Novel Nuclease MbovP701 with a Yqaj Domain Is Interrelated with the Growth of Mycoplasma bovis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Bacterial Strains and Cell Culture Conditions
2.3. The Construction of the CPT5.808 Strain Complementing the Mbov_0701 Mutant
2.4. Growth Curve and Colony Morphology of T5.808 Mutant, CPT5.808, and Wild-Type Strain
2.5. Bioinformatics Analysis
2.6. Expression and Purification of rMbovP701 and Truncated Protein
2.7. Preparation of Rabbit Anti-rMbovP701 Polyclonal Antibody
2.8. Analysis of Nuclease Activity
2.9. Statistical Analyses
3. Results
3.1. MbovP701 Is Crucial for M. bovis Growth
3.2. The YqaJ Domain MbovP701 Exhibited Exonuclease Activity from a 5′ to 3′ Direction
3.3. rMbovP701 Is a Broad-Spectrum Exonuclease
3.4. rMbovP701 Is a Mg2+/Mn2+-Dependent Thermostable Alkaline Exonuclease
3.5. The YqaJ Domain of rMbovP701 Is Necessary for Its Exonuclease Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Burki, S.; Frey, J.; Pilo, P. Virulence, persistence and dissemination of Mycoplasma bovis. Vet. Microbiol. 2015, 179, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Nicholas, A.R.; Ayling, R.D. Mycoplasma bovis: Disease, diagnosis, and control. Res. Vet. Sci. 2003, 74, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Perez-Casal, J. Pathogenesis and Virulence of Mycoplasma bovis. Vet. Clin. N. Am. Food Anim. Pract. 2020, 36, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Calcutt, M.J.; Lysnyansky, I.; Sachse, K.; Fox, L.K.; Nicholas, A.R.J.; Ayling, R.D. Gap analysis of Mycoplasma bovis disease, diagnosis and control: An aid to identify future development requirements. Transbound. Emerg. Dis. 2018, 65 (Suppl. S1), 91–109. [Google Scholar] [CrossRef]
- Wang, L.; Westberg, J.; Bolske, G.; Eriksson, S. Novel deoxynucleoside-phosphorylating enzymes in mycoplasmas: Evidence for efficient utilization of deoxynucleosides. Mol. Microbiol. 2001, 42, 1065–1073. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, G.; Guo, Y.; Menghwar, H.; Chen, Y.; Chen, H.; Guo, A. Mycoplasma bovis MBOV_RS02825 Encodes a Secretory Nuclease Associated with Cytotoxicity. Int. J. Mol. Sci. 2016, 17, 628. [Google Scholar] [CrossRef]
- Xu, J.; Teng, D.; Jiang, F.; Zhang, Y.; El-Ashram, S.A.; Wang, H.; Sun, Z.; He, J.; Shen, J.; Wu, W.; et al. Mycoplasma gallisepticum MGA_0676 is a membrane-associated cytotoxic nuclease with a staphylococcal nuclease region essential for nuclear translocation and apoptosis induction in chicken cells. Appl. Microbiol. Biotechnol. 2015, 99, 1859–1871. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Y.; Li, X.; Zhou, W.; Li, X.; Jiang, F.; Wu, W. Mycoplasma hyopneumoniae Mhp597 is a cytotoxicity, inflammation and immunosuppression associated nuclease. Vet. Microbiol. 2019, 235, 53–62. [Google Scholar] [CrossRef]
- Li, L.; Krishnan, M.; Baseman, J.B.; Kannan, T.R. Molecular cloning, expression, and characterization of a Ca2+-dependent, membrane-associated nuclease of Mycoplasma genitalium. J. Bacteriol. 2010, 192, 4876–4884. [Google Scholar] [CrossRef]
- Schmidt, J.A.; Browning, G.F.; Markham, P.F. Mycoplasma hyopneumoniae mhp379 is a Ca2+-dependent, sugar-nonspecific exonuclease exposed on the cell surface. J. Bacteriol. 2007, 189, 3414–3424. [Google Scholar] [CrossRef]
- Zhu, X.; Baranowski, E.; Dong, Y.; Li, X.; Hao, Z.; Zhao, G.; Zhang, H.; Lu, D.; Rasheed, M.A.; Chen, Y.; et al. An emerging role for cyclic dinucleotide phosphodiesterase and nanoRNase activities in Mycoplasma bovis: Securing survival in cell culture. PLoS Pathog. 2020, 16, e1008661. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Baranowski, E.; Hao, Z.; Li, X.; Zhao, G.; Dong, Y.; Chen, Y.; Hu, C.; Chen, H.; Citti, C.; et al. An atypical GdpP enzyme linking cyclic nucleotide metabolism to osmotic tolerance and gene regulation in Mycoplasma bovis. Front. Microbiol. 2023, 14, 1250368. [Google Scholar] [CrossRef] [PubMed]
- Pingoud, A.; Fuxreiter, M.; Pingoud, V.; Wende, W. Type II restriction endonucleases: Structure and mechanism. Cell Mol. Life Sci. 2005, 62, 685–707. [Google Scholar] [CrossRef] [PubMed]
- Steczkiewicz, K.; Muszewska, A.; Knizewski, L.; Rychlewski, L.; Ginalski, K. Sequence, structure and functional diversity of PD-(D/E)XK phosphodiesterase superfamily. Nucleic Acids Res. 2012, 40, 7016–7045. [Google Scholar] [CrossRef] [PubMed]
- Little, J.W. An exonuclease induced by bacteriophage lambda. II. Nature of the enzymatic reaction. J. Biol. Chem. 1967, 242, 679–686. [Google Scholar] [CrossRef]
- Carter, D.M.; Radding, C.M. The role of exonuclease and beta protein of phage lambda in genetic recombination. II. Substrate specificity and the mode of action of lambda exonuclease. J. Biol. Chem. 1971, 246, 2502–2512. [Google Scholar] [CrossRef]
- Kovall, R.; Matthews, B.W. Toroidal structure of lambda-exonuclease. Science 1997, 277, 1824–1827. [Google Scholar] [CrossRef]
- Muniyappa, K.; Radding, C.M. The homologous recombination system of phage lambda. Pairing activities of beta protein. J. Biol. Chem. 1986, 261, 7472–7478. [Google Scholar] [CrossRef]
- Poteete, A.R. What makes the bacteriophage lambda Red system useful for genetic engineering: Molecular mechanism and biological function. FEMS Microbiol. Lett. 2001, 201, 9–14. [Google Scholar] [CrossRef]
- Dahlroth, S.L.; Gurmu, D.; Schmitzberger, F.; Engman, H.; Haas, J.; Erlandsen, H.; Nordlund, P. Crystal structure of the shutoff and exonuclease protein from the oncogenic Kaposi’s sarcoma-associated herpesvirus. FEBS J. 2009, 276, 6636–6645. [Google Scholar] [CrossRef]
- Chen, W.Y.; Ho, J.W.; Huang, J.D.; Watt, R.M. Functional characterization of an alkaline exonuclease and single strand annealing protein from the SXT genetic element of Vibrio cholerae. BMC Mol. Biol. 2011, 12, 16. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, B.J.; Bell, C.E. Structure and mechanism of the Red recombination system of bacteriophage lambda. Prog. Biophys. Mol. Biol. 2019, 147, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Guo, A.; Cui, P.; Chen, Y.; Mustafa, R.; Ba, X.; Hu, C.; Bai, Z.; Chen, X.; Shi, L.; et al. Comparative geno-plasticity analysis of Mycoplasma bovis HB0801 (Chinese isolate). PLoS ONE 2012, 7, e38239. [Google Scholar] [CrossRef] [PubMed]
- Baranowski, E.; Guiral, S.; Sagne, E.; Skapski, A.; Citti, C. Critical role of dispensable genes in Mycoplasma agalactiae interaction with mammalian cells. Infect. Immun. 2010, 78, 1542–1551. [Google Scholar] [CrossRef]
- Burgi, N.; Josi, C.; Burki, S.; Schweizer, M.; Pilo, P. Mycoplasma bovis co-infection with bovine viral diarrhea virus in bovine macrophages. Vet. Res. 2018, 49, 2. [Google Scholar] [CrossRef] [PubMed]
- Little, J.W.; Lehman, I.R.; Kaiser, A.D. An exonuclease induced by bacteriophage lambda. I. Preparation of the crystalline enzyme. J. Biol. Chem. 1967, 242, 672–678. [Google Scholar] [CrossRef]
- Grosshennig, S.; Schmidl, S.R.; Schmeisky, G.; Busse, J.; Stulke, J. Implication of glycerol and phospholipid transporters in Mycoplasma pneumoniae growth and virulence. Infect. Immun. 2013, 81, 896–904. [Google Scholar] [CrossRef]
- Chung, H.R.; Dunkel, I.; Heise, F.; Linke, C.; Krobitsch, S.; Ehrenhofer-Murray, A.E.; Sperling, S.R.; Vingron, M. The effect of micrococcal nuclease digestion on nucleosome positioning data. PLoS ONE 2010, 5, e15754. [Google Scholar] [CrossRef]
- Skapski, A.; Hygonenq, M.C.; Sagne, E.; Guiral, S.; Citti, C.; Baranowski, E. Genome-scale analysis of Mycoplasma agalactiae loci involved in interaction with host cells. PLoS ONE 2011, 6, e25291. [Google Scholar] [CrossRef]
- Josi, C.; Burki, S.; Vidal, S.; Dordet-Frisoni, E.; Citti, C.; Falquet, L.; Pilo, P. Large-Scale Analysis of the Mycoplasma bovis Genome Identified Non-essential, Adhesion- and Virulence-Related Genes. Front. Microbiol. 2019, 10, 2085. [Google Scholar] [CrossRef]
- Zhu, X.; Dordet-Frisoni, E.; Gillard, L.; Ba, A.; Hygonenq, M.C.; Sagne, E.; Nouvel, L.X.; Maillard, R.; Assie, S.; Guo, A.; et al. Extracellular DNA: A Nutritional Trigger of Mycoplasma bovis Cytotoxicity. Front. Microbiol. 2019, 10, 2753. [Google Scholar] [CrossRef] [PubMed]
- Aucamp, J.; Bronkhorst, A.J.; Badenhorst, C.P.S.; Pretorius, P.J. The diverse origins of circulating cell-free DNA in the human body: A critical re-evaluation of the literature. Biol. Rev. Camb. Philos. Soc. 2018, 93, 1649–1683. [Google Scholar] [CrossRef] [PubMed]
- Jarvill-Taylor, K.J.; VanDyk, C.; Minion, F.C. Cloning of mnuA, a membrane nuclease gene of Mycoplasma pulmonis, and analysis of its expression in Escherichia coli. J. Bacteriol. 1999, 181, 1853–1860. [Google Scholar] [CrossRef]
- Yamamoto, T.; Kida, Y.; Sakamoto, Y.; Kuwano, K. Mpn491, a secreted nuclease of Mycoplasma pneumoniae, plays a critical role in evading killing by neutrophil extracellular traps. Cell. Microbiol. 2017, 19, e12666. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Tivendale, K.A.; Markham, P.F.; Browning, G.F. Disruption of the membrane nuclease gene (MBOVPG45_0215) of Mycoplasma bovis greatly reduces cellular nuclease activity. J. Bacteriol. 2015, 197, 1549–1558. [Google Scholar] [CrossRef] [PubMed]
- Cacciotto, C.; Addis, M.F.; Coradduzza, E.; Carcangiu, L.; Nuvoli, A.M.; Tore, G.; Dore, G.M.; Pagnozzi, D.; Uzzau, S.; Chessa, B.; et al. Mycoplasma agalactiae MAG_5040 is a Mg2+-dependent, sugar-nonspecific SNase recognised by the host humoral response during natural infection. PLoS ONE 2013, 8, e57775. [Google Scholar] [CrossRef]
- Cacciotto, C.; Dessi, D.; Cubeddu, T.; Cocco, A.R.; Pisano, A.; Tore, G.; Fiori, P.L.; Rappelli, P.; Pittau, M.; Alberti, A. MHO_0730 as a Surface-Exposed Calcium-Dependent Nuclease of Mycoplasma hominis Promoting Neutrophil Extracellular Trap Formation and Escape. J. Infect. Dis. 2019, 220, 1999–2008. [Google Scholar] [CrossRef]
- Somarajan, S.R.; Kannan, T.R.; Baseman, J.B. Mycoplasma pneumoniae Mpn133 is a cytotoxic nuclease with a glutamic acid-, lysine- and serine-rich region essential for binding and internalization but not enzymatic activity. Cell. Microbiol. 2010, 12, 1821–1831. [Google Scholar] [CrossRef]
- Berends, E.T.; Horswill, A.R.; Haste, N.M.; Monestier, M.; Nizet, V.; von Kockritz-Blickwede, M. Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. J. Innate Immun. 2010, 2, 576–586. [Google Scholar] [CrossRef]
- Newing, T.P.; Brewster, J.L.; Fitschen, L.J.; Bouwer, J.C.; Johnston, N.P.; Yu, H.; Tolun, G. Redbeta(177) annealase structure reveals details of oligomerization and lambda Red-mediated homologous DNA recombination. Nat. Commun. 2022, 13, 5649. [Google Scholar] [CrossRef]
- Murphy, K.C. Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. J. Bacteriol. 1998, 180, 2063–2071. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.; Costantino, N.; Zhou, X.; Court, D.L. Identification and analysis of recombineering functions from Gram-negative and Gram-positive bacteria and their phages. Proc. Natl. Acad. Sci. USA 2008, 105, 1626–1631. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Ellis, H.M.; Lee, E.C.; Jenkins, N.A.; Copeland, N.G.; Court, D.L. An efficient recombination system for chromosome engineering in Escherichia coli. Proc. Natl. Acad. Sci. USA 2000, 97, 5978–5983. [Google Scholar] [CrossRef] [PubMed]
- Cacciotto, C.; Alberti, A. Eating the Enemy: Mycoplasma Strategies to Evade Neutrophil Extracellular Traps (NETs) Promoting Bacterial Nucleotides Uptake and Inflammatory Damage. Int. J. Mol. Sci. 2022, 23, 15030. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, Z.; Lu, D.; Li, X.; Raheem, A.; Zhao, G.; Dawood, A.S.; Chen, Y.; Chen, X.; Hu, C.; Chen, J.; et al. Novel Nuclease MbovP701 with a Yqaj Domain Is Interrelated with the Growth of Mycoplasma bovis. Microorganisms 2024, 12, 2509. https://doi.org/10.3390/microorganisms12122509
Hao Z, Lu D, Li X, Raheem A, Zhao G, Dawood AS, Chen Y, Chen X, Hu C, Chen J, et al. Novel Nuclease MbovP701 with a Yqaj Domain Is Interrelated with the Growth of Mycoplasma bovis. Microorganisms. 2024; 12(12):2509. https://doi.org/10.3390/microorganisms12122509
Chicago/Turabian StyleHao, Zhiyu, Doukun Lu, Xixi Li, Abdul Raheem, Gang Zhao, Ali Sobhy Dawood, Yingyu Chen, Xi Chen, Changmin Hu, Jianguo Chen, and et al. 2024. "Novel Nuclease MbovP701 with a Yqaj Domain Is Interrelated with the Growth of Mycoplasma bovis" Microorganisms 12, no. 12: 2509. https://doi.org/10.3390/microorganisms12122509
APA StyleHao, Z., Lu, D., Li, X., Raheem, A., Zhao, G., Dawood, A. S., Chen, Y., Chen, X., Hu, C., Chen, J., Zhang, L., Zhu, X., & Guo, A. (2024). Novel Nuclease MbovP701 with a Yqaj Domain Is Interrelated with the Growth of Mycoplasma bovis. Microorganisms, 12(12), 2509. https://doi.org/10.3390/microorganisms12122509