Engineering Terpene Production Pathways in Methylobacterium extorquens AM1
Abstract
1. Introduction
2. Materials and Methods
2.1. Strains, Media, and Growth Conditions
2.2. Plasmid Generation and Electroporation
2.3. Terpene Production and Extraction
2.4. GC-FID/GC-MS Analysis
2.5. Competition Experiments
3. Results and Discussion
- Patchoulol synthase under a constitutive promoter fails to produce patchoulol
- Native methylotrophic promoter successfully produces patchoulol
- Impact of the lanthanide switch on production of patchoulol
- Assessing the methylotrophic engineering of diterpenes
- Methylotrophic engineered strains can compete for colonization in the phyllosphere
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Henke, N.A.; Wichmann, J.; Baier, T.; Frohwitter, J.; Lauersen, K.J.; Risse, J.M.; Peters-Wendisch, P.; Kruse, O.; Wendisch, V.F. Patchoulol production with metabolically engineered Corynebacterium glutamicum. Genes 2018, 9, 219. [Google Scholar] [CrossRef]
- Zhan, X.; Zhang, Y.H.; Chen, D.F.; Simonsen, H.T. Metabolic engineering of the moss Physcomitrella patens to produce the sesquiterpenoids patchoulol and α/β-santalene. Front. Plant Sci. 2014, 5, 536. [Google Scholar] [CrossRef]
- Zhou, F.; Pichersky, E. More is better: The diversity of terpene metabolism in plants. Curr. Opin. Plant Biol. 2020, 55, 1–10. [Google Scholar] [CrossRef]
- Veitch, G.E.; Beckmann, E.; Burke, B.J.; Boyer, A.; Maslen, S.L.; Ley, S.V. Synthesis of azadirachtin: A long but successful journey. Angew. Chem. Int. Ed. 2007, 46, 7629–7632. [Google Scholar] [CrossRef] [PubMed]
- Paddon, C.J.; Keasling, J.D. Semi-synthetic artemisinin: A model for the use of synthetic biology in pharmaceutical development. Nat. Rev. Microbiol. 2014, 12, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Kadkade, P.G.; Prince, C.L.; Roach, B.L.; Antonio, S. Enhanced Production of Taxol and Taxanes by Cell Cultures of Taxus Species. Patent WO/1993/017121, 2013. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiTv6Gvy8-EAxVrnK8BHY-OD5EQFnoECBMQAQ&url=https%3A%2F%2Fdata.epo.org%2Fgpi%2FEP0960944A1.pdf%3Fdownload%3Dtrue&usg=AOvVaw0IeO8sGVHlyWVZ6IiGvLAJ&opi=89978449 (accessed on 11 May 2023).
- Mao, G.; Chaturvedula, P.V.S.; Yu, O. Non-Caloric Sweetener. U.S. Patent 9,765,104B2, 2017. Available online: https://uspto.report/patent/grant/9765104 (accessed on 11 May 2023).
- Leonard, E.; Ajikumar, P.K.; Thayer, K.; Xiao, W.-H.; Mo, J.D.; Tidor, B.; Stephanopoulos, G.; Prather, K.L.J. Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control. Proc. Natl. Acad. Sci. USA 2010, 107, 13654–13659. [Google Scholar] [CrossRef] [PubMed]
- Frontiers|Microbial Platform for Terpenoid Production: Escherichia coli and Yeast [Internet]. Available online: https://www.frontiersin.org/articles/10.3389/fmicb.2018.02460/full (accessed on 22 January 2024).
- Kirby, J.; Nishimoto, M.; Chow, R.W.N.; Baidoo, E.E.K.; Wang, G.; Martin, J.; Schackwitz, W.; Chan, R.; Fortman, J.L.; Keasling, J.D. Enhancing Terpene Yield from Sugars via Novel Routes to 1-Deoxy-d-Xylulose 5-Phosphate. Appl. Environ. Microbiol. 2015, 81, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Bohlmann, J.; Keeling, C.I. Terpenoid biomaterials. Plant J. 2008, 54, 656–669. [Google Scholar] [CrossRef] [PubMed]
- Morrone, D.; Lowry, L.; Determan, M.K.; Hershey, D.M.; Xu, M.; Peters, R.J. Increasing diterpene yield with a modular metabolic engineering system in E. coli: Comparison of MEV and MEP isoprenoid precursor pathway engineering. Appl. Microbiol. Biotechnol. 2010, 85, 1893–1906. [Google Scholar] [CrossRef] [PubMed]
- Sonntag, F.; Kroner, C.; Lubuta, P.; Peyraud, R.; Horst, A.; Buchhaupt, M.; Schrader, J. Engineering Methylobacterium extorquens for de novo synthesis of the sesquiterpenoid α-humulene from methanol. Metab. Eng. 2015, 32, 82–94. [Google Scholar] [CrossRef]
- Delmotte, N.; Knief, C.; Chaffron, S.; Innerebner, G.; Roschitzki, B.; Schlapbach, R.; von Mering, C.; Vorholt, J.A. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc. Natl. Acad. Sci. USA 2009, 106, 16428–16433. [Google Scholar] [CrossRef]
- Good, N.M.; Vu, H.N.; Suriano, C.J.; Subuyuj, G.A.; Skovran, E.; Martinez-Gomez, N.C. Pyrroloquinoline quinone ethanol dehydrogenase in Methylobacterium extorquens AM1 extends lanthanide-dependent metabolism to multicarbon substrates. J. Bacteriol. 2016, 198, 3109–3118. [Google Scholar] [CrossRef]
- Skovran, E.; Martinez-Gomez, N.C. Just add lanthanides. Science 2015, 348, 862–863. [Google Scholar] [CrossRef]
- Van Dien, S.J.; Marx, C.J.; O’Brien, B.N.; Lidstrom, M.E. Genetic Characterization of the Carotenoid Biosynthetic Pathway in Methylobacterium extorquens AM1 and Isolation of a Colorless Mutant. Appl. Environ. Microbiol. 2003, 69, 7563–7566. [Google Scholar] [CrossRef]
- Ma, B.; Liu, M.; Li, Z.H.; Tao, X.; Wei, D.Z.; Wang, F.Q. Significantly Enhanced Production of Patchoulol in Metabolically Engineered Saccharomyces cerevisiae. J. Agric. Food Chem. 2019, 67, 8590–8598. [Google Scholar] [CrossRef]
- Munck, S.L.; Croteau, R. Purification and characterization of the sesquiterpene cyclase patchoulol synthase from Pogostemon cablin. Arch. Biochem. Biophys. 1990, 282, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Dueber, M.; Adolf, W.; West, C. Biosynthesis of the Diterpene Phytoalexin Casbene: Partial Purification and Characterization of Casbene Synthetase from Ricinis communis. Plant Physiol. 1978, 62, 598–603. [Google Scholar] [CrossRef] [PubMed]
- Bibik, J.D.; Weraduwage, S.M.; Banerjee, A.; Robertson, K.; Espinoza-Corral, R.; Sharkey, T.D.; Lundquist, P.K.; Hamberger, B.R. Pathway Engineering, Re-targeting, and Synthetic Scaffolding Improve the Production of Squalene in Plants. ACS Synth. Biol. 2022, 11, 2121–2133. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Callari, R.; Hamberger, B.; Wubshet, S.G.; Nielsen, M.T.; Andersen-Ranberg, J.; Hallström, B.M.; Cozzi, F.; Heider, H.; Møller, B.L.; et al. Oxidation and cyclization of casbene in the biosynthesis of Euphorbia factors from mature seeds of Euphorbia lathyris L. Proc. Natl. Acad. Sci. USA 2016, 113, E5082–E5089. [Google Scholar] [CrossRef] [PubMed]
- Delaney, N.F.; Kaczmarek, M.E.; Ward, L.M.; Swanson, P.K.; Lee, M.C.; Marx, C.J. Development of an Optimized Medium, Strain and High-Throughput Culturing Methods for Methylobacterium extorquens. PLoS ONE 2013, 8, e62957. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.C.; Chou, H.H.; Marx, C.J. Asymmetric, bimodal trade-offs during adaptation of methylobacterium to distinct growth substrates. Evolution 2009, 63, 2816–2830. [Google Scholar] [CrossRef] [PubMed]
- Bose, A.; Metcalf, W.W. Distinct regulators control the expression of methanol methyltransferase isozymes in Methanosarcina acetivorans C2A. Mol. Microbiol. 2008, 67, 649–661. [Google Scholar] [CrossRef] [PubMed]
- Skovran, E.; Palmer, A.D.; Rountree, A.M.; Good, N.M.; Lidstrom, M.E. XoxF is required for expression of methanol dehydrogenase in Methylobacterium extorquens AM1. J. Bacteriol. 2011, 193, 6032–6038. [Google Scholar] [CrossRef] [PubMed]
- Deguerry, F.; Pastore, L.; Wu, S.; Clark, A.; Chappell, J.; Schalk, M. The diverse sesquiterpene profile of patchouli, Pogostemon cablin, is correlated with a limited number of sesquiterpene synthases. Arch. Biochem. Biophys. 2006, 454, 123–136. [Google Scholar] [CrossRef] [PubMed]
- Cyr, A.; Wilderman, P.R.; Determan, M.; Peters, R.J. A modular approach for facile biosynthesis of labdane-related diterpenes. J. Am. Chem. Soc. 2007, 129, 6684–6685. [Google Scholar] [CrossRef] [PubMed]
- Toyama, H.; Anthony, C.; Lidstrom, M.E. Construction of insertion and deletion mxa mutants of Methylobacterium extorquens AM1 by electroporation. FEMS Microbiol. Lett. 1998, 166, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, M.F.; Brooks, T.; Pukatzki, S.U.; Provenzano, D. Rapid protocol for preparation of electrocompetent Escherichia coli and Vibrio cholerae. J. Vis. Exp. 2013, 2013, 50684. [Google Scholar]
- Miller, G.P.; Bhat, W.W.; Lanier, E.R.; Johnson, S.R.; Mathieu, D.T.; Hamberger, B. The biosynthesis of the anti-microbial diterpenoid leubethanol in Leucophyllum frutescens proceeds via an all-cis prenyl intermediate. Plant J. 2020, 104, 693–705. [Google Scholar] [CrossRef]
- Martinez-Gomez, N.C.; Good, N.M.; Lidstrom, M.E. Methenyl-Dephosphotetrahydromethanopterin Is a Regulatory Signal for Acclimation to Changes in Substrate Availability in Methylobacterium extorquens AM1. J. Bacteriol. 2015, 197, 2020–2026. [Google Scholar] [CrossRef]
- Klaus, O.; Hilgers, F.; Nakielski, A.; Hasenklever, D.; Jaeger, K.E.; Axmann, I.M.; Axmann, I.M.; Drepper, T. Engineering phototrophic bacteria for the production of terpenoids. Curr. Opin. Biotechnol. 2022, 77, 102764. [Google Scholar] [CrossRef]
Primer | Description | Target Gene |
---|---|---|
1-pAP5.for | CGTTCCTGACAACGAGCCTCCTT | pAP5 linearization |
2-pAP5.rev | GCAGGCATGCAAGCTTGGCGTAA | pAP5 linearization |
3-mtac.pats.lin.rev | GAAGATCTGAATTCGAGATGGAGTTGTATGCCCAAAG | Patchoulol synthase |
4-Pats.pAP5.rev | GCCAAGCTTGCATGCCTGCTTAATATGGAACAGGGTGAAGGTACAACTGC | Patchoulol synthase |
5-mTac.pAP5.for | GAGGCTCGTTGTCAGGAACGAAGAAATCTGAAATGAGCTGTTGACAATTA | mTac promoter |
6-mTac.pAP5.rev | CTCGAATTCAGATCTTCGGG | mTac promoter |
7-XoxF.pAP5.for | CGAATTCACTGGCCGTCGTTTTACA | pES503 linearization |
8-Pats.xoxf.for | AACGACGGCCAGTGAATTCGATGGAGTTGTATGCCCAAAGT | Patchoulol synthase |
9-DgTPS1.pAP5.for | CCCGAAGATCTGAATTCGAGATGGCTGCTGCTGTGTCCGAGTT | Casbene synthase |
10-DgTPS1.pAP5.rev | CGCCAAGCTTGCATGCCTGCTCATCGGTTATAAGGAATTGGGTGGACGAA | Casbene synthase |
11-DgTPS1.xoxf.for | AACGACGGCCAGTGAATTCGATGGCTGCTGCTGTGTCCGAGTT | Casbene synthase |
12-venus.check.for | CGAGTCAGTGAGCGAGGAA | Sequencing check |
13-venus.check.rev | CTACTTCACTGTTGGGGCCG | Sequencing check |
Strain or Plasmid | Relevant Trait(s) | Source |
---|---|---|
pAP5 | pCM62 promoterless venus | Skovran et al. [26] |
pES503 | pAP5 with pxox1 | Sonntag et al. [16] |
pAH1 | pAP5 ∆venus_pmTac_PcPatS | This study, derived from pAP5, Skovran et al. [26] |
pAH2 | pES503 ∆venus_pxox1_PcPatS | This study, derived from Sonntag et al. [16] |
pAH3 | pES503 ∆venus_pxox1_DgTPS1 | This study, derived from Sonntag et al. [16] |
pAH4 | pAP5 ∆venus_pmTac_DgTPS1 | This study, derived from Sonntag et al. [16] |
pIRS | DXS, DXR, IDI | Morrone et al. [12] |
pGG | pACYCDUet with rAgGGPS | Cyr et al. [28] |
E. coli_pIRS_pGG_pAH1 (strain) | E. coli with pmTac_PcPatS | This study, derived from Morrone et al. and Cyr et al. [12,28] |
E. coli_pIRS_pGG_pAH4 (strain) | E. coli with pmTac_DgTPS1 | This study |
AM1_pES503 (strain) | M. extorquens AM1 with pxox1_venus | This study |
AM1_pAH1 (strain) | M. extorquens AM1 with pmTac_PcPatS | This study |
CM502_pAH1 (strain) | M. extorquens CM502 with pmTac_PcPatS | This study |
AM1_pAH2 (strain) | M. extorquens AM1 with pxox1_PcPatS | This study |
CM502_pAH2 (strain) | M. extorquens CM502 with pxox1_PcPatS | This study |
AM1_pAH3 (strain) | M. extorquens AM1 with pxox1_DgTPS1 | This study |
CM502_pAH3 (strain) | M. extorquens CM502 with pxox1_DgTPS1 | This study |
AM1_pAH4 (strain) | M. extorquens AM1 with pmTac_DgTPS1 | This study |
CM502_pAH4 (strain) | M. extorquens CM502 with pmTac_DgTPS1 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hurt, A.; Bibik, J.D.; Martinez-Gomez, N.C.; Hamberger, B. Engineering Terpene Production Pathways in Methylobacterium extorquens AM1. Microorganisms 2024, 12, 500. https://doi.org/10.3390/microorganisms12030500
Hurt A, Bibik JD, Martinez-Gomez NC, Hamberger B. Engineering Terpene Production Pathways in Methylobacterium extorquens AM1. Microorganisms. 2024; 12(3):500. https://doi.org/10.3390/microorganisms12030500
Chicago/Turabian StyleHurt, Allison, Jacob D. Bibik, Norma Cecilia Martinez-Gomez, and Björn Hamberger. 2024. "Engineering Terpene Production Pathways in Methylobacterium extorquens AM1" Microorganisms 12, no. 3: 500. https://doi.org/10.3390/microorganisms12030500
APA StyleHurt, A., Bibik, J. D., Martinez-Gomez, N. C., & Hamberger, B. (2024). Engineering Terpene Production Pathways in Methylobacterium extorquens AM1. Microorganisms, 12(3), 500. https://doi.org/10.3390/microorganisms12030500