Ultrasound Treatment Combined with Rhamnolipids for Eliminating the Biofilm of Bacillus cereus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Reagents
2.2. Assessment and Determination of Biofilm Formation Capacity
2.3. Determination of Rhamnolipids and Combined Ultrasound on the Elimination of Bacillus cereus Biofilm
2.4. Micromorphological Observations of Biological Coatings
2.5. Determination of Bacterial Viability
2.6. Determination of Early Exercise Ability of Bacteria
2.6.1. Determination of Bacterial Aggregation Ability
2.6.2. Determination of Bacterial Clustering Motility
2.7. Determination of Surface Hydrophobicity Bacteria
2.8. Determination of Extracellular Polymers of Biofilm
2.8.1. Extracellular Polymeric Substance Extraction
2.8.2. Determination of Extracellular Polysaccharides
2.8.3. Determination of Extracellular Protein
2.8.4. Determination of eDNA
2.9. Statistical Analysis
3. Results
3.1. Biofilm Formation Capability of Bacillus cereus
3.2. The Minimum Biofilm Inhibitory Concentration of RLs Against Bacillus cereus
3.3. Scavenging Effect of RLs on Bacillus cereus Biofilm
3.4. Scavenging Effect of Bacillus cereus Biofilm by RLs and US
3.5. Effects of RLs and US on the Morphology of Bacillus cereus Biofilm
3.6. Effects of RLs and US on Bacterial Metabolism in Bacillus cereus Biofilm
3.7. The Effects of RLs and US on the Early Exercise Ability of Bacillus cereus
3.7.1. The Effect of RLs Combined with US on Bacterial Aggregation Ability
3.7.2. The Effect of RLs Combined with US on Bacterial Clumping Motility
3.8. Effects of RLs and US on the Initial Formation of Bacillus cereus Biofilm
3.9. Effects of RLs and US on Extracellular Polymeric Substances of Bacillus cereus Biofilm
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haque, F.; Alfatah, M.; Ganesan, K.; Bhattacharyya, M.S. Inhibitory Effect of Sophorolipid on Candida albicans Biofilm Formation and Hyphal Growth. Sci. Rep. 2016, 6, 23575. [Google Scholar] [CrossRef] [PubMed]
- Janez, N.; Skrlj, B.; Sternisa, M.; Klancnik, A.; Sabotic, J. The role of the Listeria monocytogenes surfactome in biofilm formation. Microb. Biotechnol. 2021, 14, 1269–1281. [Google Scholar] [CrossRef] [PubMed]
- Richard, D.; Nadja, J.; Monika, E.; Erwin, M.; Einar, G.P. The Food Poisoning Toxins of Bacillus cereus. Toxins 2021, 13, 98. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.S.; Oh, D.H. Substratum attachment location and biofilm formation by Bacillus cereus strains isolated from different sources: Effect on total biomass production and sporulation in different growth conditions. Food Control 2017, 77, 270–280. [Google Scholar] [CrossRef]
- Bertuso, P.D.; Mayer, D.M.D.; Nitschke, M. Combining Celery Oleoresin, Limonene and Rhamnolipid as New Strategy to Control Endospore-Forming Bacillus cereus. Foods 2021, 10, 455. [Google Scholar] [CrossRef]
- Chandankere, R.; Ravikumar, Y.; Zabed, H.M.; Sabapathy, P.C.; Yun, J.H.; Zhang, G.Y.; Qi, X.H. Conversion of Agroindustrial Wastes to Rhamnolipid by Enterobacter sp. UJS-RC and Its Role against Biofilm-Forming Foodborne Pathogens. J. Agric. Food Chem. 2020, 68, 15478–15489. [Google Scholar] [CrossRef]
- Araujo, L.V.; Guimaraes, C.R.; Marquita, R.L.D.; Santiago, V.M.J.; de Souza, M.P.; Nitschke, M.; Freire, D.M.G. Rhamnolipid and surfactin: Anti-adhesion/antibiofilm and antimicrobial effects. Food Control 2016, 63, 171–178. [Google Scholar] [CrossRef]
- Niu, Y.W.; Sun, Y.M.; Yang, Y.X.; Niu, B.; Wang, Y.C.; Qiao, S.; Wang, X.Y. Antibacterial Mechanism of Rhamnolipids against Bacillus cereus and Its Application in Fresh Wet Noodles. Molecules 2023, 28, 6946. [Google Scholar] [CrossRef]
- Ferreira, J.d.F.; Vieira, E.A.; Nitschke, M. The antibacterial activity of rhamnolipid biosurfactant is pH dependent. Food Res. Int. 2018, 116, 737–744. [Google Scholar] [CrossRef]
- Sevenich, R.; Rauh, C.; Knorr, D. A scientific and interdisciplinary approach for high pressure processing as a future toolbox for safe and high quality products: A review. Innov. Food Sci. Emerg. Technol. 2016, 38, 65–75. [Google Scholar] [CrossRef]
- Duan, B.R.; Shao, X.F.; Han, Y.; Li, Y.; Zhao, Y.J. Mechanism and application of ultrasound-enhanced bacteriostasis. J. Clean. Prod. 2021, 290, 125750. [Google Scholar] [CrossRef]
- De Temmerman, M.L.; Dewitte, H.; Vandenbroucke, R.E.; Lucas, B.; Libert, C.; Demeester, J.; De Smedt, S.C.; Lentacker, I.; Rejman, J. mRNA-Lipoplex loaded microbubble contrast agents for ultrasound-assisted transfection of dendritic cells. Biomaterials 2011, 32, 9128–9135. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Wang, J.; Liu, X.; Wang, R.; Xia, L. A Review of the Combination Therapy of Low Frequency Ultrasound with Antibiotics. Biomed. Res. Int. 2017, 2017, 2317846. [Google Scholar] [CrossRef]
- Collado, M.C.; Meriluoto, J.; Salminen, S. Adhesion and aggregation properties of probiotic and pathogen strains. Eur. Food Res. Technol. 2008, 226, 1065–1073. [Google Scholar] [CrossRef]
- Rashid, M.H.; Kornberg, A. Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 2000, 97, 4885–4890. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, M.; Judes, H.; Weiss, E. Cell surface hydrophobicity of dental plaque microorganisms in situ. Infect. Immun. 1983, 42, 831–834. [Google Scholar] [CrossRef]
- Nakonechny, F.; Nisnevitch, M. Different Aspects of Using Ultrasound to Combat Microorganisms. Adv. Funct. Mater. 2021, 31, 2011042. [Google Scholar] [CrossRef]
- Fan, K.; Wu, J.X.; Chen, L.B. Ultrasound and its combined application in the improvement of microbial and physicochemical quality of fruits and vegetables: A review. Ultrason. Sonochemistry 2021, 80, 105838. [Google Scholar] [CrossRef]
- Bai, M.; Dai, J.M.; Li, C.Z.; Cui, H.Y.; Lin, L. Antibacterial and antibiofilm performance of low-frequency ultrasound against Escherichia coli O157:H7 and its application in fresh produce. Int. J. Food Microbiol. 2023, 400, 110266. [Google Scholar] [CrossRef]
- Young, P.S.; Hyun-Ha, S.; Sang-Do, H. Synergistic effects of NaOCl and ultrasound combination on the reduction of Escherichia coli and Bacillus cereus in raw laver. Foodborne Pathog. Dis. 2014, 11, 373–378. [Google Scholar] [CrossRef]
- Jiang, L.M.; Hoogenkamp, M.A.; van der Sluis, L.W.M.; Wesselink, P.R.; Crielaard, W.; Deng, D.M. Resazurin Metabolism Assay for Root Canal Disinfectant Evaluation on Dual-species Biofilms. J. Endod. 2011, 37, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Faria, S.I.; Teixeira-Santos, R.; Romeu, M.J.; Morais, J.; Vasconcelos, V.; Mergulhao, F.J. The Relative Importance of Shear Forces and Surface Hydrophobicity on Biofilm Formation by Coccoid Cyanobacteria. Polymers 2020, 12, 653. [Google Scholar] [CrossRef]
- Weathers, T.S.; Higgins, C.P.; Sharp, J.O. Enhanced Biofilm Production by a Toluene-Degrading Rhodococcus Observed after Exposure to Perfluoroalkyl Acids. Environ. Sci. Technol. 2015, 49, 5458–5466. [Google Scholar] [CrossRef] [PubMed]
- Dakheel, M.M.; Alkandari, F.A.H.; Mueller-Harvey, I.; Woodward, M.J.; Rymer, C. Antimicrobial in vitro activities of condensed tannin extracts on avian pathogenic Escherichia coli. Lett. Appl. Microbiol. 2020, 70, 165–172. [Google Scholar] [CrossRef]
- Brindhadevi, K.; LewisOscar, F.; Mylonakis, E.; Shanmugam, S.; Verma, T.N.; Pugazhendhi, A. Biofilm and Quorum sensing mediated pathogenicity in Pseudomonas aeruginosa. Process Biochem. 2020, 96, 49–57. [Google Scholar] [CrossRef]
- Fong, J.N.C.; Yildiz, F.H. Biofilm Matrix Proteins. Microbiol. Spectr. 2015, 3, 201–222. [Google Scholar] [CrossRef]
- Vuillemin, A.; Horn, F.; Alawi, M.; Henny, C.; Wagner, D.; Crowe, S.A.; Kallmeyer, J. Preservation and Significance of Extracellular DNA in Ferruginous Sediments from Lake Towuti, Indonesia. Front. Microbiol. 2017, 8, 1440. [Google Scholar] [CrossRef]
- Tsukatani, T.; Sakata, F.; Kuroda, R. A rapid and simple measurement method for biofilm formation inhibitory activity using 96-pin microtiter plate lids. World J. Microbiol. Biotechnol. 2020, 36, 189. [Google Scholar] [CrossRef] [PubMed]
- Passos, T.F.; Nitschke, M. The combined effect of pH and NaCl on the susceptibility of Listeria monocytogenes to rhamnolipids. Food Res. Int. 2024, 192, 114744. [Google Scholar] [CrossRef]
- Sánchez, M.; Aranda, F.J.; Espuny, M.J.; Marqués, A.; Teruel, J.A.; Manresa, A.; Ortiz, A. Aggregation behaviour of a dirhamnolipid biosurfactant secreted by Pseudomonas aeruginosa in aqueous media. J. Colloid Interface Sci. 2007, 307, 246–253. [Google Scholar] [CrossRef]
- José, J.; Ramos, A.M.; Vanetti, M.C.D.; de Andrade, N.J. Inactivation of Salmonella Enteritidis on cherry tomatoes by ultrasound, lactic acid, detergent, and silver nanoparticles. Can. J. Microbiol. 2021, 67, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Ha, J.W. Ultrasound treatment combined with fumaric acid for inactivating food-borne pathogens in apple juice and its mechanisms. Food Microbiol. 2019, 84, 103277. [Google Scholar] [CrossRef] [PubMed]
- Sang, H.; Jin, H.; Song, P.; Xu, W.; Wang, F. Gallic acid exerts antibiofilm activity by inhibiting methicillin-resistant Staphylococcus aureus adhesion. Sci. Rep. 2024, 14, 17220. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Wang, X.L.; Cui, H.Y. Synergistic efficacy of pulsed magnetic fields and Litseacubeba essential oil treatment against Escherichia coli O157:H7 in vegetable juices. Food Control 2019, 106, 106686. [Google Scholar] [CrossRef]
- Rickard, A.H.; Leach, S.A.; Hall, L.S.; Buswell, C.M.; High, N.J.; Handley, P.S. Phylogenetic relationships and coaggregation ability of freshwater biofilm bacteria. Appl. Environ. Microbiol. 2002, 68, 3644–3650. [Google Scholar] [CrossRef]
- Wang, C.; Ye, F.Z.; Kumar, V.; Gao, Y.G.; Zhang, L.H. BswR controls bacterial motility and biofilm formation in Pseudomonas aeruginosa through modulation of the small RNA rsmZ. Nucleic Acids Res. 2014, 42, 4563–4576. [Google Scholar] [CrossRef]
- Koga, T.; Okahashi, N.; Takahashi, I.; Kanamoto, T.; Asakawa, H.; Iwaki, M. Surface hydrophobicity, adherence, and aggregation of cell surface protein antigen mutants of Streptococcus mutans serotype c. Infect. Immun. 1990, 58, 289–296. [Google Scholar] [CrossRef]
- Husain, F.M.; Arshad, M.; Khan, R.A.; Imran, A.; Shahzad, S.A. Curcumin loaded starch-based aerogels interfere with quorum sensing regulated virulence functions and biofilm of bacterial pathogens. J. King Saud Univ. Sci. 2024, 36, 103406. [Google Scholar] [CrossRef]
- Zhang, C.; Xie, Y.; Qiu, W.Q.; Mei, J.; Xie, J. Antibacterial and Antibiofilm Efficacy and Mechanism of Ginger (Zingiber officinale) Essential Oil against Shewanella putrefaciens. Plants 2023, 12, 1720. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, B.; Sun, Y.; Niu, Y.; Qiao, S. Ultrasound Treatment Combined with Rhamnolipids for Eliminating the Biofilm of Bacillus cereus. Microorganisms 2024, 12, 2478. https://doi.org/10.3390/microorganisms12122478
Niu B, Sun Y, Niu Y, Qiao S. Ultrasound Treatment Combined with Rhamnolipids for Eliminating the Biofilm of Bacillus cereus. Microorganisms. 2024; 12(12):2478. https://doi.org/10.3390/microorganisms12122478
Chicago/Turabian StyleNiu, Ben, Yiming Sun, Yongwu Niu, and Shan Qiao. 2024. "Ultrasound Treatment Combined with Rhamnolipids for Eliminating the Biofilm of Bacillus cereus" Microorganisms 12, no. 12: 2478. https://doi.org/10.3390/microorganisms12122478
APA StyleNiu, B., Sun, Y., Niu, Y., & Qiao, S. (2024). Ultrasound Treatment Combined with Rhamnolipids for Eliminating the Biofilm of Bacillus cereus. Microorganisms, 12(12), 2478. https://doi.org/10.3390/microorganisms12122478