Bacillus lumedeiriae sp. nov., a Gram-Positive, Spore-Forming Rod Isolated from a Pharmaceutical Facility Production Environment and Added to the MALDI Biotyper® Database
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions
2.2. Phenotypic Tests
2.3. Genotypic Identification by 16S rRNA Gene Sequencing
2.4. Genome Sequencing, Assembly and Annotation
2.5. Phylogenetic Analysis of 16S rRNA, rpoB and gyrB Genes
2.6. Genomic Taxonomy Analysis
2.7. Genome Sequence Deposit
2.8. Addition of B190/17 Spectra to VITEK® MS RUO and MALDI Biotyper® Database
3. Results and Discussion
Description of Bacillus lumedeiriae sp. nov.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costa, L.V.D.; Miranda, R.V.D.S.L.; Reis, C.M.F.; Andrade, J.M.; Cruz, F.V.; Frazão, A.M.; Fonseca, E.L.; Ramos, J.N.; Brandão, M.L.L.; Vieira, V.V. MALDI-TOF MS database expansion for identification of Bacillus and related genera isolated from a pharmaceutical facility. J. Microbiol. Methods 2022, 203, 106625. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Li, Q.; Liu, C.; Wang, P.; Qin, F.; Zhang, L.; Fan, Y.; Shao, H.; Chen, G.; Yang, M. A comprehensive technology strategy for microbial identification and contamination investigation in the sterile drug manufacturing facility—A case study. Front. Microbiol. 2024, 15, 1327175. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. European Union guidelines for good manufacturing practice for medicinal products for human and veterinary use. In The Rules Governing Medicinal Products in the European Union; Annex 1: Manufacture of Sterile Medicinal Products; European Medicines Agency: Brussels, Belgium, 2022; Volume 4. [Google Scholar]
- Miranda, R.V.D.S.L.; da Costa, L.V.; Albuquerque, L.S.; Dos Reis, C.M.F.; Braga, L.M.P.D.S.; de Andrade, J.M.; Ramos, J.N.; Mattoso, J.M.V.; Forsythe, S.J.; Brandão, M.L.L. Identification of Sutcliffiella horikoshii strains in an immunobiological pharmaceutical industry facility. Lett. Appl. Microbiol. 2023, 76, ovad056. [Google Scholar] [CrossRef]
- Mattoso, J.M.V.; Costa, L.V.C.; Vale, B.A.; Reis, C.M.F.; Andrade, J.M.; Braga, L.M.P.S.; Conceição, G.M.S.; Costa, P.B.M.; Silva, I.B.; Rodrigues, L.A.P.; et al. Quantitative and qualitative evaluation of microorganism profile identified in bioburden analysis in a biopharmaceutical facility in Brazil: Criteria for classification and management of results. PDA J. Pharm. Sci. Technol. 2024, 78. [Google Scholar] [CrossRef] [PubMed]
- Stamatoski, B.; Ilievska, M.; Babunovska, H.; Sekulovski, N.; Panov, S. Optimized genotyping method for identification of bacterial contaminants in pharmaceutical industry. Acta Pharm. 2020, 66, 289–295. [Google Scholar] [CrossRef]
- Caldeira, N.G.S.; de Souza, M.L.S.; de Miranda, R.V.D.S.L.; da Costa, L.V.; Forsythe, S.J.; Zahner, V.; Brandão, M.L.L. Characterization by MALDI-TOF MS and 16S rRNA gene sequencing of aerobic endospore-forming bacteria isolated from pharmaceutical facility in Rio de Janeiro, Brazil. Microorganisms 2024, 12, 724. [Google Scholar] [CrossRef]
- Costa, L.V.D.; Miranda, R.V.D.S.L.; Fonseca, E.L.; Gonçalves, N.P.; Reis, C.M.F.; Frazão, A.M.; Cruz, F.V.; Brandão, M.L.L.; Ramos, J.N.; Vieira, V.V. Assessment of VITEK® 2, MALDI-TOF MS and full gene 16S rRNA sequencing for aerobic endospore-forming bacteria isolated from a pharmaceutical facility. J. Microbiol. Methods 2022, 194, 106419. [Google Scholar] [CrossRef]
- Husni, A.A.A.; Ismail, S.I.; Jaafar, N.M.; Zulperi, D. Current classification of the Bacillus pumilus group species, the rubber-pathogenic bacteria causing trunk bulges disease in Malaysia as assessed by MLSA and multi rep-PCR approaches. Plant Pathol. J. 2021, 37, 243. [Google Scholar] [CrossRef]
- Qi, H.Y.; Wang, D.; Han, D.; Song, J.; Ali, M.; Dai, X.; Zhang, X.; Chen, J. Unlocking antagonistic potential of Bacillus amyloliquefaciens KRS005 to control gray mold. Front. Microbiol. 2023, 14, 1189354. [Google Scholar] [CrossRef]
- Gupta, R.S.; Patel, S.; Saini, N.; Chen, S. Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: Description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. Int. J. Syst. Evol. Microbiol. 2020, 70, 5753–5798. [Google Scholar] [CrossRef]
- Patel, S.; Gupta, R.S. A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: Proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. Int. J. Syst. Evol. Microbiol. 2020, 70, 406–438. [Google Scholar] [CrossRef] [PubMed]
- Parte, A.C.; Sardà Carbasse, J.; Meier-Kolthoff, J.P.; Reimer, L.C.; Göker, M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int. J. Syst. Evol. Microbiol. 2020, 70, 5607–5612. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.H.; Ha, S.M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1613–1617. [Google Scholar] [CrossRef] [PubMed]
- Woo, P.C.Y.; Lau, S.K.P.; Teng, J.L.L.; Tse, H.; Yuen, K.-Y. Then and now: Use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin. Microbiol. Infect. 2008, 14, 908–934. [Google Scholar] [CrossRef]
- Xiang, C.-Y.; Gao, F.; Jakovlic, I.; Lei, H.-P.; Hu, Y.; Zhang, H.; Zou, H.; Wang, G.-T.; Zhang, D. Using PhyloSuite for molecular phylogeny and tree-based analyses. iMeta 2023, 2, e87. [Google Scholar] [CrossRef]
- Zhang, D.; Gao, F.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Res. 2020, 20, 348–355. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Prjibelski, A.; Antipov, D.; Meleshko, D.; Lapidus, A.; Korobeynikov, A. Using SPAdes De Novo Assembler. Curr. Protoc. Bioinform. 2020, 70, e102. [Google Scholar] [CrossRef]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid annotations using subsystems technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Kim, Y.O.; Park, S.C.; Chun, J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 2016, 66, 1100–1103. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Göker, M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 2019, 10, 2182. [Google Scholar] [CrossRef] [PubMed]
- Chaumeil, P.A.; Mussig, A.J.; Hugenholtz, P.; Parks, D.H. GTDB-Tk: A toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2020, 36, 1925–1927. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Wang, D.; Ren, Q.; Wu, J.; Jiang, Y.; Wu, Z.; Pan, Y.; Zhong, Y.; Guan, Y.; Chen, K.; et al. Bacillus aerolatus sp. nov., a novel member of the genus Bacillus, isolated from bioaerosols in a school playground. Arch. Microbiol. 2020, 202, 2373–2378. [Google Scholar] [CrossRef]
- Liu, G.H.; Liu, B.; Liu, Q.Y.; Wang, J.P.; Che, J.M.; Zhang, H.F.; Lan, J.L.; Sengonca, C. Bacillus xiapuensis sp. nov., isolated from marine sediment. Int. J. Syst. Evol. Microbiol. 2019, 69, 1714–1719. [Google Scholar] [CrossRef]
- bioMérieux. Ref 21345 - VITEK® 2 BCL. 045519- 02 - 2019-03, 1–24; bioMérieux, Inc: Durham, NC, USA, 2019. [Google Scholar]
- Chun, J.; Oren, A.; Ventosa, A.; Christensen, H.; Arahal, D.R.; Costa, M.S.; Rooney, A.P.; Yi, H.; Xu, X.; Meyer, S.D.; et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 2018, 68, 461–466. [Google Scholar] [CrossRef]
- Verma, A.; Pal, Y.; Ojha, A.K.; Kumari, M.; Khatri, I.; Rameshkumar, N.; Schumann, P.; Dastager, S.G.; Mayilraj, S.; Subramanian, S.; et al. Taxonomic insights into the phylogeny of Bacillus badius and proposal for its reclassification to the genus Pseudobacillus as Pseudobacillus badius comb. nov. and reclassification of Bacillus wudalianchiensis Liu et al., 2017 as Pseudobacillus wudalianchiensis comb. nov. Syst. Appl. Microbiol. 2019, 42, 360–372. [Google Scholar] [CrossRef]
- Dhruw, C.; Husain, K.; Kumar, V.; Sonawane, V.C. Novel xylanase producing Bacillus strain X2: Molecular phylogenetic analysis and its application for production of xylooligosaccharides. 3 Biotech 2020, 10, 328. [Google Scholar] [CrossRef]
- Ben Gharsa, H.; Bouri, M.; Mougou Hamdane, A.; Schuster, C.; Leclerque, A.; Rhouma, A. Bacillus velezensis strain MBY2, a potential agent for the management of crown gall disease. PLoS ONE 2021, 16, e0252823. [Google Scholar] [CrossRef]
- Cuellar-Gaviria, T.Z.; García-Botero, C.; Ju, K.S.; Villegas-Escobar, V. The genome of Bacillus tequilensis EA-CB0015 sheds light into its epiphytic lifestyle and potential as a biocontrol agent. Front. Microbiol. 2023, 14, 1135487. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Zhou, X.; Zhou, S.; Yang, D.; Wang, Y.; Wang, D. Bacillus thermotolerans sp. nov., a thermophilic bacterium capable of reducing humus. IJSEM 2013, 63, 3672–3678. [Google Scholar] [CrossRef] [PubMed]
- Riesco, R.; Trujillo, M.E. Update on the proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 2024, 74, 006300. [Google Scholar] [CrossRef] [PubMed]
- Bruker. Ref 1854229 - Species/Entry List MBT Compass Library Revision K. Document Revision E. 1–75; Bruker Daltonics GmbH & Co. KG: Bremen, Germany, 2022. [Google Scholar]
Biochemical Test | Result | Biochemical Test | Result | Biochemical Test | Result | Biochemical Test | Result | Biochemical Test | Result | Biochemical Test | Result |
---|---|---|---|---|---|---|---|---|---|---|---|
BXYL | − | LysA | − | AspA | − | LeuA | + | PheA | + | ProA | − |
BGAL | − | PyrA | − | AGAL | − | AlaA | + | TyrA | + | BNAG | − |
APPA | + | CDEX | − | dGAL | − | GLYG | − | INO | − | MdG | − |
ELLM | + | MdX | − | AMAN | − | MTE | − | GlyA | − | dMAN | − |
dMNE | − | dMLZ | − | NAG | − | PLE | − | IRHA | − | BGLU | − |
BMAN | − | PHC | − | PVATE | − | AGLU | − | dTAG | − | dTRE | − |
INU | − | dGLU | − | dRIB | − | PSCNa | − | NaCI 6.5% | − | KAN | − |
OLD | − | ESC | − | TTZ | − | POLYB_R | − |
Characteristics | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Cell shape | rod | rod | rod | ovoid | rod | rod |
Motility | − | + | + | − | + | + |
Optimum temperature for growth (°C) | 37 | 37 | 30 | 50 | 37 | 25 |
Catalase | + | + | + | + | + | + |
Starch | − | − | − | − | − | − |
L-arabinose | − | − | − | − | − | − |
L-rhamnose | − | − | − | − | − | ND |
Lactose | − | − | − | − | − | − |
Glucose | − | + | − | − | − | + |
L-sorbose | − | − | − | + | − | ND |
Mannitol | − | + | − | − | − | − |
Sucrose | − | + | − | − | − | − |
Amygdalin | − | + | − | − | − | ND |
Inositol | − | + | − | − | − | − |
G+C content (%) | 41.6 | 42.3 | 41.2 | 44.4 | 44.0 | 44.2 |
Genera | Number of Species/Group of Species in VITEK® 2 Database | Number of Species Described |
---|---|---|
Alicyclobacillus | 1 | 29 |
Aneurinibacillus | 1 | 9 |
Bacillus | 21 | 111 |
Brevibacillus | 8 | 33 |
Geobacillus | 4 | 12 |
Lysinibacillus | 1 | 22 |
Paenibacillus | 14 | 310 |
Virgibacillus | 2 | 34 |
Strains | 16S rRNA (%) | rpoB (%) | gyrB (%) | Ortho ANI (%) | GGDC (%) | Mol GC Distance (%) |
---|---|---|---|---|---|---|
‘Bacillus aerolatus’ CX253T | 98.28 | 87.50 | 85.43 | 80.01 | 24.00 | 0.70 |
Bacillus badius NBRC 15713T | 97.96 | 86.91 | 80.90 | 76.97 | 21.60 | 2.33 |
Bacillus thermotolerans SGZ8T | 97.21 | 84.09 | NSSF | 73.73 | 20.10 | 2.81 |
Bacillus wudalianchiensis FJAT 27215T | 98.51 | 87.38 | 81.17 | 78.22 | 22.50 | 0.39 |
Bacillus xiapuensis FJAT 46582T | 97.63 | 82.91 | NSSF | 72.82 | 21.10 | 2.63 |
Characteristics | B190/17 |
---|---|
Estimated genome size (bp) | 3,434,160 |
Coverage | 73× |
G+C content (%) | 41.6 |
N50 | 219,177 |
L50 | 4 |
Number of contigs | 89 |
Number of coding sequences | 3544 |
Number of RNA genes | 159 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, L.V.d.; Ramos, J.N.; Albuquerque, L.d.S.; Miranda, R.V.d.S.L.d.; Valadão, T.B.; Veras, J.F.C.; Vieira, E.M.D.; Forsythe, S.; Brandão, M.L.L.; Vieira, V.V. Bacillus lumedeiriae sp. nov., a Gram-Positive, Spore-Forming Rod Isolated from a Pharmaceutical Facility Production Environment and Added to the MALDI Biotyper® Database. Microorganisms 2024, 12, 2507. https://doi.org/10.3390/microorganisms12122507
Costa LVd, Ramos JN, Albuquerque LdS, Miranda RVdSLd, Valadão TB, Veras JFC, Vieira EMD, Forsythe S, Brandão MLL, Vieira VV. Bacillus lumedeiriae sp. nov., a Gram-Positive, Spore-Forming Rod Isolated from a Pharmaceutical Facility Production Environment and Added to the MALDI Biotyper® Database. Microorganisms. 2024; 12(12):2507. https://doi.org/10.3390/microorganisms12122507
Chicago/Turabian StyleCosta, Luciana Veloso da, Juliana Nunes Ramos, Leticia de Sousa Albuquerque, Rebeca Vitória da Silva Lage de Miranda, Talita Bernardo Valadão, João Flávio Carneiro Veras, Erica Miranda Damasio Vieira, Stephen Forsythe, Marcelo Luiz Lima Brandão, and Verônica Viana Vieira. 2024. "Bacillus lumedeiriae sp. nov., a Gram-Positive, Spore-Forming Rod Isolated from a Pharmaceutical Facility Production Environment and Added to the MALDI Biotyper® Database" Microorganisms 12, no. 12: 2507. https://doi.org/10.3390/microorganisms12122507
APA StyleCosta, L. V. d., Ramos, J. N., Albuquerque, L. d. S., Miranda, R. V. d. S. L. d., Valadão, T. B., Veras, J. F. C., Vieira, E. M. D., Forsythe, S., Brandão, M. L. L., & Vieira, V. V. (2024). Bacillus lumedeiriae sp. nov., a Gram-Positive, Spore-Forming Rod Isolated from a Pharmaceutical Facility Production Environment and Added to the MALDI Biotyper® Database. Microorganisms, 12(12), 2507. https://doi.org/10.3390/microorganisms12122507