Exploring the Influence of Biochar-Supported Nano-Iron Oxide on Phosphorus Speciation Transformation and Bacterial Community Structure in Aerobic Pig Manure Composting Processes
Abstract
1. Introduction
2. Materials and Methods
2.1. Biochar Loading Experiment
2.2. Experimental Composting Process
2.3. Physical and Chemical Properties of the Composting
2.4. P Forms
2.5. Metagenomic Sequencing
2.6. Data Processing
3. Results and Discussion
3.1. Characterization of BC-Fe3O4NPs
3.2. Changes in Physicochemical Properties During Composting
3.3. Transformation of P Forms
3.4. Changes in Bacterial Community Structure During the Composting Process
3.5. Analysis of Bacterial Community Richness and Diversity During the Composting Process
3.6. NMDS Analysis of Bacterial Communities During the Composting Process
3.7. Correlation Between Phosphorus Forms and Microbial Communities During the Composting Process
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, Q.; Wan, W. Insight into application of phosphate-solubilizing bacteria promoting phosphorus availability during chicken manure composting. Bioresour. Technol. 2023, 373, 128707. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, M.; Liu, L.; Zhao, H.; Luo, W.; Guo, Y.; Ji, X.; Hu, W. Dynamic characteristics of net anthropogenic phosphorus input to the upper Yangtze River Basin from 1989 to 2019: Focus on the phosphate ore rich area in China. J. Environ. Manag. 2023, 347, 119140. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, W.; Song, S.; Sun, J. Sources and spatiotemporal distribution characteristics of nitrogen and phosphorus loads in the Haihe River Basin, China. Mar. Pollut. Bull. 2023, 189, 114756. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, H.; Zhao, Y.; Zhong, Y.; Fu, G.; Zhou, S.; Xu, Y.; Zhou, K. Study on total phosphorus pollution load estimation and prevention and control countermeasures in Dongting Lake. Energy Rep. 2023, 9, 294–305. [Google Scholar] [CrossRef]
- Kodaolu, B.; Mohammed, I.; Wang, Y.; Zhang, T.; Audette, Y.; Longstaffe, J. Assessment of Phosphorus Status in a Calcareous Soil Receiving Long-Term Application of Chemical Fertilizer and Different Forms of Swine Manures; 0047-2425; Wiley Online Library: Hoboken, NJ, USA, 2024. [Google Scholar]
- Yin, Y.; Yang, C.; Li, M.; Yang, S.; Tao, X.; Zheng, Y.; Wang, X.; Chen, R. Biochar reduces bioavailability of phosphorus during swine manure composting: Roles of phoD-harboring bacterial community. Sci. Total Environ. 2023, 858, 159926. [Google Scholar] [CrossRef]
- Mehta, C.; Kanak Sirari, K.S. Comparative study of aerobic and anaerobic composting for better understanding of organic waste management: A mini review. Plant Arch. 2018, 18, 44–48. [Google Scholar]
- Kalkhajeh, Y.K.; Huang, B.; SØRensen, H.; Holm, P.E.; Hansen, H.C.B. Phosphorus accumulation and leaching risk of greenhouse vegetable soils in Southeast China. Pedosphere 2021, 31, 683–693. [Google Scholar] [CrossRef]
- Grigatti, M.; Boanini, E.; Di Biase, G.; Marzadori, C.; Ciavatta, C. Effect of iron sulphate on the phosphorus speciation from agro-industrial sludge based and sewage sludge based compost. Waste Manag. 2017, 69, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, K.; Zhang, H.; Zhou, K.; Chang, Y.; Zhan, Y.; Pan, C.; Shi, X.; Zuo, H.; Li, J.; et al. Humic acid and phosphorus fractions transformation regulated by carbon-based materials in composting steered its potential for phosphorus mobilization in soil. J. Environ. Manag. 2023, 325, 116553. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wu, Z.; Huang, Y.; Zhan, X.; Zhang, Y.; Cai, C. Industrial-scale composting of swine manure with a novel additive-yellow phosphorus slag: Variation in maturity indicators, compost quality and phosphorus speciation. Bioresour. Technol. 2023, 384, 129356. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, J.; Chang, R.; Zhan, Y.; Wei, D.; Zhang, L.; Chen, Q. Composting with biochar or woody peat addition reduces phosphorus bioavailability. Sci. Total Environ. 2021, 764, 142841. [Google Scholar] [CrossRef] [PubMed]
- Tian, P.; Yang, S.; Yang, M.; Xie, D.; Yu, H.; Wang, X. Effect of iron-based nanomaterials on organic carbon dynamics and greenhouse gas emissions during composting process. Environ. Res. 2024, 263, 120281. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, J.; Li, X.; Zhou, W.; Cui, X.; Tian, P.; Yu, H.; Wang, X. Synergistic effects of Fe-based nanomaterial catalyst on humic substances formation and microplastics mitigation during sewage sludge composting. Bioresour. Technol. 2024, 395, 130371. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhang, Z.; Yang, R.; Wang, X.; Yu, J.; Jiang, H.; Zhang, W.; Xi, B.; Sun, X.; Li, N. Nano Fe3O4 improved the electron donating capacity of dissolved organic matter during sludge composting. J. Environ. Manag. 2024, 369, 122354. [Google Scholar] [CrossRef] [PubMed]
- Niu, Q.; Meng, Q.; Yang, H.; Wang, Y.; Li, X.; Li, G.; Li, Q. Humification process and mechanisms investigated by Fenton-like reaction and laccase functional expression during composting. Bioresour. Technol. 2021, 341, 125906. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yi, Z.; Chen, Y.; Li, Y.; Jiang, H.; Wang, J.; Chen, Y.; Nie, Y.; Luo, M.; Wang, Q.; et al. Improved humification and Cr(VI) immobilization by CaO2 and Fe3O4 during composting. Bioresour. Technol. 2024, 413, 131479. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhou, J.; Liu, Y.; Guo, J.; Ren, J.; Zhou, F. Preparation of iminodiacetic acid-modified magnetic biochar by carbonization, magnetization and functional modification for Cd(II) removal in water. Fuel 2018, 233, 469–479. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Y.; Su, Y.; Li, T.; Yao, M.; Qin, C. Fenton-like degradation of 2,4-dichlorophenol using calcium peroxide particles: Performance and mechanisms. RSC Adv. 2017, 7, 4563–4571. [Google Scholar] [CrossRef]
- Chang, H.-q.; Zhu, X.-h.; Wu, J.; Guo, D.-y.; Zhang, L.-h.; Feng, Y. Dynamics of microbial diversity during the composting of agricultural straw. J. Integr. Agric. 2021, 20, 1121–1136. [Google Scholar] [CrossRef]
- Chen, W.; Zhan, Y.; Zhang, X.; Shi, X.; Wang, Z.; Xu, S.; Chang, Y.; Ding, G.; Li, J.; Wei, Y. Influence of carbon-to-phosphorus ratios on phosphorus fractions transformation and bacterial community succession in phosphorus-enriched composting. Bioresour. Technol. 2022, 362, 127786. [Google Scholar] [CrossRef] [PubMed]
- Dou, Z.; Toth, J.; Galligan, D.; Ramberg, C., Jr.; Ferguson, J. Laboratory Procedures for Characterizing Manure Phosphorus; 0047-2425; Wiley Online Library: Hoboken, NJ, USA, 2000. [Google Scholar]
- Yan, B.; Lan, T.; Lv, Y.; Xing, C.; Liang, Y.; Wang, H.; Wu, Q.; Guo, L.; Guo, W.-Q. Enhancing simultaneous nitrogen and phosphorus availability through biochar addition during Chinese medicinal herbal residues composting: Synergism of microbes and humus. Sci. Total Environ. 2024, 930, 172515. [Google Scholar] [CrossRef] [PubMed]
- You, X.; Wang, S.; Chen, J. Magnetic biochar accelerates microbial succession and enhances assimilatory nitrate reduction during pig manure composting. Environ. Int. 2024, 184, 108469. [Google Scholar] [CrossRef]
- Subirats, J.; Sharpe, H.; Topp, E. Fate of Clostridia and other spore-forming Firmicute bacteria during feedstock anaerobic digestion and aerobic composting. J. Environ. Manag. 2022, 309, 114643. [Google Scholar] [CrossRef]
- Li, M.; Qin, Z.; Duan, M.; Wang, Q.; Zhou, B.; Weng, H. Effects of micro-nano bubble water addition on maturation degree and microbial community during aerobic composting. Chemosphere 2024, 353, 141657. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Luo, X.; Li, Y.; Liu, Y.; Chen, L.; Jiang, H.; Chen, Y.; Qin, X.; Tang, P.; Yan, H. Effects of CaO(2) based Fenton—Like reaction on heavy metals and microbial community during co-composting of straw and sediment. Chemosphere 2022, 301, 134563. [Google Scholar] [CrossRef] [PubMed]
- Geng, X.; Yang, H.; Gao, W.; Yue, J.; Mu, D.; Wei, Z. Greenhouse gas emission characteristics during kitchen waste composting with biochar and zeolite addition. Bioresour. Technol. 2024, 399, 130575. [Google Scholar] [CrossRef] [PubMed]
- NY/T 525-2021; Organic Fertilizer. Agricultural Industry Standard of the People’s Republic of China: Beijing, China, 2021.
- Zhang, Y.; Huang, G.; Zhang, F.; Fan, Z.; Liu, L.; Tian, W.; Song, G.; Zhang, Z.; Li, M.; Wang, S.; et al. Exploring the role of biochar and Fe2O3 in mitigating copper and zinc bioavailability in co-composting of pig manure and wine grape pomace. Chem. Eng. J. 2024, 484, 149475. [Google Scholar] [CrossRef]
- Xie, S.; Tran, H.-T.; Pu, M.; Zhang, T. Transformation characteristics of organic matter and phosphorus in composting processes of agricultural organic waste: Research trends. Mater. Sci. Energy Technol. 2023, 6, 331–342. [Google Scholar] [CrossRef]
- Tao, Z.; Liu, X.; Sun, L.; He, X.; Wu, Z. Effects of two types nitrogen sources on humification processes and phosphorus dynamics during the aerobic composting of spent mushroom substrate. J. Environ. Manag. 2022, 317, 115453. [Google Scholar] [CrossRef]
- Wong, J.W.; Karthikeyan, O.P.; Selvam, A. Biological nutrient transformation during composting of pig manure and paper waste. Environ. Technol. 2017, 38, 754–761. [Google Scholar] [CrossRef]
- Li, X.; Dai, X.; Takahashi, J.; Li, N.; Jin, J.; Dai, L.; Dong, B. New insight into chemical changes of dissolved organic matter during anaerobic digestion of dewatered sewage sludge using EEM-PARAFAC and two-dimensional FTIR correlation spectroscopy. Bioresour. Technol. 2014, 159, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.F.; Wong, J.W.; Wu, Q.T.; Nagar, B.B. Effect of C/N on composting of pig manure with sawdust. Waste Manag. 2004, 24, 805–813. [Google Scholar] [CrossRef]
- Jiang, J.; Kang, K.; Chen, D.; Liu, N. Impacts of delayed addition of N-rich and acidic substrates on nitrogen loss and compost quality during pig manure composting. Waste Manag. 2018, 72, 161–167. [Google Scholar] [CrossRef]
- Guo, T.; Zhang, S.; Song, C.; Zhao, R.; Jia, L.; Wei, Z. Response of phosphorus fractions transformation and microbial community to carbon-to-phosphorus ratios during sludge composting. J. Environ. Manag. 2024, 360, 121145. [Google Scholar] [CrossRef]
- Zhang, T.; Li, H.; Yan, T.; Shaheen, S.M.; Niu, Y.; Xie, S.; Zhang, Y.; Abdelrahman, H.; Ali, E.F.; Bolan, N.S.; et al. Organic matter stabilization and phosphorus activation during vegetable waste composting: Multivariate and multiscale investigation. Sci. Total Environ. 2023, 891, 164608. [Google Scholar] [CrossRef]
- Mosmeri, H.; Alaie, E.; Shavandi, M.; Dastgheib, S.M.M.; Tasharrofi, S. Bioremediation of benzene from groundwater by calcium peroxide (CaO2) nanoparticles encapsulated in sodium alginate. J. Taiwan Inst. Chem. Eng. 2017, 78, 299–306. [Google Scholar] [CrossRef]
- Urrutia, O.; Guardado, I.; Erro, J.; Mandado, M.; García-Mina, J.M. Theoretical chemical characterization of phosphate-metal–humic complexes and relationships with their effects on both phosphorus soil fixation and phosphorus availability for plants. J. Sci. Food Agric. 2012, 93, 293–303. [Google Scholar] [CrossRef]
- Zhu, L.; Huang, C.; Li, L.; Wang, S.; Wu, X.; Shan, G.; Tian, Y. Innovative insights into organic nitrogen degradation through protein family domains analysis in chicken and pig manure composting using metagenomic sequencing. Bioresour. Technol. 2024, 406, 131048. [Google Scholar] [CrossRef]
- Wu, X.; Amanze, C.; Yu, R.; Li, J.; Wu, X.; Shen, L.; Liu, Y.; Yu, Z.; Wang, J.; Zeng, W. Insight into the microbial mechanisms for the improvement of composting efficiency driven by Aneurinibacillus sp. LD3. Bioresour. Technol. 2022, 359, 127487. [Google Scholar] [CrossRef] [PubMed]
- Cai, G.; Li, J.; Zhou, M.; Zhu, G.; Li, Y.; Lv, N.; Wang, R.; Li, C.; Pan, X. Compost-derived indole-3-acetic-acid-producing bacteria and their effects on enhancing the secondary fermentation of a swine manure-corn stalk composting. Chemosphere 2022, 291, 132750. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Qiu, M.; Zhang, L. Construction of lignocellulose-degrading compound microbial inoculum and its effects on green waste composting. J. Environ. Manag. 2024, 370, 122502. [Google Scholar] [CrossRef] [PubMed]
- Antunes, L.P.; Martins, L.F.; Pereira, R.V.; Thomas, A.M.; Barbosa, D.; Lemos, L.N.; Silva, G.M.M.; Moura, L.M.S.; Epamino, G.W.C.; Digiampietri, L.A.; et al. Microbial community structure and dynamics in thermophilic composting viewed through metagenomics and metatranscriptomics. Sci. Rep. 2016, 6, 38915. [Google Scholar] [CrossRef]
- Fu, X.; Zuo, H.; Weng, Y.; Wang, Z.; Kou, Y.; Wang, D.; Li, Z.; Wang, Q.; Arslan, M.; Gamal El-Din, M.; et al. Performance evaluation and microbial community succession analysis of co-composting treatment of refinery waste activated sludge. J. Environ. Manag. 2024, 370, 122872. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Xie, Y.; Wang, X.; Li, P.; Liu, Y.; Wang, Z.; Dai, J.; Zhang, H.; Yang, X. Influence of different microbial inoculants on nitrogen retention and diazotroph community succession during cotton straw composting. Process Saf. Environ. Prot. 2023, 172, 882–893. [Google Scholar] [CrossRef]
- Wang, L.; Qi, Y.; Cao, L.; Song, L.; Hu, R.; Li, Q.; Zhao, Y.; Liu, J.; Zhang, H. Promoting role of nitrogen-fixing bacteria and biochar on nitrogen retention and degradation of PBAT plastics during composting. Environ. Pollut. 2024, 363, 125228. [Google Scholar] [CrossRef]
- Zhang, Y.; Hao, Q.; Wang, O.; Zhang, X.-H.; Liu, F. Fermentative iron reduction buffers acidification and promotes microbial metabolism in marine sediments. J. Environ. Chem. Eng. 2023, 11, 110922. [Google Scholar] [CrossRef]
- Cao, L.; Liao, L.; Su, C.; Mo, T.; Zhu, F.; Qin, R.; Li, R. Metagenomic analysis revealed the microbiota and metabolic function during co-composting of food waste and residual sludge for nitrogen and phosphorus transformation. Sci. Total Environ. 2021, 773, 145561. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Li, L.; Zhou, H.; Zhang, W.-J.; Dai, X.-H.; Zhu, H. Microbial fuel cell-assisted composting shows stronger capacity to immobilize phosphorus: Emphasized on bacterial structures and functional enzymes. Bioresour. Technol. 2024, 413, 131456. [Google Scholar] [CrossRef]
- Vijuksungsith, P.; Satapanajaru, T.; Chokejaroenrat, C.; Jarusutthirak, C.; Sakulthaew, C.; Kambhu, A.; Yoo-iam, M.; Boonprasert, R. Removal and reuse of phosphorus from aquaculture water using activated carbon-based CaO2 nanoparticles. Environ. Technol. Innov. 2023, 29, 102990. [Google Scholar] [CrossRef]
Samples | Specific Surface Area (m2·g−1) | Pore Volume (cm3·g−1) |
---|---|---|
BC-Fe3O4NPs | 78.160 | 0.194 |
BC | 43.959 | 0.069 |
Day/Treatment | Chao 1 Index | Shannon Index | Coverage Index | |
---|---|---|---|---|
0 d | CK | 19,670.29 ± 213.62 a | 3.82 ± 0.00 a | 0.9995 ± 0.0000 a |
F1 | 27,922.72 ± 121.10 b | 4.17 ± 0.00 b | 0.9993 ± 0.0000 b | |
F2 | 32,918.24 ± 59.39 c | 5.08 ± 0.02 c | 0.9994 ± 0.0000 c | |
F3 | 25,831.02 ± 310.25 d | 4.53 ± 0.01 d | 0.9993 ± 0.0000 d | |
7 d | CK | 29,042.54 ± 160.90 a | 4.86 ± 0.01 a | 0.9993 ± 0.0000 a |
F1 | 31,039.06 ± 256.56 b | 4.61 ± 0.00 b | 0.9994 ± 0.0000 b | |
F2 | 29,907.30 ± 250.14 c | 4.81 ± 0.01 a | 0.9994 ± 0.0000 c | |
F3 | 24,591.30 ± 290.04 d | 3.64 ± 0.00 c | 0.9993 ± 0.0000 a | |
28 d | CK | 36,468.00 ± 448.36 a | 6.53 ± 0.00 a | 0.9996 ± 0.0000 a |
F1 | 34,037.88 ± 133.84 b | 5.73 ± 0.00 b | 0.9995 ± 0.0000 ab | |
F2 | 33,430.68 ± 254.52 b | 5.54 ± 0.01 c | 0.9995 ± 0.0000 b | |
F3 | 34,000.10 ± 242.25 b | 5.64 ± 0.00 d | 0.9996 ± 0.0000 ab | |
50 d | CK | 34,696.03 ± 193.89 a | 6.15 ± 0.01 a | 0.9996 ± 0.0000 a |
F1 | 35,953.68 ± 116.20 b | 6.36 ± 0.00 b | 0.9996 ± 0.0000 a | |
F2 | 35,621.30 ± 129.33 b | 5.92 ± 0.00 c | 0.9996 ± 0.0000 a | |
F3 | 36,460.46 ± 81.74 c | 6.65 ± 0.00 d | 0.9993 ± 0.0000 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, N.; Wang, K.; Liang, M.; Zhou, J.; Yu, R. Exploring the Influence of Biochar-Supported Nano-Iron Oxide on Phosphorus Speciation Transformation and Bacterial Community Structure in Aerobic Pig Manure Composting Processes. Microorganisms 2024, 12, 2593. https://doi.org/10.3390/microorganisms12122593
Yuan N, Wang K, Liang M, Zhou J, Yu R. Exploring the Influence of Biochar-Supported Nano-Iron Oxide on Phosphorus Speciation Transformation and Bacterial Community Structure in Aerobic Pig Manure Composting Processes. Microorganisms. 2024; 12(12):2593. https://doi.org/10.3390/microorganisms12122593
Chicago/Turabian StyleYuan, Ning, Kang Wang, Mengyue Liang, Jia Zhou, and Rui Yu. 2024. "Exploring the Influence of Biochar-Supported Nano-Iron Oxide on Phosphorus Speciation Transformation and Bacterial Community Structure in Aerobic Pig Manure Composting Processes" Microorganisms 12, no. 12: 2593. https://doi.org/10.3390/microorganisms12122593
APA StyleYuan, N., Wang, K., Liang, M., Zhou, J., & Yu, R. (2024). Exploring the Influence of Biochar-Supported Nano-Iron Oxide on Phosphorus Speciation Transformation and Bacterial Community Structure in Aerobic Pig Manure Composting Processes. Microorganisms, 12(12), 2593. https://doi.org/10.3390/microorganisms12122593