Exploring Eco-Friendly Microbial Strategies for Nosemosis Control in Honeybee
Abstract
1. Introduction
2. Nosemosis Control Through Eco-Friendly Microbial-Based Treatments
3. Microbial Supplements for Nosemosis Control: Formulation, Delivery Methods, and Implementation Strategies
4. Challenges and Future Directions of Naturally Microbial Treatments for Nosemosis Control in Honeybees
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PCR | Polymerase Chain Reaction |
CFU | Colony-Forming Units |
GBPs | Good Beekeeping Practices |
References
- Castelli, L.; Branchiccela, B.; Garrido, M.; Invernizzi, C.; Porrini, M.; Romero, H.; Zunino, P.; Antúnez, K. Impact of nutritional stress on honeybee gut microbiota, immunity, and Nosema ceranae infection. Microorganisms 2020, 8, 908–919. [Google Scholar] [CrossRef] [PubMed]
- Requier, F.; Leyton, M.S.; Morales, C.L.; Garibaldi, L.A.; Giacobino, A.; Porrini, M.P.; Rosso-Londoño, J.M.; Velarde, R.A.; Aignasse, A.; Aldea-Sánchez, P.; et al. First Large-Scale Study Reveals Important Losses of Managed Honey Bee and Stingless Bee Colonies in Latin America. Sci. Rep. 2024, 14, 10079. [Google Scholar] [CrossRef]
- Galajda, R.; Valenčáková, A.; Sučik, M.; Kandráčová, P. Nosema Disease of European Honey Bees. J. Fungi 2021, 7, 714. [Google Scholar] [CrossRef] [PubMed]
- Chemurot, M.; De Smet, L.; Brunain, M.; De Rycke, R.; de Graaf, D.C. Nosema neumanni n. sp. (Microsporidia, Nosematidae), a New Microsporidian Parasite of Honeybees Apis mellifera in Uganda. Eur. J. Protistol. 2017, 61, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Prouty, C.; Jack, C.; Sagili, R.; Ellis, J.D. Evaluating the Efficacy of Common Treatments Used for Vairimorpha (Nosema) spp. Control. Appl. Sci. 2023, 13, 1303. [Google Scholar] [CrossRef]
- Tokarev, Y.S.; Huang, W.-F.; Solter, L.F.; Malysh, J.M.; Becnel, J.J.; Vossbrinck, C.R. A Formal Redefinition of the Genera Nosema and Vairimorpha (Microsporidia: Nosematidae) and Reassignment of Species Based on Molecular Phylogenetics. J. Invertebr. Pathol. 2020, 169, 107279. [Google Scholar] [CrossRef]
- Antúnez, K.; Mendoza, Y.; Santos, E.; Invernizzi, C. Differential Expression of Vitellogenin in Honey Bees (Apis mellifera) with Different Degrees of Nosema ceranae Infection. J. Apic. Res. 2013, 52, 227–234. [Google Scholar] [CrossRef]
- Smutin, D.; Lebedev, E.; Selitskiy, M.; Panyushev, N.; Adonin, L. Micro”bee”ota: Honey Bee Normal Microbiota as a Part of Superorganism. Microorganisms 2022, 10, 2359. [Google Scholar] [CrossRef]
- Engel, P.; Martinson, V.G.; Moran, N.A. Functional Diversity within the Simple Gut Microbiota of the Honey Bee. Proc. Natl. Acad. Sci. USA 2012, 109, 11002–11007. [Google Scholar] [CrossRef]
- Miller, D.L.; Smith, E.A.; Newton, I.L.G. A Bacterial Symbiont Protects Honey Bees from Fungal Disease. mBio 2021, 12, e0050321. [Google Scholar] [CrossRef] [PubMed]
- Tauber, J.P.; Nguyen, V.; Lopez, D.; Evans, J.D. Effects of a Resident Yeast from the Honeybee Gut on Immunity, Microbiota, and Nosema Disease. Insects 2019, 10, 296. [Google Scholar] [CrossRef]
- Ptaszyńska, A.A.; Paleolog, J.; Borsuk, G. Nosema ceranae Infection Promotes Proliferation of Yeasts in Honey Bee Intestines. PLoS ONE 2016, 11, e0164477. [Google Scholar] [CrossRef]
- Kunat-Budńska, M.; Budzyński, M.; Schulz, M.; Strachecka, A.; Gancarz, M.; Rusinek, R.; Ptaszyńska, A.A. Natural Substances, Probiotics, and Synthetic Agents in the Treatment and Prevention of Honeybee Nosemosis. Pathogens 2022, 11, 1269. [Google Scholar] [CrossRef] [PubMed]
- Braglia, C.; Alberoni, D.; Garrido, P.M.; Porrini, M.P.; Baffoni, L.; Scott, D.; Eguaras, M.J.; Di Gioia, D.; Mifsud, D. Vairimorpha (Nosema) ceranae Can Promote Serratia Development in Honeybee Gut: An Underrated Threat for Bees? Front. Cell. Infect. Microbiol. 2024, 13, 1323157. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, M.; Wang, L.; Huang, S.; Su, S.; Huang, W.F. Vairimorpha (Nosema) ceranae Infection Alters Honey Bee Microbiota Composition and Sustains the Survival of Adult Honey Bees. Biology 2021, 10, 905. [Google Scholar] [CrossRef]
- Ptaszyńska, A.A.; Latoch, P.; Hurd, P.J.; Polaszek, A.; Michalska-Madej, J.; Grochowalski, Ł.; Strapagiel, D.; Gnat, S.; Załuski, D.; Gancarz, M.; et al. Amplicon Sequencing of Variable 16S rRNA from Bacteria and ITS2 Regions from Fungi and Plants, Reveals Honeybee Susceptibility to Diseases Results from Their Forage Availability under Anthropogenic Landscapes. Pathogens 2021, 10, 381. [Google Scholar] [CrossRef]
- Rubanov, A.; Russell, K.A.; Rothman, J.A.; Nieh, J.C.; McFrederick, Q.S. Intensity of Nosema ceranae Infection Is Associated with Specific Honey Bee Gut Bacteria and Weakly Associated with Gut Microbiome Structure. Sci. Rep. 2019, 9, 3820. [Google Scholar] [CrossRef]
- Ptaszyńska, A.A.; Borsuk, G.; Zdybicka-Barabas, A.; Cytryńska, M.; Małek, W. Are Commercial Probiotics and Prebiotics Effective in the Treatment and Prevention of Honeybee Nosemosis C? Parasitol. Res. 2016, 115, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Villa, J.D.; Bourgeois, A.L.; Danka, R.G. Negative Evidence for Effects of Genetic Origin of Bees on Nosema ceranae, Positive Evidence for Effects of Nosema ceranae on Bees. Apidologie 2013, 44, 511–518. [Google Scholar] [CrossRef]
- Nozal, M.J.; Bernal, J.L.; Martín, M.T.; Bernal, J.; Álvaro, A.; Martín-Hernández, R.; Higes, M. Trace Analysis of Fumagillin in Honey by Liquid Chromatography-DAD-Electrospray Ionization Mass Spectrometry. J. Chromatogr. A 2008, 1190, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.-F.; Solter, L.F.; Yau, P.M.; Imai, B.S. Nosema ceranae Escapes Fumagillin Control in Honey Bees. PLoS Pathog. 2013, 9, e1003185. [Google Scholar] [CrossRef]
- van den Heever, J.P.; Thompson, T.S.; Otto, S.J.; Curtis, J.M.; Ibrahim, A.; Pernal, S.F. Evaluation of Fumagilin-B® and Other Potential Alternative Chemotherapies Against Nosema ceranae-Infected Honey Bees (Apis mellifera) in Cage Trial Assays. Apidologie 2016, 47, 617–630. [Google Scholar] [CrossRef]
- Charistos, L.; Parashos, N.; Hatjina, F. Long Term Effects of a Food Supplement HiveAlive™ on Honey Bee Colony Strength and Nosema ceranae Spore Counts. J. Apic. Res. 2015, 54, 420–426. [Google Scholar] [CrossRef]
- Chen, X.; Wang, S.; Xu, Y.; Gong, H.; Wu, Y.; Chen, Y.; Hu, F.; Zheng, H. Protective Potential of Chinese Herbal Extracts Against Microsporidian N. ceranae, an Emergent Pathogen of Western Honey Bees, Apis mellifera L. J. Asia Pac. Entomol. 2021, 24, 502–512. [Google Scholar] [CrossRef]
- Cilia, G.; Garrido, C.; Bonetto, M.; Tesoriero, D.; Nanetti, A. Effect of Api-Bioxal® and ApiHerb® Treatments against N. ceranae Infection in Apis mellifera Investigated by Two qPCR Methods. Vet. Sci. 2020, 7, 125. [Google Scholar] [CrossRef] [PubMed]
- Mura, A.; Pusceddu, M.; Theodorou, P.; Angioni, A.; Floris, I.; Paxton, R.J.; Satta, A. Propolis Consumption Reduces Nosema ceranae Infection of European Honey Bees (Apis mellifera). Insects 2020, 11, 124. [Google Scholar] [CrossRef]
- Motta, E.V.S.; Powell, J.E.; Leonard, S.P.; Moran, N.A. Prospects for Probiotics in Social Bees. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2022, 377, 20210156. [Google Scholar] [CrossRef]
- Iorizzo, M.; Letizia, F.; Ganassi, S.; Testa, B.; Petrarca, S.; Albanese, G.; Di Criscio, D.; De Cristofaro, A. Recent Advances in the Biocontrol of Nosemosis in Honey Bees (Apis mellifera L.). J. Fungi 2022, 8, 424. [Google Scholar] [CrossRef]
- Formato, G.; Rivera-Gomis, J.; Bubnic, J.; Martín-Hernández, R.; Milito, M.; Croppi, S.; Higes, M. Nosemosis Prevention and Control. Appl. Sci. 2022, 12, 783. [Google Scholar] [CrossRef]
- Imdorf, A.; Kilchenmann, V.; Bogdanov, S.; Bachofen, B.; Beretta, C. Toxic Effect of Thymol, Camphor, Menthol, and Eucalyptol on Varroa jacobsoni Oud. and Apis mellifera L.: A Laboratory Test. Apidologie 1995, 26, 27–31. [Google Scholar] [CrossRef]
- Alippi, A.M.; Ringuelet, J.A.; Cerimele, E.L.; Re, M.S.; Henning, C.P. Antimicrobial Activity of Some Essential Oils Against Paenibacillus larvae, the Causal Agent of American Foulbrood Disease. J. Herbs Spices Med. Plants 1996, 4, 9–16. [Google Scholar] [CrossRef]
- Klouček, P.; Smid, J.; Flesar, J.; Havlik, J.; Titera, D.; Rada, V.; Drabek, O.; Kokoska, L. In Vitro Inhibitory Activity of Essential Oil Vapors Against Ascosphaera apis. Nat. Prod. Commun. 2012, 7, 253–256. [Google Scholar] [CrossRef] [PubMed]
- Wiese, N.; Fischer, J.; Heidler, J.; Lewkowski, O.; Degenhardt, J.; Erler, S. The Terpenes of Leaves, Pollen, and Nectar of Thyme (Thymus vulgaris) Inhibit Growth of Bee Disease-Associated Microbes. Sci. Rep. 2018, 8, 14634. [Google Scholar] [CrossRef]
- Krutmuang, P.; Rajula, J.; Pittarate, S.; Chatima, C.; Thungrabeab, M.; Mekchay, S.; Senthil-Nathan, S. The Inhibitory Action of Plant Extracts on the Mycelial Growth of Ascosphaera apis, the Causative Agent of Chalkbrood Disease in Honey Bee. Toxicol. Rep. 2022, 9, 713–719. [Google Scholar] [CrossRef]
- Sebak, S.I.; Elelimy, H.A.S.; Seyam, H.; Elkenawy, S.A. Effect of Thymol and Propolis Extract on Genotoxicity, Biochemical Activities and Expression Profile of Some Genes on Honey Bee, Apis mellifera, Infected with Vairimorpha (Nosema) ceranae. Beni-Suef Univ. J. Basic Appl. Sci. 2025, 14, 8. [Google Scholar] [CrossRef]
- Borges, D.; Guzman-Novoa, E.; Goodwin, P.H. Control of the Microsporidian Parasite Nosema ceranae in Honeybees (Apis mellifera) Using Nutraceutical and Immuno-Stimulatory Compounds. PLoS ONE 2020, 15, e0227484. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Valero, A.; Barrientos-Medina, R.C.; Medina Medina, L.A. Efficacy of Thymol in Control of the Fungus Nosema ceranae in Africanized Apis mellifera. Rev. Mex. Cienc. Pecu. 2021, 12, 633–643. [Google Scholar] [CrossRef]
- Yemor, T.; Phiancharoen, M.; Benbow, M.E.; Suwannapong, G. Effects of stingless bee propolis on Nosema ceranae infected Asian honey bees, Apis cerana. J. Apic. Res. 2015, 54, 468–473. [Google Scholar] [CrossRef]
- Suwannapong, G.; Maksong, S.; Phainchajoen, M.; Benbow, M.E.; Mayack, C. Survival and Health Improvement of Nosema-Infected Apis florea (Hymenoptera: Apidae) Bees After Treatment with Propolis Extract. J. Asia-Pac. Entomol. 2018, 21, 437–444. [Google Scholar] [CrossRef]
- Burnham, A.J.; De Jong, E.; Jones, J.A.; Lehman, H.K. North American Propolis Extracts from Upstate New York Decrease Nosema ceranae (Microsporidia) Spore Levels in Honey Bees (Apis mellifera). Front. Microbiol. 2020, 11, 1719. [Google Scholar] [CrossRef]
- Naree, S.; Ellis, J.D.; Benbow, M.E.; Suwannapong, G. The Use of Propolis for Preventing and Treating Nosema ceranae Infection in Western Honey Bee (Apis mellifera Linnaeus, 1787) Workers. J. Apic. Res. 2021, 60, 686–696. [Google Scholar] [CrossRef]
- Dalenberg, H.; Maes, P.; Mott, B.; Anderson, K.E.; Spivak, M. Propolis Envelope Promotes Beneficial Bacteria in the Honey Bee (Apis mellifera) Mouthpart Microbiome. Insects 2020, 11, 453. [Google Scholar] [CrossRef]
- Saelao, P.; Borba, R.S.; Ricigliano, V.; Spivak, M.; Simone-Finstrom, M. Honey Bee Microbiome Is Stabilized in the Presence of Propolis. Biol. Lett. 2020, 16, 20200003. [Google Scholar] [CrossRef]
- Ewert, A.M.; Simone-Finstrom, M.; Read, Q.; Husseneder, C.; Ricigliano, V. Effects of Ingested Essential Oils and Propolis Extracts on Honey Bee (Hymenoptera: Apidae) Health and Gut Microbiota. J. Insect Sci. 2023, 23, 15. [Google Scholar] [CrossRef] [PubMed]
- Chioveanu, G.; Ionescu, D.; Mardare, A. Control of Nosemosis—Treatment with Protofil. Apiacta 2004, 39, 31–38. [Google Scholar]
- Garrido, P.M.; Porrini, M.P.; Alberoni, D.; Baffoni, L.; Scott, D.; Mifsud, D.; Eguaras, M.J.; Di Gioia, D. Beneficial Bacteria and Plant Extracts Promote Honey Bee Health and Reduce Nosema ceranae Infection. Probiotics Antimicrob. Proteins 2024, 16, 259–274. [Google Scholar] [CrossRef] [PubMed]
- Iorizzo, M.; Lombardi, S.J.; Ganassi, S.; Testa, B.; Ianiro, M.; Letizia, F.; De Cristofaro, A. Antagonistic Activity Against Ascosphaera apis and Functional Properties of Lactobacillus kunkeei Strains. Antibiotics 2020, 9, 262. [Google Scholar] [CrossRef]
- Arredondo, D.; Castelli, L.; Porrini, M.P.; Garrido, P.M.; Eguaras, M.J.; Zunino, P.; Antúnez, K. Lactobacillus kunkeei Strains Decreased the Infection by Honeybee Pathogens Paenibacillus larvae and Nosema ceranae. Benef. Microbes 2018, 9, 279–290. [Google Scholar] [CrossRef]
- Alberoni, D.; Baffoni, L.; Braglia, C.; Gaggìa, F.; Di Gioia, D. Honeybee Exposure to Natural Feed Additives: How Is the Gut Microbiota Affected? Microorganisms 2021, 9, 1009. [Google Scholar] [CrossRef] [PubMed]
- Smriti; Rana, A.; Singh, G.; Gupta, G. Prospects of Probiotics in Beekeeping: A Review for Sustainable Approach to Boost Honeybee Health. Arch. Microbiol. 2024, 206, 205. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, X.; Huang, S.; Zhang, L.; Su, S.; Huang, W.F. Nosema ceranae Infection Enhances Bifidobacterium spp. Abundances in the Honey bee Hindgut. Apidologie 2019, 50, 353–362. [Google Scholar] [CrossRef]
- Baffoni, L.; Gaggìa, F.; Alberoni, D.; Cabbri, R.; Nanetti, A.; Biavati, B.; Di Gioia, D. Effect of Dietary Supplementation of Bifidobacterium and Lactobacillus Strains in Apis mellifera L. Against Nosema ceranae. Benef. Microbes 2016, 7, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Tejerina, M.R.; Benítez-Ahrendts, M.R.; Audisio, M.C. Lactobacillus salivarius A3iob Reduces the Incidence of Varroa destructor and Nosema spp. in Commercial Apiaries Located in the Northwest of Argentina. Probiotics Antimicrob. Proteins 2020, 12, 1360–1369. [Google Scholar] [CrossRef]
- Audisio, M.C.; Sabaté, D.C.; Benítez-Ahrendts, M.R. Effect of Lactobacillus johnsonii CRL1647 on Different Parameters of Honeybee Colonies and Bacterial Populations of the Bee Gut. Benef. Microbes 2015, 6, 687–695. [Google Scholar] [CrossRef]
- Maggi, M.; Negri, P.; Plischuk, S.; Szawarski, N.S.; De Piano, F.; De Feudis, L.; Audisio, C. Effects of the Organic Acids Produced by a Lactic Acid Bacterium in Apis mellifera Colony Development, Nosema ceranae Control and Fumagillin Efficiency. Vet. Microbiol. 2013, 167, 474–483. [Google Scholar] [CrossRef]
- Belhadj, H.; Harzallah, D.; Khennouf, S.; Dahamna, S.; Bouharati, S.; Baghiani, A. Isolation, Identification and Antimicrobial Activity of Lactic Acid Bacteria from Algerian Honeybee Collected Pollen. Acta Hortic. 2010, 854, 51–58. [Google Scholar] [CrossRef]
- Sbaghdi, T.; Garneau, J.R.; Yersin, S.; Chaucheyras-Durand, F.; Bocquet, M.; Moné, A.; El Alaoui, H.; Bulet, P.; Blot, N.; Delbac, F. The Response of the Honey Bee Gut Microbiota to Nosema ceranae Is Modulated by the Probiotic Pediococcus acidilactici and the Neonicotinoid Thiamethoxam. Microorganisms 2024, 12, 192. [Google Scholar] [CrossRef]
- Corby-Harris, V.; Snyder, L.; Meador, C.A.D.; Naldo, R.; Mott, B.; Anderson, K.E. Parasaccharibacter apium, gen. nov., sp. nov., Improves Honey Bee (Hymenoptera: Apidae) Resistance to Nosema. J. Econ. Entomol. 2016, 109, 537–543. [Google Scholar] [CrossRef]
- El Khoury, S.; Rousseau, A.; Lecoeur, A.; Cheaib, B.; Bouslama, S.; Mercier, P.L.; Demey, V.; Castex, M.; Giovenazzo, P.; Derome, N. Deleterious Interaction Between Honeybees (Apis mellifera) and Their Microsporidian Intracellular Parasite Nosema ceranae Was Mitigated by Administering Either Endogenous or Allochthonous Gut Microbiota Strains. Front. Ecol. Evol. 2018, 6, 58. [Google Scholar] [CrossRef]
- Kazimierczak-Baryczko, M.; Szymaś, B. Improvement of the Composition of Pollen Substitute for Honey Bee (Apis mellifera L.), Through Implementation of Probiotic Preparations. J. Apic. Sci. 2006, 50, 15–23. [Google Scholar]
- Schmidt, K.; Engel, P. Probiotic Treatment with a Gut Symbiont Leads to Parasite Susceptibility in Honey Bees. Trends Parasitol. 2016, 32, 914–916. [Google Scholar] [CrossRef] [PubMed]
- Andrearczyk, S.; Kadhim, M.J.; Knaga, S. Influence of a Probiotic on the Mortality, Sugar Syrup Ingestion and Infection of Honeybees with Nosema spp. Under Laboratory Assessment. Med. Weter. 2014, 70, 762–765. [Google Scholar]
- Porrini, M.P.; Audisio, M.C.; Sabaté, D.C.; Ibarguren, C.; Medici, S.K.; Sarlo, E.G.; Garrido, P.M.; Eguaras, M.J. Effect of Bacterial Metabolites on Microsporidian Nosema ceranae and on Its Host Apis mellifera. Parasitol. Res. 2010, 107, 381–388. [Google Scholar] [CrossRef]
- De Piano, F.G.; Maggi, M.; Pellegrini, M.C.; Cugnata, N.M.; Szawarski, N.; Buffa, F.; Negri, P.; Fuselli, S.R.; Audisio, C.M.; Ruffinengo, S.R. Effects of Lactobacillus johnsonii AJ5 Metabolites on Nutrition, Nosema ceranae Development and Performance of Apis mellifera L. J. Insect Sci. 2017, 61, 93–104. [Google Scholar] [CrossRef]
- Patruica, S.; Pătruică, A.T.; Bogdan, M.; Bura, D.; Popovici, D. Research on the Effect of Acidifying Substances on Bee Families Development and Health in Spring. Agro Buletin AGIR 2011, 3, 123–129. [Google Scholar]
- Pătruică, S.; Mot, D. The Effect of Using Prebiotic and Probiotic Products on Intestinal Microflora of the Honeybee (Apis mellifera carpatica). Bull. Entomol. Res. 2012, 102, 619–623. [Google Scholar] [CrossRef]
- Nanetti, A.; Rodriguez-García, C.; Meana, A.; Martín-Hernández, R.; Higes, M. Effect of Oxalic Acid on Nosema ceranae Infection. Res. Vet. Sci. 2015, 102, 167–172. [Google Scholar] [CrossRef] [PubMed]
- García-Vicente, E.J.; Benito-Murcia, M.; Martín, M.; Rey-Casero, I.; Pérez, A.; González, M.; Alonso, J.M.; Risco, D. Evaluation of the Potential Effect of Postbiotics Obtained from Honey Bees Against Varroa destructor and Their Combination with Other Organic Products. Insects 2024, 15, 67. [Google Scholar] [CrossRef]
- De Piano, F.G.; Maggi, M.D.; Meroi Arceitto, F.R.; Audisio, M.C.; Eguaras, M.; Ruffinengo, S.R. Effects of Bacterial Cell-Free Supernatant on Nutritional Parameters of Apis mellifera and Their Toxicity Against Varroa destructor. J. Apic. Sci. 2020, 64, 55–66. [Google Scholar] [CrossRef]
- Martin, R.; Langella, P. Emerging Health Concepts in the Probiotics Field: Streamlining the Definitions. Front. Microbiol. 2019, 10, 1047. [Google Scholar] [CrossRef] [PubMed]
- Lebeer, S.; Claes, I.; Tytgat, H.L.P.; Verhoeven, T.L.A.; Marien, E.; von Ossowski, I.; Reunanen, J.; Palva, A.; de Vos, W.M.; Keersmaecker, S.C.J.D.; et al. Functional Analysis of Lactobacillus rhamnosus GG Pili in Relation to Adhesion and Immunomodulatory Interactions with Intestinal Epithelial Cells. Appl. Environ. Microbiol. 2012, 78, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Thanh, N.T.; Loh, T.C.; Foo, H.L.; Hair-bejo, M.; Azhar, B.K. Effects of Feeding Metabolite Combinations Produced by Lactobacillus plantarum on Growth Performance, Fecal Microbial Population, Small Intestine Villus Height and Fecal Volatile Fatty Acids in Broilers. Br. Poult. Sci. 2009, 50, 298–306. [Google Scholar] [PubMed]
- Klassen, S.S.; VanBlyderveen, W.; Eccles, L.; Kelly, P.G.; Borges, D.; Goodwin, P.H.; Petukhova, T.; Wang, Q.; Guzman-Novoa, E. Nosema ceranae Infections in Honey Bees (Apis mellifera) Treated with Pre/Probiotics and Impacts on Colonies in the Field. Vet. Sci. 2021, 8, 107. [Google Scholar] [CrossRef]
- Tlak Gajger, I.; Nejedli, S.; Cvetnić, L. Influence of Probiotic Feed Supplement on Nosema spp. Infection Level and the Gut Microbiota of Adult Honeybees (Apis mellifera L.). Microorganisms 2023, 11, 610. [Google Scholar] [CrossRef]
- Huang, Q.; Lariviere, P.J.; Powell, J.E.; Moran, N.A. Engineered Gut Symbiont Inhibits Microsporidian Parasite and Improves Honey Bee Survival. Proc. Natl. Acad. Sci. USA 2023, 120, e2220922120. [Google Scholar] [CrossRef]
- Sattayawat, P.; Inwongwan, S.; Noirungsee, N.; Li, J.; Guo, J.; Disayathanoowat, T. Engineering Gut Symbionts: A Way to Promote Bee Growth? Insects 2024, 15, 369. [Google Scholar] [CrossRef] [PubMed]
- Leonard, S.P.; Powell, J.E.; Perutka, J.; Geng, P.; Heckmann, L.C.; Horak, R.D.; Davies, B.W.; Ellington, A.D.; Barrick, J.E.; Moran, N.A. Engineered Symbionts Activate Honey Bee Immunity and Limit Pathogens. Science 2020, 367, 573–576. [Google Scholar] [CrossRef]
- Lang, H.; Wang, H.; Wang, H.; Zhong, Z.; Xie, X.; Zhang, W.; Guo, J.; Meng, L.; Hu, X.; Zhang, X.; et al. Engineered Symbiotic Bacteria Interfering with Nosema Redox System Inhibit Microsporidia Parasitism in Honeybees. Nat. Commun. 2023, 14, 2778. [Google Scholar] [CrossRef]
- Lazarova, S.; Lozanova, L.; Neov, B.; Shumkova, R.; Balkanska, R.; Palova, N.; Salkova, D.; Radoslavov, G.; Hristov, P. Composition and diversity of bacterial communities associated with honey bee foragers from two contrasting environments. Bull. Entomol. Res. 2023, 113, 693–702. [Google Scholar] [CrossRef]
- Anderson, K.E.; Allen, N.O.; Copeland, D.C.; Corby-Harris, V.; Meador, C.A.D.; Maes, P.; Rodriguez, S.; Jones, B.M.; Martin, J.A.; Burckhardt, R.M. A Longitudinal Field Study of Commercial Honey Bees Shows That Non-Native Probiotics Do Not Rescue Antibiotic Treatment, and Are Generally Not Beneficial. Sci. Rep. 2024, 14, 1954. [Google Scholar] [CrossRef]
- Dosch, C.; Manigk, A.; Streicher, T.; Tehel, A.; Paxton, R.J.; Tragust, S. The Gut Microbiota Can Provide Viral Tolerance in the Honey Bee. Microorganisms 2021, 9, 871. [Google Scholar] [CrossRef] [PubMed]
Classification | Definition | Role | Benefits | Microbial Sources |
---|---|---|---|---|
Probiotics | Live microorganisms with a large scale of benefits | Improve gut microbiota composition, increase immunity, enhance gut barrier function, produce antimicrobial substances | Restoring gut microbiome balance, improving the absorption of nutrients, reducing spore load, improving colony parameters (e.g., survival, honey production, and reproductive activity) | Lactobacillus, Apilactobacillus Bifidobacterium, Enterococcus, Pediococcus, Streptococcus |
Metabolic byproducts and Postbiotics | Metabolic byproducts of probiotic bacteria and non-viable microbes | Provide antioxidant effects, modulate gut health, improve immune response | Lactobacillus, Bifidobacterium, Bacillus | |
Synbiotics | The combination of probiotics and prebiotics | Improve gut health, increase and support the survival of probiotics | Supplements, functional feeds with synergistic effects |
Feeding through Sugar Syrup | One of the most common methods is mixing microbial supplements into sugar syrup. This allows bees to ingest the supplements directly. |
Incorporation into Pollen Patties | Since pollen is a primary food source for bees, adding microbial supplements to pollen patties can be an effective way to introduce probiotics into the hive. |
Dusting with Microbial Powders | Powdered microbial supplements are dusted on the bees or hive surfaces. Bees that meet the powder ingest or interact with it. |
Topical Application | Microbial preparations can be applied directly to bee exoskeleton or hive surfaces using sprays, allowing the microorganisms to interact with the bees. |
Gutter or Hive Feeder Systems | Another method involves adding supplements to the hive feeder systems that distribute food throughout the colony. Systems ensure that a large portion of bees consume the supplements. |
Drone or Queen Supplementation | Specific applications can be targeted at drones or the queen, as they play important roles in colony health and reproduction. |
Lack of Understanding of Mechanisms | While alternative treatments like herbal remedies, probiotics, and synbiotics show promise, their mechanisms of action are not always well-understood. |
Efficacy and Consistency | Many alternative treatments show varying results, often depending on the dosage, timing, or environmental conditions. The natural variability in the composition of herbal or probiotic treatments can lead to inconsistent results. |
Potential Harm to Bees or Hive Health | Some alternative treatments could have negative effects on the health of honeybees or the hive environment. Non-native probiotics do not persist for a long time in the host and could disrupt the delicate microbial balance and produce limited functional outcomes. |
Regulatory Barriers | The regulatory landscape for alternative treatments in apiculture is complex. Many treatments that show good potential are not approved. |
Resistance Development | There is concern that the overuse of certain treatments could lead to resistance, making the parasites more difficult to control. |
Microbiome Research | The gut microbiome of bees plays an important role in their health and immune response. By exploring ways to balance or enhance the bee microbiome, researchers will need to develop more sustainable treatments that could reduce the impact of Nosema infection. Probiotics, postbiotics, and symbiotic treatments could be the right alternative. |
Herbal and Phytotherapy Advances | Herb and plant extracts can be used for combating Nosema. Flavonoids, alkaloids, and essential oils may act as natural remedies. |
Genetic Approaches | By breeding or genetically modifying bees to be more resistant to Nosema infections, researchers are exploring natural resistance mechanisms in certain bee strains that could be selectively bred to enhance colony health. |
Integrated Pest Management | The future of nosemosis treatment will likely focus on an integrated approach that combines alternative treatments with improved management practices. |
Synthetic Biology | Emerging technologies like synthetic biology may enable the creation of custom solutions, such as engineered probiotics, that target Nosema directly. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tache, B.; Spulber, R.; Dinu, L.-D.; Vamanu, E. Exploring Eco-Friendly Microbial Strategies for Nosemosis Control in Honeybee. Microorganisms 2025, 13, 2357. https://doi.org/10.3390/microorganisms13102357
Tache B, Spulber R, Dinu L-D, Vamanu E. Exploring Eco-Friendly Microbial Strategies for Nosemosis Control in Honeybee. Microorganisms. 2025; 13(10):2357. https://doi.org/10.3390/microorganisms13102357
Chicago/Turabian StyleTache, Bogdan, Roxana Spulber, Laura-Dorina Dinu, and Emanuel Vamanu. 2025. "Exploring Eco-Friendly Microbial Strategies for Nosemosis Control in Honeybee" Microorganisms 13, no. 10: 2357. https://doi.org/10.3390/microorganisms13102357
APA StyleTache, B., Spulber, R., Dinu, L.-D., & Vamanu, E. (2025). Exploring Eco-Friendly Microbial Strategies for Nosemosis Control in Honeybee. Microorganisms, 13(10), 2357. https://doi.org/10.3390/microorganisms13102357