Entomopathogenic Nematodes and Bioactive Compounds of Their Bacterial Endosymbionts Act Synergistically in Combination with Spinosad to Kill Phthorimaea operculella (Zeller, 1873) (Lepidoptera: Gelechiidae), a Serious Threat to Food Security
Abstract
1. Introduction
2. Materials and Methods
2.1. Entomopathogenic Nematodes (EPNs)
2.2. Potato Tuber Moth (PTM)
2.3. Survival of EPNs in Spinosad
2.4. Pathogenicity Bioassay with EPNs and Spinosad
2.5. Isolation of Endosymbiotic Bacteria
2.6. Preparation of Bioactive Compounds (BACs)
2.7. Bioassay with BACs and Spinosad
2.8. Gas Chromatography Mass Spectrometry (GC-MS) Analysis
2.9. Statistical Analysis
3. Results
3.1. Survival of EPNs in Spinosad
3.2. Pathogenicity Bioassay with EPNs and Spinosad
3.3. Bioassay with BACs and Spinosad
3.4. GC-MS Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| PTM | Potato tuber moth |
| EPN | Entomopathogenic nematode |
| IJs | Infective juveniles |
| ESB | Endosymbiotic bacteria |
| BAC | Bioactive compound |
References
- Hu, X.; Jiang, H.; Liu, Z.; Gao, M.; Liu, G.; Tian, S.; Zeng, F. The global potato-processing industry: A review of production, products, quality and sustainability. Foods 2025, 14, 1758. [Google Scholar] [CrossRef]
- Raymundo, R.; Asseng, S.; Robertson, R.; Petsakos, A.; Hoogenboom, G.; Quiroz, R.; Wolf, J. Climate change impact on global potato production. Eur. J. Agron. 2018, 100, 87–98. [Google Scholar] [CrossRef]
- Rondon, S.I.; Carrillo, C.C.; Cuesta, H.X.; Navarro, P.D.; Acuña, I. Latin America potato production: Pests and foes. In Insect Pests of Potato; Academic Press: Cambridge, MA, USA, 2022; pp. 317–330. [Google Scholar]
- Adekanmbi, T.; Wang, X.; Basheer, S.; Nawaz, R.A.; Pang, T.; Hu, Y.; Liu, S. Assessing future climate change impacts on potato yields—A case study for Prince Edward Island, Canada. Foods 2023, 12, 1176. [Google Scholar] [CrossRef]
- Gill, H.K.; Chahil, G.; Goyal, G.; Gill, A.K.; Gillett-Kaufman, J.L. Potato tuberworm Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae). EDIS IFAS Ext. 2014, EENY-587. [Google Scholar] [CrossRef]
- Giri, Y.P.; Thapa, R.B.; Dangi, N.; Aryal, S.; Shrestha, S.M.; Pradhan, S.B.; Sporleder, M. Distribution and seasonal abundance of potato tuber moth: Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae) in Nepal. Int. J. Appl. Sci. Biotechnol. 2014, 2, 270–274. [Google Scholar] [CrossRef]
- Kwon, M.; Kim, J.; Maharjan, R.; Choi, J.Y.; Kim, G.H. Change in the distribution of the potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), in Korea. J. Asia-Pac. Entomol. 2017, 20, 1249–1253. [Google Scholar] [CrossRef]
- Chandel, R.S.; Vashisth, S.; Soni, S.; Kumar, R.; Kumar, V. The potato tuber moth, Phthorimaea operculella (Zeller), in India: Biology, ecology, and control. Potato Res. 2020, 63, 15–39. [Google Scholar] [CrossRef]
- Chakrabarti, S.K.; Sharma, S.; Shah, M.A. Potato pests and diseases: A global perspective. In Sustainable Management of Potato Pests and Diseases; Springer: Singapore, 2022; pp. 1–23. [Google Scholar]
- Ahmed, A.A.I.; Hashem, M.Y.; Mohamed, S.M.; Khalil, S.S. Protection of potato crop against Phthorimaea operculella (Zeller) infestation using frass extract of two noctuid insect pests under laboratory and storage simulation conditions. Arch. Phytopathol. Plant Prot. 2013, 46, 2409–2419. [Google Scholar] [CrossRef]
- Kroschel, J.; Sporleder, M.; Tonnang, H.E.; Juarez, H.; Carhuapoma, P.; Gonzales, J.C.; Simon, R. Predicting climate-change-caused changes in global temperature on potato tuber moth Phthorimaea operculella (Zeller) distribution and abundance using phenology modeling and GIS mapping. Agric. For. Meteorol. 2013, 170, 228–241. [Google Scholar] [CrossRef]
- Doğramacı, M.; Tingey, W.M. Comparison of insecticide resistance in a North American field population and a laboratory colony of potato tuberworm (Lepidoptera: Gelechiidae). J. Pest Sci. 2008, 81, 17–22. [Google Scholar] [CrossRef]
- Hafez, E. Insecticide resistance in potato tuber moth Phthorimaea operculella Zeller in Egypt. J. Am. Sci. 2011, 7, 263–266. [Google Scholar]
- Hashimi, M.H.; Hashimi, R.; Ryan, Q. Toxic effects of pesticides on humans, plants, animals, pollinators and beneficial organisms. Asian Plant Res. J. 2020, 5, 37–47. [Google Scholar] [CrossRef]
- Sharaby, A.M.F.; Gesraha, M.A.; Fallatah, S.A.B. Botanical extracts against the potato tuber moth, Phthorimaea operculella (Zeller 1873) (Lepidoptera: Gelechiidae), during storage conditions. Egypt. J. Biol. Pest Control 2020, 30, 93. [Google Scholar] [CrossRef]
- Kary, N.E.; Sanatipour, Z.; Mohammadi, D.; Dillon, A.B. Combination effects of entomopathogenic nematodes, Heterorhabditis bacteriophora and Steinernema feltiae, with abamectin on developmental stages of Phthorimaea operculella (Lepidoptera: Gelechiidae). Crop Prot. 2021, 143, 105543. [Google Scholar] [CrossRef]
- Ebrahimi, L.; Sheikhigarjan, A.; Ghazavi, M. Entomopathogenic nematodes for control of potato tuber moth (Phthorimaea operculella [Zeller], (Lepidoptera: Gelechiidae)) in infested tubers. Int. J. Pest Manag. 2022, 1–8. [Google Scholar] [CrossRef]
- Hazir, S.; Kaya, H.K.; Stock, S.P.; Keskin, N. Entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) for biological control of soil pests. Turk. J. Biol. 2003, 27, 181–202. [Google Scholar]
- Boemare, N.E.; Akhurst, R.J. The genera Photorhabdus and Xenorhabdus. In The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; pp. 1–65. [Google Scholar]
- Eom, S.; Park, Y.; Kim, Y. Sequential immunosuppressive activities of bacterial secondary metabolites from the entomopathogenic bacterium Xenorhabdus nematophila. J. Microbiol. 2014, 52, 161–168. [Google Scholar] [CrossRef]
- Mollah, M.M.I.; Kim, Y. Virulent secondary metabolites of entomopathogenic bacteria genera, Xenorhabdus and Photorhabdus, inhibit phospholipase A2 to suppress host insect immunity. BMC Microbiol. 2020, 20, 359. [Google Scholar] [CrossRef]
- Hinchliffe, S.J.; Hares, M.C.; Dowling, A.J.; Ffrench-Constant, R.H. Insecticidal toxins from the Photorhabdus and Xenorhabdus bacteria. Open Toxinol. J. 2010, 3, 101–118. [Google Scholar] [CrossRef]
- Gümüş Askar, A.; Yüksel, E.; Öcal, A.; Özer, G.; Kütük, H.; Dababat, A.; İmren, M. Identification and control potential of entomopathogenic nematodes against the black cutworm, Agrotis ipsilon (Fabricius) (Lepidoptera: Noctuidae), in potato-growing areas of Turkey. J. Plant Dis. Prot. 2022, 129, 911–922. [Google Scholar] [CrossRef]
- Yüksel, E. Biocontrol potential of endosymbiotic bacteria of entomopathogenic nematodes against the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Egypt. J. Biol. Pest Control 2022, 32, 135. [Google Scholar] [CrossRef]
- da Silva, O.S.; Prado, G.R.; da Silva, J.L.R.; Silva, C.E.; da Costa, M.; Heermann, R. Oral toxicity of Photorhabdus luminescens and Xenorhabdus nematophila (Enterobacteriaceae) against Aedes aegypti (Diptera: Culicidae). Parasitol. Res. 2013, 112, 2891–2896. [Google Scholar] [CrossRef]
- Fukruksa, C.; Yimthin, T.; Suwannaroj, M.; Muangpat, P.; Tandhavanant, S.; Thanwisai, A.; Vitta, A. Isolation and identification of Xenorhabdus and Photorhabdus bacteria associated with entomopathogenic nematodes and their larvicidal activity against Aedes aegypti. Parasites Vectors 2017, 10, 440. [Google Scholar] [CrossRef]
- Elbrense, H.; Elmasry, A.M.; Seleiman, M.F.; Al-Harbi, M.S.; Abd El-Raheem, A.M. Can symbiotic bacteria (Xenorhabdus and Photorhabdus) be more efficient than their entomopathogenic nematodes against Pieris rapae and Pentodon algerinus larvae? Biology 2021, 10, 999. [Google Scholar] [CrossRef]
- Yüksel, E.; Yıldırım, A.; İmren, M.; Canhilal, R.; Dababat, A.A. Xenorhabdus and Photorhabdus bacteria as potential candidates for the control of Culex pipiens L. (Diptera: Culicidae), the principal vector of West Nile virus and lymphatic filariasis. Pathogens 2023, 12, 1095. [Google Scholar] [CrossRef] [PubMed]
- Hassani-Kakhki, M.; Karimi, J.; Hosseini, M. Efficacy of entomopathogenic nematodes against potato tuber moth, Phthorimaea operculella (Lepidoptera: Gelechiidae) under laboratory conditions. Biocontrol Sci. Technol. 2013, 23, 146–159. [Google Scholar] [CrossRef]
- Mhatre, P.H.; Patil, J.; Rangasamy, V.; Divya, K.L.; Tadigiri, S.; Chawla, G.; Venkatasalam, E.P. Biocontrol potential of Steinernema cholashanense (Nguyen) on larval and pupal stages of potato tuber moth, Phthorimaea operculella (Zeller). J. Helminthol. 2020, 94, e188. [Google Scholar] [CrossRef] [PubMed]
- Metwally, H.M.; Hafez, G.A.; Hussein, M.A.; Hussein, M.A.; Salem, H.A.; Saleh, M.M.E. Low cost artificial diet for rearing the greater wax moth, Galleria mellonella L. (Lepidoptera: Pyralidae) as a host for entomopathogenic nematodes. Egypt. J. Biol. Pest Control 2012, 22, 15. [Google Scholar]
- Yüksel, E.; Canhilal, R. Isolation, identification, and pathogenicity of entomopathogenic nematodes occurring in Cappadocia Region, Central Turkey. Egypt. J. Biol. Pest Control 2019, 29, 40. [Google Scholar] [CrossRef]
- Hazir, S.; Kaya, H.; Touray, M.; Cimen, H.; Ilan, D.S. Basic laboratory and field manual for conducting research with the entomopathogenic nematodes, Steinernema and Heterorhabditis, and their bacterial symbionts. Turk. J. Zool. 2022, 46, 305–350. [Google Scholar] [CrossRef]
- Brown, L.D.; Cai, T.T.; DasGupta, A. Interval estimation for a binomial proportion. Stat. Sci. 2001, 16, 101–133. [Google Scholar] [CrossRef]
- Ghoneim, K.; Hamadah, K. Compatibility of entomopathogenic nematodes with agrochemicals and biocontrol potential of their combinations against insect pests: An updated review. Egypt. Acad. J. Biol. Sci. A Entomol. 2024, 17, 107–171. [Google Scholar] [CrossRef]
- Koppenhöfer, A.M.; Foye, S. Interactions between agrochemicals and biological control agents. In Entomopathogenic Nematodes as Biological Control Agents; CABI: Wallingford, UK, 2024; pp. 494–518. [Google Scholar]
- Chio, E.H.; Li, Q.X. Pesticide research and development: General discussion and spinosad case. J. Agric. Food Chem. 2022, 70, 8913–8919. [Google Scholar] [CrossRef]
- Radová, Š. Effect of selected pesticides on survival and virulence of two nematode species. Pol. J. Environ. Stud. 2011, 20, 181–185. [Google Scholar]
- Yüksel, E.; Canhilal, R. Effects of some commonly used biopesticides on the survival and virulence of native entomopathogenic nematode isolates. Turkiye Biyol. Mücadele Derg. 2020, 11, 35–41. [Google Scholar] [CrossRef]
- Rashad, R.K.; Rameesha, A.; Ali, A.A.; Muhammad, A.; Shahid, M.; Sohail, A.; Muhammad, A. Compatibility of entomopathogenic nematodes (Nematoda: Rhabditida) and the biocide, spinosad for mitigation of the armyworm, Spodoptera litura (F) (Lepidoptera: Noctuidae). Egypt. J. Biol. Pest Control 2018, 28, 58. [Google Scholar]
- Kasi, I.K.; Waiba, K.M.; Singh, G.; Bhat, A.; Kashyap, H.K.; Rostami, E. Evaluation of indigenous strains of entomopathogenic nematodes, in combination with low-toxicity insecticides for control of fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Int. J. Bio-Res. Stress Manage. 2023, 14, 117–124. [Google Scholar] [CrossRef]
- Ciche, T.A.; Ensign, J.C. For the insect pathogen Photorhabdus luminescens, which end of a nematode is out? Appl. Environ. Microbiol. 2003, 69, 1890–1897. [Google Scholar] [CrossRef] [PubMed]
- Cortez-Vega, A.; Jofré-Barud, F.; Andino, N.; Gómez, M.P.; López, M.L. Toxicological interactions between spinosad and essential oils in the Mediterranean fruit fly, Ceratitis capitata. J. Appl. Entomol. 2023, 147, 834–842. [Google Scholar] [CrossRef]
- Mamuk, N.; Yüksel, E.; Canhilal, R. Assessment of combined effects of some common agrochemicals and different entomopathogenic nematode species on the control of Planococcus citri (Risso, 1813) (Hemiptera: Pseudococcidae) under controlled conditions. Int. J. Trop. Insect Sci. 2024, 44, 1409–1416. [Google Scholar] [CrossRef]
- Abdel-Razek, A.S.; Abd-Elgawad, M.M. Spinosad combined with entomopathogenic nematode for biocontrol of the Mediterranean fruit fly (Ceratitis capitata [Wiedemann]) on citrus. Egypt. J. Biol. Pest Control 2021, 31, 112. [Google Scholar] [CrossRef]
- Salgado, V.L. Studies on the mode of action of spinosad: Insect symptoms and physiological correlates. Pestic. Biochem. Physiol. 1998, 60, 91–102. [Google Scholar] [CrossRef]
- Ahmed, F.S.; İnak, E.; Helmy, W.S.; Abo-Shady, N.M. The combined effect of sublethal concentrations of insecticides and local entomopathogenic nematode isolates on larval and pupal stages of Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae). Crop Prot. 2024, 184, 106856. [Google Scholar] [CrossRef]
- Gong, Y.; Li, T.; Hussain, A.; Xia, X.; Shang, Q.; Ali, A. The side effects of insecticides on insects and the adaptation mechanisms of insects to insecticides. Front. Physiol. 2023, 14, 1287219. [Google Scholar] [CrossRef]
- Moreira, A.; Nogueira, V.; Bouguerra, S.; Antunes, S.C.; Rodrigues, S. Ecotoxicity of bioinsecticide spinosad to soil organisms: Commercial formulation versus active ingredient. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2025, 287, 110056. [Google Scholar] [CrossRef]
- Darsouei, R.; Karimi, J.; Hosseini, M.; Ghadamyari, M. Immune defence components of Spodoptera exigua larvae against entomopathogenic nematodes and symbiotic bacteria. Biocontrol Sci. Technol. 2017, 27, 867–885. [Google Scholar] [CrossRef]
- Kim, H.; Keum, S.; Hasan, A.; Kim, H.; Jung, Y.; Lee, D.; Kim, Y. Identification of an entomopathogenic bacterium, Xenorhabdus ehlersii KSY, from Steinernema longicaudum GNUS101 and its immunosuppressive activity against insect host by inhibiting eicosanoid biosynthesis. J. Invertebr. Pathol. 2018, 159, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Chandra Roy, M.; Lee, D.; Kim, Y. Host immunosuppression induced by Steinernema feltiae, an entomopathogenic nematode, through inhibition of eicosanoid biosynthesis. Insects 2019, 11, 33. [Google Scholar] [CrossRef]
- Forst, S.; Dowds, B.; Boemare, N.; Stackebrandt, E. Xenorhabdus and Photorhabdus spp.: Bugs that kill bugs. Annu. Rev. Microbiol. 1997, 51, 47–72. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.A.; Ahmed, S.; Mollah, M.M.I.; Lee, D.; Kim, Y. Variation in pathogenicity of different strains of Xenorhabdus nematophila: Differential immunosuppressive activities and secondary metabolite production. J. Invertebr. Pathol. 2019, 166, 107221. [Google Scholar] [CrossRef]
- Ullah, I.; Khan, A.L.; Ali, L.; Khan, A.R.; Waqas, M.; Lee, I.J.; Shin, J.H. An insecticidal compound produced by an insect-pathogenic bacterium suppresses host defenses through phenoloxidase inhibition. Molecules 2014, 19, 20913–20928. [Google Scholar] [CrossRef] [PubMed]
- Kannabiran, K. Bioactivity of pyrrolo [1,2-a] pyrazine-1,4-dione, hexahydro-3-(phenylmethyl) extracted from Streptomyces sp. VITPK9 isolated from the salt spring habitat of Manipur, India. Asian J. Pharm. 2016, 10, 4. [Google Scholar]
- Al-Mussawii, M.A.; Al-Sultan, E.Y.; Al-Hamdani, M.A.; Ramadhan, U.H. Antibacterial activity of alkaloid compound Methoxy phenyl–Oxime (C8H9N02) isolated and purified from the leaf of Conocarpus lancifolius Engl. Teikyo Med. J. 2022, 45, 4971–4981. [Google Scholar]
- Vivekanandhan, P.; Kavitha, T.; Karthi, S.; Senthil-Nathan, S.; Shivakumar, M.S. Toxicity of Beauveria bassiana-28 mycelial extracts on larvae of Culex quinquefasciatus mosquito (Diptera: Culicidae). Int. J. Environ. Res. Public Health 2018, 15, 440. [Google Scholar] [CrossRef]
- Eroglu, C.; Cimen, H.; Ulug, D.; Karagoz, M.; Hazir, S.; Cakmak, I. Acaricidal effect of cell-free supernatants from Xenorhabdus and Photorhabdus bacteria against Tetranychus urticae (Acari: Tetranychidae). J. Invertebr. Pathol. 2019, 160, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Cevizci, D.; Ulug, D.; Cimen, H.; Touray, M.; Hazir, S.; Cakmak, I. Mode of entry of secondary metabolites of the bacteria Xenorhabdus szentirmaii and X. nematophila into Tetranychus urticae, and their toxicity to the predatory mites Phytoseiulus persimilis and Neoseiulus californicus. J. Invertebr. Pathol. 2020, 174, 107418. [Google Scholar] [CrossRef] [PubMed]
| EPNs | GenBank Accession Number | Reference | ESB | GenBank Accession Number | Reference |
|---|---|---|---|---|---|
| Steinernema feltiae MCB-8 | MG602334 | [32] | Xenorhabdus bovienii MCB-8 | MW403818 | [24] |
| Heterorhabditis bacteriophora ABV-15 | MG602333 | [32] | Photorhabdus luminescens subsp. kayaii ABV-15 | MG602333 | [24] |
| Degree of Freedom | F Value | p Value | |
|---|---|---|---|
| 24 h | 1 | 13,000 | 0.002 |
| 48 h | 1 | 45,500 | <0.001 |
| 72 h | 1 | 108,273 | <0.001 |
| Exposure Time | Treatments * | Survival Rates (Mean % ± Std. Error) * |
|---|---|---|
| 24 h | CONTROL_PW | 100.0 ± 0.0 A |
| Steinernema feltiae MCB-8 | 98.0 ± 0.4 B | |
| Heterorhabditis bacteriophora AVB-15 | 99.5 ± 0.2 A | |
| 48 h | CONTROL_PW | 99.2 ± 0.4 A |
| Steinernema feltiae MCB-8 | 94.5 ± 0.2 C | |
| Heterorhabditis bacteriophora AVB-15 | 97.5 ± 0.2 B | |
| 72 h | CONTROL_PW | 98.5 ± 0.2 A |
| Steinernema feltiae MCB-8 | 92.7 ± 0.2 C | |
| Heterorhabditis bacteriophora AVB-15 | 95.5 ± 0.2 B |
| Degree of Freedom | F Value | p Value | |
|---|---|---|---|
| Treatments (T) | 6 | 576.331 | <0.001 |
| Exposure Time (t) | 2 | 229.145 | <0.001 |
| T × t | 12 | 17.596 | <0.001 |
| Error-1 | 18 | ||
| Error-2 | 36 |
| Exposure Time | Treatments * | Mortality Rates (Mean % ± Std. Error) * |
|---|---|---|
| 24 h | CONTROL_PW | 0.00 ± 0.0 Aa |
| Steinernema feltiae MCB-8 | 32.50 ± 4.7 Ba | |
| Heterorhabditis bacteriophora AVB-15 | 67.50 ± 4.7 Ca | |
| Spinosad | 55.00 ± 2.8 Ca | |
| Spinosad + Steinernema feltiae MCB-8 | 65.00 ± 2.8 Ca | |
| Spinosad + Heterorhabditis bacteriophora AVB-15 | 82.50 ± 2.5 Da | |
| 48 h | CONTROL_PW | 0.00 ± 0.0 Aa |
| Steinernema feltiae MCB-8 | 55.00 ± 2.8 Bb | |
| Heterorhabditis bacteriophora AVB-15 | 87.50 ± 4.7 Cb | |
| Spinosad | 100.00 ± 0.0 Db | |
| Spinosad + Steinernema feltiae MCB-8 | 100.00 ± 0.0 Db | |
| Spinosad + Heterorhabditis bacteriophora AVB-15 | 100.00 ± 0.0 Db | |
| 72 h | CONTROL_PW | 0.00 ± 0.0 Aa |
| Steinernema feltiae MCB-8 | 80.00 ± 4.0 Bc | |
| Heterorhabditis bacteriophora AVB-15 | 100.00 ± 0.0 Cc | |
| Spinosad | 100.00 ± 0.0 Cb | |
| Spinosad + Steinernema feltiae MCB-8 | 100.00 ± 0.0 Cb | |
| Spinosad + Heterorhabditis bacteriophora AVB-15 | 100.00 ± 0.0 Cb |
| Probit Analysis | Steinernema feltiae MCB-8 | Heterorhabditis bacteriophora AVB-15 | Spinosad | Spinosad + Steinernema feltiae MCB-8 | Spinosad + Heterorhabditis bacteriophora AVB-15 |
|---|---|---|---|---|---|
| n | 40 | 40 | 40 | 40 | 40 |
| X2 | 5.865 | 0.105 | 0.010 | 0.196 | 0.586 |
| df | 1 | 1 | 1 | 1 | 1 |
| Slope ± SE | 8.25 ± 1.5 | 15.19 ± 9.1 | 12.01 ± 7.1 | 11.50 ± 5.1 | 11.45 ± 5.1 |
| LT50 (h) | 57.8 | 45.3 | 23.5 | 42.7 | 44.6 |
| Degree of Freedom | F Value | p Value | |
|---|---|---|---|
| Treatments (T) | 6 | 252.130 | <0.001 |
| Exposure Time (t) | 2 | 178.913 | <0.001 |
| T × t | 12 | 30.381 | <0.001 |
| Error-1 | 21 | ||
| Error-2 | 42 |
| Exposure Time | Treatments * | Mortality Rates (Mean% ± Std. Error) * |
|---|---|---|
| 24 h | CONTROL_NTBT | 2.50 ± 2.5 Aa |
| CONTROL_PW | 0.00 ± 0.0 Aa | |
| CFSs of Xenorhabdus bovienii MCB-8 | 35.00 ± 2.8 Ba | |
| CFSs of Photorhabdus luminescens subsp. kayaii AVB-15 | 22.50 ± 2.5 Ba | |
| Spinosad | 55.00 ± 2.8 Ca | |
| Spinosad + CFSs of Xenorhabdus bovienii MCB-8 | 92.50 ± 2.5 Da | |
| Spinosad + CFSs of Photorhabdus luminescens subsp. kayaii AVB-15 | 77.50 ± 2.5 CDa | |
| 48 h | CONTROL_NTBT | 2.50 ± 2.5 Aa |
| CONTROL_PW | 0.00 ± 0.0 Aa | |
| CFSs of Xenorhabdus bovienii MCB-8 | 47.50 ± 4.7 Ba | |
| CFSs of Photorhabdus luminescens subsp. kayaii AVB-15 | 87.50 ± 6.2 Cb | |
| Spinosad | 100.00 ± 0.0 Db | |
| Spinosad + CFSs of Xenorhabdus bovienii MCB-8 | 100.00 ± 0.0 Da | |
| Spinosad + CFSs of Photorhabdus luminescens subsp. kayaii AVB-15 | 100.00 ± 0.0 Db | |
| 72 h | CONTROL_NTBT | 2.50 ± 2.5 Aa |
| CONTROL_PW | 0.00 ± 0.0 Aa | |
| CFSs of Xenorhabdus bovienii MCB-8 | 80.00 ± 9.1 Bb | |
| CFSs of Photorhabdus luminescens subsp. kayaii AVB-15 | 90.00 ± 7.0 BCb | |
| Spinosad | 100.00 ± 0.0 Cb | |
| Spinosad + CFSs of Xenorhabdus bovienii MCB-8 | 100.00 ± 0.0 Ca | |
| Spinosad + CFSs of Photorhabdus luminescens subsp. kayaii AVB-15 | 100.00 ± 0.0 Ca |
| Probit Analysis | CFSs of Xenorhabdus bovienii MCB-8 | CFSs of Photorhabdus luminescens subsp. kayaii AVB-15 | Spinosad | Spinosad + CFSs of Xenorhabdus bovienii MCB-8 | Spinosad + CFSs of Photorhabdus luminescens subsp. kayaii AVB-15 |
|---|---|---|---|---|---|
| n | 40 | 40 | 40 | 40 | 40 |
| X2 | 3.471 | 12.494 | 0.010 | 0.007 | 0.001 |
| df | 1 | 1 | 1 | 1 | 1 |
| Slope ± SE | 10.82 ± 2.5 | 4.96 ± 0.7 | 12.01 ± 7.1 | 10.46 ± 16.3 | 12.30 ± 31.5 |
| LT50 (h) | 62.3 | 32.7 | 23.5 | 22.7 | 21.2 |
| Peak No. | Retention Time | Area | Area % | Compound Name | Formula |
|---|---|---|---|---|---|
| 1 | 6.600 | 23,272 | 0.36 | 1,2-Propanediol, 3-methoxy- | C4H10O3 |
| 2 | 6.749 | 710,132 | 10.86 | oxime- methoxy-phenyl-_ | C8H9NO2 |
| 3 | 10.198 | 87,966 | 1.35 | 1-propanol 2-(2-hydroxypropoxy)- | C6H14O3 |
| 4 | 15.386 | 56,266 | 0.86 | Isosorbide | C6H10O4 |
| 5 | 18.519 | 44,538 | 0.68 | 2,6-Diaminopyridine | C5H7N3 |
| 6 | 40.794 | 381,292 | 5.83 | 3-Methyl-1,4-diazabicyclo[4.3.0]nonan-2,5-dione, N-acetyl- | C10H14N2O3 |
| 7 | 46.364 | 2,364,240 | 36.15 | Pyrrolo(1,2-a)pyrazine-1,4-dione, hexahydro-3-(methylethyl)- | C10H16N2O2 |
| 8 | 52.187 | 536,998 | 8.21 | 5,10-Diethoxy-2,3,7,8-tetrahydro-1H,6H-dipyrrolo[1,2-a:1′,2′-d]pyrazine | C14H22N2O2 |
| 9 | 71.998 | 2,334,572 | 35.70 | Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(phenylmethyl)- | C14H16N2O2 |
| Peak No. | Retention Time | Area | Area % | Compound Name | Formula |
|---|---|---|---|---|---|
| 1 | 5.528 | 202,857 | 1.96 | Butanoic acid 2-methyl- | C5H10O2 |
| 2 | 5.748 | 52,368 | 0.51 | Pyridine, 2,3,4,5-tetrahydro- | C5H9N |
| 3 | 6.067 | 83,622 | 0.81 | Butanoic acid, 3-methyl- | C5H10O2 |
| 4 | 6.977 | 187,044 | 1.81 | Oxime- methoxy-phenyl-_ | C8H9NO2 |
| 5 | 8.587 | 38,398 | 0.37 | 1-Propanol, 3-(methylthio)- | C4H10OS |
| 6 | 10.045 | 183,021 | 1.77 | D-Pantolactone | C6H10O3 |
| 7 | 11.005 | 475,043 | 4.60 | 2-Pyrrolidone | C4H7NO |
| 8 | 12.121 | 32,764 | 0.32 | 2-Phenylethanol | C8H10O |
| 9 | 14.374 | 373,871 | 3.62 | 2-Piperidone | C5H9NO |
| 10 | 14.711 | 102,016 | 0.99 | Pyridine, 1-acetyl-1,2,3,4-tetrahydro- | C7H11NO |
| 11 | 18.969 | 54,963 | 0.53 | 1H-Indole | C8H7N |
| 12 | 19.685 | 882,574 | 8.54 | 3-aminopiperidine-2-one | C5H10N2O |
| 13 | 23.101 | 66,976 | 0.65 | Ethyl pipecolinate | C8H15NO2 |
| 14 | 33.446 | 91,362 | 0.88 | 2-Heptene, 5-ethyl-2,4-dimethyl- | C11H22 |
| 15 | 40.831 | 727,054 | 7.04 | 3-Methyl-1,4-diazabicyclo[4.3.0]nonan-2,5-dione, N-acetyl- | C10H14N2O3 |
| 16 | 43.377 | 2,815,688 | 27.26 | Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- | C7H10N2O2 |
| 17 | 46.324 | 1,673,015 | 16.20 | 1,4-diaza-2, 5-dioxo-3-isobutyl bicyclo[4.3.0]nonane | C11H18N2O2 |
| 18 | 52.180 | 768,386 | 7.44 | 3,9-Dihydroxy-1,7-diazatricyclo[7.3.0.03,7]dodecane-2,8-dione | C10H14N2O4 |
| 19 | 66.868 | 129,920 | 1.26 | Pyrrolo[1,2-a]pyrazine-3-propanamide, 2,3,6,7,8,8a-hexahydro-1,4-dioxo- | C10H15N3O3 |
| 20 | 71.968 | 1,388,758 | 13.44 | Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(phenylmethyl)- | C14H16N2O2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yüksel, E.; Lahlali, R.; Barış, A.; Sameeullah, M.; Ulaş, F.; Koca, A.S.; Ait Barka, E.; İmren, M.; Dababat, A. Entomopathogenic Nematodes and Bioactive Compounds of Their Bacterial Endosymbionts Act Synergistically in Combination with Spinosad to Kill Phthorimaea operculella (Zeller, 1873) (Lepidoptera: Gelechiidae), a Serious Threat to Food Security. Microorganisms 2025, 13, 2368. https://doi.org/10.3390/microorganisms13102368
Yüksel E, Lahlali R, Barış A, Sameeullah M, Ulaş F, Koca AS, Ait Barka E, İmren M, Dababat A. Entomopathogenic Nematodes and Bioactive Compounds of Their Bacterial Endosymbionts Act Synergistically in Combination with Spinosad to Kill Phthorimaea operculella (Zeller, 1873) (Lepidoptera: Gelechiidae), a Serious Threat to Food Security. Microorganisms. 2025; 13(10):2368. https://doi.org/10.3390/microorganisms13102368
Chicago/Turabian StyleYüksel, Ebubekir, Rachid Lahlali, Aydemir Barış, Muhammad Sameeullah, Furkan Ulaş, Abdurrahman Sami Koca, Essaid Ait Barka, Mustafa İmren, and Abdelfattah Dababat. 2025. "Entomopathogenic Nematodes and Bioactive Compounds of Their Bacterial Endosymbionts Act Synergistically in Combination with Spinosad to Kill Phthorimaea operculella (Zeller, 1873) (Lepidoptera: Gelechiidae), a Serious Threat to Food Security" Microorganisms 13, no. 10: 2368. https://doi.org/10.3390/microorganisms13102368
APA StyleYüksel, E., Lahlali, R., Barış, A., Sameeullah, M., Ulaş, F., Koca, A. S., Ait Barka, E., İmren, M., & Dababat, A. (2025). Entomopathogenic Nematodes and Bioactive Compounds of Their Bacterial Endosymbionts Act Synergistically in Combination with Spinosad to Kill Phthorimaea operculella (Zeller, 1873) (Lepidoptera: Gelechiidae), a Serious Threat to Food Security. Microorganisms, 13(10), 2368. https://doi.org/10.3390/microorganisms13102368

