceição Silva, Rinaldo Ferreira Gandra, Alexandre Maller, Marina Kimiko Kadowaki, and Rita de Cássia Garcia Simão. 2025. "Bioengineering Caulobacter vibrioides for Xylanase Applications in the Bakery Industry" Microorganisms 13, no. 10: 2367. https://doi.org/10.3390/microorganisms13102367
APA StyleSimioni, B., Rocha, P. M. C., Fávero, A., da Conceição Silva, J. L., Gandra, R. F., Maller, A., Kadowaki, M. K., & Simão, R. d. C. G. (2025). Bioengineering Caulobacter vibrioides for Xylanase Applications in the Bakery Industry. Microorganisms, 13(10), 2367. https://doi.org/10.3390/microorganisms13102367