Persistence of Stenotrophomonas maltophilia in Patients with Bacteremia: Incidence, Clinical and Microbiologic Characters, and Outcomes
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Population and Data Collection
2.2. Definitions
2.3. Bacterial Identification and Antibiotic Susceptibility Testing Using Automated Systems
2.4. Organism Collection and Manual Antibiotic Susceptibility Testing
2.5. Crystal Violet Staining Biofilm Assay
2.6. Molecular Typing of Cultured Isolates
2.7. Statistical Analyses
3. Results
3.1. Clinical Characteristics and Outcomes of S. maltophilia Bacteremia Diagnosed Between 2005 and 2022
3.2. Incidence, Clinical Predictors, and Outcomes of Persistent S. maltophilia Bacteremia
3.3. Biofilm-Forming Ability and ST Analysis of S. maltophilia Isolates in Persistent or Recurrent Bacteremia
3.4. In Vitro Antimicrobial Susceptibility
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, J.; Xiang, Y.; Zhang, Y. Stenotrophomonas maltophilia: An Urgent Threat with Increasing Antibiotic Resistance. Curr. Microbiol. 2024, 81, 6. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Lin, L.; Kuo, S. Risk factors for mortality in Stenotrophomonas maltophilia bacteremia—A meta-analysis. Infect. Dis. 2024, 56, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.J.; Kim, Y.C.; Ahn, J.Y.; Jeong, S.J.; Ku, N.S.; Choi, J.Y.; Yeom, J.S.; Song, Y.G. Risk factors for mortality in patients with Stenotrophomonas maltophilia bacteremia and clinical impact of quinolone-resistant strains. BMC Infect. Dis. 2019, 19, 754. [Google Scholar] [CrossRef] [PubMed]
- Pascale, R.; Corcione, S.; Bussini, L.; Pancaldi, L.; Giacobbe, D.R.; Ambretti, S.; Lupia, T.; Costa, C.; Marchese, A.; De Rosa, F.G.; et al. Non-fermentative gram-negative bloodstream infection in northern Italy: A multicenter cohort study. BMC Infect. Dis. 2021, 21, 806. [Google Scholar] [CrossRef] [PubMed]
- Gajdács, M.; Urbán, E. Prevalence and Antibiotic Resistance of Stenotrophomonas maltophilia in Respiratory Tract Samples: A 10-Year Epidemiological Snapshot. Health Serv. Res. Manag. Epidemiol. 2019, 6, 2333392819870774. [Google Scholar] [CrossRef]
- Terlizzi, V.; Tomaselli, M.; Giacomini, G.; Dalpiaz, I.; Chiappini, E. Stenotrophomonas maltophilia in people with Cystic Fibrosis: A systematic review of prevalence, risk factors and management. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42, 1285–1296. [Google Scholar] [CrossRef]
- Medioli, F.; Casali, E.; Viscido, A.; Pistolesi, V.; Venditti, M.; Oliva, A. First case of persistent Stenotrophomonas maltophilia bacteraemia due to septic thrombosis successfully treated with a cefiderocol-containing regimen. J. Glob. Antimicrob. Resist. 2023, 34, 5–8. [Google Scholar] [CrossRef]
- Hsu, A.J.; Simner, P.J.; Bergman, Y.; Mathers, A.J.; Tamma, P.D. Successful Treatment of Persistent Stenotrophomonas maltophilia Bacteremia with Cefiderocol in an Infant. Open Forum Infect. Dis. 2023, 10, ofad174. [Google Scholar] [CrossRef]
- Pek, Z.; MG, C.; Ahmed, S. Treatment refractory Stenotrophomonas maltophilia bacteraemia and pneumonia in a COVID-19-positive patient. BMJ Case Rep. 2021, 14, e242670. [Google Scholar] [CrossRef]
- Ong, S.W.X.; Luo, J.; Fridman, D.J.; Lee, S.M.; Johnstone, J.; Schwartz, K.L.; Diong, C.; Patel, S.N.; Macfadden, D.R.; Langford, B.J.; et al. Epidemiology and clinical relevance of persistent bacteraemia in patients with Gram-negative bloodstream infection: A retrospective cohort study. J. Antimicrob. Chemother. 2024, 79, 2053–2061. [Google Scholar] [CrossRef]
- Maskarinec, S.A.; Park, L.P.; Ruffin, F.; Turner, N.A.; Patel, N.; Eichenberger, E.M.; van Duin, D.; Lodise, T.; Fowler, V.G., Jr.; Thaden, J.T. Positive follow-up blood cultures identify high mortality risk among patients with Gram-negative bacteraemia. Clin. Microbiol. Infect. 2020, 26, 904–910. [Google Scholar] [CrossRef] [PubMed]
- Giannella, M.; Pascale, R.; Viale, P. Follow-up blood culture in Gram-negative bacilli bacteraemia: For whom is follow-up blood culture useful? Curr. Opin. Infect. Dis. 2022, 35, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America 2023 Guidance on the Treatment of Antimicrobial Resistant Gram-Negative Infections. Clin. Infect. Dis. 2023, 18, ciad428. [Google Scholar] [CrossRef] [PubMed]
- Camp, J.; Filla, T.; Glaubitz, L.; Kaasch, A.J.; Fuchs, F.; Scarborough, M.; Kim, H.B.; Tilley, R.; Liao, C.H.; Edgeworth, J.; et al. Impact of neutropenia on clinical manifestations and outcome of Staphylococcus aureus bloodstream infection: A propensity score-based overlap weight analysis in two large, prospectively evaluated cohorts. Clin. Microbiol. Infect. 2022, 28, 1149-e1. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.; Sartelli, M.; McKimm, J.; Abu Bakar, M. Health care-associated infections—An overview. Infect. Drug Resist. 2018, 11, 2321–2333. [Google Scholar] [CrossRef]
- CLSI M100-ED34:2024; Clinical And Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing, 34th Edition. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2024.
- Lee, Y.L.; Liu, C.E.; Ko, W.C.; Hsueh, P.R. In vitro susceptibilities of Stenotrophomonas maltophilia isolates to antimicrobial agents commonly used for related infections: Results from the Antimicrobial Testing Leadership and Surveillance (ATLAS) program, 2004–2020. Int. J. Antimicrob. Agents 2023, 62, 106878. [Google Scholar] [CrossRef]
- Naas, T.; Lina, G.; Santerre Henriksen, A.; Longshaw, C.; Jehl, F. In vitro activity of cefiderocol and comparators against isolates of Gram-negative pathogens from a range of infection sources: SIDERO-WT-2014-2018 studies in France. JAC Antimicrob. Resist. 2021, 3, dlab081. [Google Scholar] [CrossRef]
- Di Bonaventura, G.; Spedicato, I.; D’Antonio, D.; Robuffo, I.; Piccolomini, R. Biofilm formation by Stenotrophomonas maltophilia: Modulation by quinolones, trimethoprim-sulfamethoxazole, and ceftazidime. Antimicrob. Agents Chemother. 2004, 48, 151–160. [Google Scholar] [CrossRef]
- Huang, T.P.; Somers, E.B.; Wong, A.C. Differential biofilm formation and motility associated with lipopolysaccharide/exopolysaccharide-coupled biosynthetic genes in Stenotrophomonas maltophilia. J. Bacteriol. 2006, 188, 3116–3120. [Google Scholar] [CrossRef]
- Bostanghadiri, N.; Ardebili, A.; Ghalavand, Z.; Teymouri, S.; Mirzarazi, M.; Goudarzi, M.; Ghasemi, E.; Hashemi, A. Antibiotic resistance, biofilm formation, and biofilm-associated genes among Stenotrophomonas maltophilia clinical isolates. BMC Res. Notes 2021, 14, 151. [Google Scholar] [CrossRef]
- Kaiser, S.; Biehler, K.; Jonas, D. A Stenotrophomonas maltophilia multilocus sequence typing scheme for inferring population structure. J. Bacteriol. 2009, 191, 2934–2943. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, C.; Huang, J.; Jin, N.; Noskin, G.A.; Zembower, T.R.; Bolon, M. Persistent Staphylococcus aureus bacteremia: An analysis of risk factors and outcomes. Arch. Intern. Med. 2007, 167, 1861–1867. [Google Scholar] [CrossRef] [PubMed]
- Fowler, V.G., Jr.; Olsen, M.K.; Corey, G.R.; Woods, C.W.; Cabell, C.H.; Reller, L.B.; Cheng, A.C.; Dudley, T.; Oddone, E.Z. Clinical identifiers of complicated Staphylococcus aureus bacteremia. Arch. Intern. Med. 2003, 163, 2066–2072. [Google Scholar] [CrossRef] [PubMed]
- Nucci, M. Persistent Candidemia: Causes and Investigations. Curr. Fungal Infect. Rep. 2010, 5, 3–11. [Google Scholar] [CrossRef]
- Kang, S.J.; Kim, S.E.; Kim, U.J.; Jang, H.C.; Park, K.H.; Shin, J.H.; Jung, S.I. Clinical characteristics and risk factors for mortality in adult patients with persistent candidemia. J. Infect. 2017, 75, 246–253. [Google Scholar] [CrossRef]
- Kitaya, S.; Kanamori, H.; Katori, Y.; Tokuda, K. Clinical Features and Outcomes of Persistent Candidemia Caused by Candida albicans versus Non-albicans Candida Species: A Focus on Antifungal Resistance and Follow-Up Blood Cultures. Microorganisms 2023, 11, 928. [Google Scholar] [CrossRef]
- Kuehl, R.; Morata, L.; Boeing, C.; Subirana, I.; Seifert, H.; Rieg, S.; Kern, W.V.; Kim, H.B.; Kim, E.S.; Liao, C.H.; et al. Defining persistent Staphylococcus aureus bacteraemia: Secondary analysis of a prospective cohort study. Lancet Infect. Dis. 2020, 20, 1409–1417. [Google Scholar] [CrossRef]
- Jeon, Y.D.; Jeong, W.Y.; Kim, M.H.; Jung, I.Y.; Ahn, M.Y.; Ann, H.W.; Ahn, J.Y.; Han, S.H.; Choi, J.Y.; Song, Y.G.; et al. Risk factors for mortality in patients with Stenotrophomonas maltophilia bacteremia. Medicine 2016, 95, e4375. [Google Scholar] [CrossRef]
- Chen, Y.; Suo, J.; Du, M.; Chen, L.; Liu, Y.; Wang, L.; Liang, Z. Clinical Features, Outcomes, and Risk Factors of Bloodstream Infections due to Stenotrophomonas maltophilia in a Tertiary-Care Hospital of China: A Retrospective Analysis. Biomed. Res. Int. 2019, 2019, 4931501. [Google Scholar] [CrossRef]
- Niu, H.; Gu, J.; Zhang, Y. Bacterial persisters: Molecular mechanisms and therapeutic development. Signal Transduct. Target. Ther. 2024, 9, 174. [Google Scholar] [CrossRef]
- Ayrapetyan, M.; Williams, T.C.; Oliver, J.D. Bridging the gap between viable but non-culturable and antibiotic persistent bacteria. Trends Microbiol. 2015, 23, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Wood, T.K. ‘Viable but non-culturable cells’ are dead. Environ. Microbiol. 2021, 23, 2335–2338. [Google Scholar] [CrossRef] [PubMed]
- Kolpen, M.; Kragh, K.N.; Bjarnsholt, T.; Line, L.; Hansen, C.R.; Dalbøge, C.S.; Hansen, N.; Kühl, M.; Høiby, N.; Jensen, P. Denitrification by cystic fibrosis pathogens—Stenotrophomonas maltophilia is dormant in sputum. Int. J. Med. Microbiol. 2015, 305, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Brooke, J.S. Stenotrophomonas maltophilia: An emerging global opportunistic pathogen. Clin. Microbiol. Rev. 2012, 25, 2–41. [Google Scholar] [CrossRef] [PubMed]
- Adegoke, A.A.; Stenström, T.A.; Okoh, A.I. Stenotrophomonas maltophilia as an Emerging Ubiquitous Pathogen: Looking Beyond Contemporary Antibiotic Therapy. Front. Microbiol. 2017, 8, 2276. [Google Scholar] [CrossRef]
- Takahashi, I.; Hosomi, K.; Nagatake, T.; Toubou, H.; Yamamoto, D.; Hayashi, I.; Kurashima, Y.; Sato, S.; Shibata, N.; Goto, Y.; et al. Persistent colonization of non-lymphoid tissue-resident macrophages by Stenotrophomonas maltophilia. Int. Immunol. 2020, 32, 133–141. [Google Scholar] [CrossRef]
- Anderson, S.W.; Stapp, J.R.; Burns, J.L.; Qin, X. Characterization of small-colony-variant Stenotrophomonas maltophilia isolated from the sputum specimens of five patients with cystic fibrosis. J. Clin. Microbiol. 2007, 45, 529–535. [Google Scholar] [CrossRef]
- Fauerharmel-Nunes, T.; Flannagan, R.S.; Goncheva, M.I.; Bayer, A.S.; Fowler, V.G., Jr.; Chan, L.C.; Yeaman, M.R.; Xiong, Y.Q.; Heinrichs, D.E. MRSA Isolates from Patients with Persistent Bacteremia Generate Nonstable Small Colony Variants In Vitro within Macrophages and Endothelial Cells during Prolonged Vancomycin Exposure. Infect. Immun. 2023, 91, e0042322. [Google Scholar] [CrossRef]
- Pompilio, A.; Pomponio, S.; Crocetta, V.; Gherardi, G.; Verginelli, F.; Fiscarelli, E.; Dicuonzo, G.; Savini, V.; D’Antonio, D.; Di Bonaventura, G. Phenotypic and genotypic characterization of Stenotrophomonas maltophilia isolates from patients with cystic fibrosis: Genome diversity, biofilm formation, and virulence. BMC Microbiol. 2011, 11, 159. [Google Scholar] [CrossRef]
- Esposito, A.; Pompilio, A.; Bettua, C.; Crocetta, V.; Giacobazzi, E.; Fiscarelli, E.; Jousson, O.; Di Bonaventura, G. Evolution of Stenotrophomonas maltophilia in Cystic Fibrosis Lung over Chronic Infection: A Genomic and Phenotypic Population Study. Front. Microbiol. 2017, 8, 1590. [Google Scholar] [CrossRef]
- Gales, A.C.; Seifert, H.; Gur, D.; Castanheira, M.; Jones, R.N.; Sader, H.S. Antimicrobial Susceptibility of Acinetobacter calcoaceticus-Acinetobacter baumannii Complex and Stenotrophomonas maltophilia Clinical Isolates: Results from the SENTRY Antimicrobial Surveillance Program (1997–2016). Open Forum Infect. Dis. 2019, 6 (Suppl. S1), S34–S46. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.; Gautam, V.; Tewari, R. Distribution of Class 1 Integrons, sul1 and sul2 Genes Among Clinical Isolates of Stenotrophomonas maltophilia from a Tertiary Care Hospital in North India. Microb. Drug Resist. 2015, 21, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Gibb, J.; Wong, D.W. Antimicrobial Treatment Strategies for Stenotrophomonas maltophilia: A Focus on Novel Therapies. Antibiotics 2021, 10, 1226. [Google Scholar] [CrossRef] [PubMed]
- Song, J.E.; Kim, S.; Kwak, Y.G.; Shin, S.; Um, T.H.; Cho, C.R.; Chang, J. A 20-year trend of prevalence and susceptibility to trimethoprim/sulfamethoxazole of Stenotrophomonas maltophilia in a single secondary care hospital in Korea. Medicine 2023, 102, e32704. [Google Scholar] [CrossRef]
- Bostanghadiri, N.; Sholeh, M.; Navidifar, T.; Dadgar-Zankbar, L.; Elahi, Z.; van Belkum, A.; Darban-Sarokhalil, D. Global mapping of antibiotic resistance rates among clinical isolates of Stenotrophomonas maltophilia: A systematic review and meta-analysis. Ann. Clin. Microbiol. Antimicrob. 2024, 23, 26. [Google Scholar] [CrossRef]
Characteristics | Total (N = 214) | Non-Survivor (n = 79) | Survivor (n = 135) | Unadjusted HR (95% CI) | p-Value |
---|---|---|---|---|---|
Age, years, median (IQR) | 66.0 (56.0–75.3) | 66.0 (51.0–76.0) | 66.0 (57.0–75.0) | 1.00 (0.98–1.02) | 0.75 |
Male, n (%) | 132 (61.7) | 48 (60.8) | 84 (62.2) | 0.94 (0.53–1.66) | 0.83 |
Comorbidities, n (%) | |||||
Solid tumor | 68 (31.8) | 15 (19.0) | 53 (39.3) | 0.36 (0.19–0.70) | <0.01 |
Diabetes mellitus | 64 (29.9) | 21 (26.6) | 43 (31.9) | 0.78 (0.42–1.44) | 0.42 |
Hematologic malignancy | 59 (27.6) | 33 (41.8) | 26 (19.3) | 3.00 (1.62–5.58) | <0.01 |
Hematopoietic stem cell transplantation | 13 (6.1) | 8 (10.1) | 5 (3.7) | 2.93 (0.92–9.29) | 0.08 |
Predisposing conditions, n (%) | |||||
Neutropenia | 42 (19.6) | 20 (25.3) | 22 (16.3) | 1.74 (0.88–3.45) | 0.11 |
Chemotherapy within past 30 days | 74 (34.6) | 33 (41.8) | 41 (30.4) | 1.65 (0.92–2.93) | 0.09 |
Corticosteroid within past 30 days | 95 (44.4) | 49 (62.0) | 46 (34.1) | 3.16 (1.77–5.63) | <0.01 |
Previous exposure to any antibiotics | 192 (89.7) | 73 (92.4) | 119 (88.1) | 1.64 (0.61–4.37) | 0.32 |
Mechanical ventilation before bacteremia onset | 67 (31.3) | 32 (40.5) | 35 (25.9) | 1.95 (1.08–3.52) | 0.03 |
CRRT before bacteremia onset | 28 (13.1) | 21 (21.5) | 7 (5.2) | 5.01 (1.98–12.72) | <0.01 |
Primary source of infection, n (%) | |||||
Catheter-related infection | 78 (36.4) | 25 (31.6) | 53 (39.3) | 0.72 (0.40–1.29) | 0.26 |
Pneumonia or empyema | 58 (27.1) | 30 (38.0) | 28 (20.7) | 2.34 (1.26–4.33) | 0.01 |
Intra-abdominal infection | 19 (8.9) | 9 (11.4) | 10 (7.4) | 1.61 (0.62–4.14) | 0.32 |
Skin and soft tissue infection | 11 (5.1) | 6 (7.6) | 5 (3.7) | 2.14 (0.63–7.25) | 0.34 |
Cholangitis | 31 (14.5) | 5 (6.3) | 26 (19.3) | 0.28 (0.10–0.77) | <0.01 |
Unknown | 15 (7.0) | 3 (3.8) | 12 (8.9) | 0.41 (0.11–1.48) | 0.16 |
Presence of eradicable infection focus, n (%) | 93 (43.5) | 33 (35.5) | 60 (64.5) | 0.64 (0.36–1.14) | 0.13 |
Infection focus eradication, n (%) | 49/93 (52.7) | 9/33 (27.3) | 40/60 (66.7) | 0.13 (0.05–0.36) | <0.01 |
Appropriate antibiotics within 48 h | 29 (13.6) | 9 (11.4) | 20 (14.8) | 0.74 (0.32–1.71) | 0.48 |
Characteristics | Adjusted HR (95% CI) | p-Value |
---|---|---|
Solid tumor | 0.81 (0.31–2.09) | 0.38 |
Hematologic malignancy | 2.40 (0.96–6.02) | 0.06 |
Corticosteroid within past 30 days | 3.09 (1.46–6.51) | <0.01 |
Mechanical ventilation before bacteremia onset | 2.14 (0.95–4.85) | 0.07 |
CRRT before bacteremia onset | 5.37 (1.87–15.40) | <0.01 |
Primary source of infection: pneumonia or empyema | 1.37 (0.67–2.85) | 0.38 |
Primary source of infection: cholangitis | 0.68 (0.18–2.58) | 0.57 |
Corticosteroid within past 30 days | 3.09 (1.46–6.51) | <0.01 |
Mechanical ventilation before bacteremia onset | 2.14 (0.95–4.85) | 0.07 |
Characteristics | Bacteremia ≥5 Days (n = 55) | Bacteremia <5 Days (n = 52) | Unadjusted HR (95% CI) | p-Value | Adjusted HR (95% CI) | p-Value |
---|---|---|---|---|---|---|
Age, years, median (IQR) | 64.0 (55.0–74.0) | 65.0 (57.0–74.0) | 1.00 (0.98–1.03) | >0.9 | 0.99 (0.96–1.03) | 0.56 |
Male, n (%) | 31 (56.4) | 38 (73.1) | 0.48 (0.21–1.00) | 0.07 | 0.55 (0.20–1.50) | 0.24 |
Comorbidities, n (%) | ||||||
Solid tumor | 17 (30.9) | 21 (40.4) | 0.66 (0.30–1.46) | 0.31 | ||
Diabetes mellitus | 17 (30.9) | 17 (32.7) | 0.92 (0.41–2.08) | 0.84 | ||
Hematologic malignancy | 13 (23.6) | 15 (28.8) | 0.76 (0.32–1.81) | 0.54 | ||
Hematopoietic stem cell transplantation | 3 (5.5) | 4 (7.7) | 0.69 (0.15–3.25) | 0.64 | ||
Predisposing conditions, n (%) | ||||||
Neutropenia | 9 (16.4) | 10 (19.2) | 0.82 (0.30–2.22) | 0.70 | ||
Chemotherapy within past 30 days | 18 (32.7) | 25 (48.1) | 0.53 (0.24–1.15) | 0.11 | ||
Corticosteroid within past 30 days | 27 (49.1) | 20 (38.5) | 1.54 (0.72–3.33) | 0.27 | ||
Presence of central venous catheter | 43 (78.2) | 30 (57.7) | 2.63 (1.13–6.11) | 0.03 | 1.93 (0.52–7.20) | 0.33 |
Mechanical ventilation before bacteremia | 31 (56.4) | 6 (11.5) | 9.90 (3.63–27.02) | <0.01 | 12.31 (3.45–43.94) | <0.01 |
CRRT before bacteremia onset | 9 (16.4) | 2 (3.8) | 4.89 (1.00–23.83) | 0.05 | 0.90 (0.12–6.86) | 0.92 |
Primary source of infection, n (%) | ||||||
Catheter-related infection | 26 (47.3) | 19 (36.5) | 1.56 (0.72–3.38) | 0.26 | ||
Catheter removal | 17/26 (65.4) | 11/19 (57.9) | 1.37 (0.41–4.64) | 0.61 | ||
Catheter removal within 48 h | 1/26 (3.8) | 4/19 (21.1) | 0.15 (0.02–1.47) | 0.10 | ||
Pneumonia or empyema | 13 (23.6) | 12 (23.1) | 1.03 (0.42–2.53) | 0.95 | ||
Intra-abdominal infection | 6 (10.9) | 3 (5.8) | 2.00 (0.47–8.45) | 0.35 | ||
Skin and soft tissue infection | 4 (7.3) | 1 (1.9) | 4.00 (0.43–37.0.) | 0.22 | ||
Cholangitis | 4 (7.3) | 11 (21.2) | 0.29 (0.09–0.99) | 0.05 | 0.71 (0.16–3.07) | 0.64 |
Unknown | 2 (3.6) | 6 (11.5) | 0.29 (0.06–1.50) | 0.14 | ||
Presence of eradicable infection focus | 33 (60.0) | 22 (42.3) | 2.05 (0.95–4.42) | 0.07 | 0.69 (0.21–2.30) | 0.55 |
Focus control | 17/33 (51.5) | 13/22 (59.1) | 0.74 (0.25–2.19) | 0.58 | ||
Polymicrobial bacteremia | 20 (36.4) | 10 (19.2) | 2.40 (0.99–5.80) | 0.05 | 3.50 (1.12–10.95) | 0.03 |
Appropriate antibiotics within 48 h | 4 (7.3) | 12 (23.1) | 0.26 (0.78–0.87) | 0.03 | 0.16 (0.03–0.87) | 0.03 |
30-day mortality | 22 (40.0) | 6 (11.5) | 5.11 (1.87–14.00) | <0.01 |
Bacteremia ≥ 5 Days n = 42 (%) | Bacteremia < 5 Days n = 31 (%) | p-Value | |
---|---|---|---|
OD 570, mean ± SD | 0.71 ± 0.23 | 0.55 ± 0.25 | 0.01 |
Categorization of biofilm producers | <0.01 | ||
Negative | 1 (2.4) | 5 (16.1) | |
Weak | 23 (54.8) | 22 (71.0) | |
Moderate | 18 (42.9) | 4 (12.9) |
Number (%) of Resistant Strains | ||||||||
---|---|---|---|---|---|---|---|---|
2005–2007 (n = 12) | 2008–2010 (n = 21) | 2011–2013 (n = 20) | 2014–2016 (n = 21) | 2017–2019 (n = 26) | 2020–2022 (n = 39) | Total (N = 139) | p-Value | |
TMP/SMX | 1 (8.3) | 0 (0.0) | 0 (0.0) | 2 (9.5) | 9 (34.6) | 27 (69.2) | 39 (28.1) | <0.01 |
Levofloxacin | 3 (25.0) | 2 (9.5) | 6 (30.0) | 4 (19.0) | 6 (23.1) | 10 (25.6) | 31 (22.3) | 0.68 |
Minocycline | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 3 (7.7) | 3 (2.2) | 0.16 |
Tigecycline | 2 (16.7) | 3 (14.3) | 6 (30.0) | 2 (9.5) | 3 (11.5) | 5 (12.8) | 21 (15.1) | 0.49 |
Cefiderocol | 0 (0.0) | 0 (0.0) | 1 (5.0) | 0 (0.0) | 3 (11.5) | 3 (7.7) | 7 (5.0) | 0.33 |
Ceftazidime | 10 (83.3) | 15 (71.4) | 15 (75.0) | 14 (66.7) | 19 (73.1) | 28 (71.8) | 101 (72.7) | 0.95 |
Colistin | 9 (75.0) | 15 (71.4) | 15 (75.0) | 19 (90.5) | 22 (84.6) | 36 (92.3) | 116 (83.5) | 0.23 |
TMP-SMX + levofloxacin | 1 (8.3) | 0 (0.0) | 0 (0.0) | 2 (9.5) | 3 (11.5) | 9 (23.1) | 15 (10.1) | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Ji, S.; Cho, D.; Lee, A.; Jeong, H.S.; Kim, M.; Kim, S.E.; Park, K.-H.; Jung, S.I.; Kim, U.J.; et al. Persistence of Stenotrophomonas maltophilia in Patients with Bacteremia: Incidence, Clinical and Microbiologic Characters, and Outcomes. Microorganisms 2024, 12, 2477. https://doi.org/10.3390/microorganisms12122477
Kim S, Ji S, Cho D, Lee A, Jeong HS, Kim M, Kim SE, Park K-H, Jung SI, Kim UJ, et al. Persistence of Stenotrophomonas maltophilia in Patients with Bacteremia: Incidence, Clinical and Microbiologic Characters, and Outcomes. Microorganisms. 2024; 12(12):2477. https://doi.org/10.3390/microorganisms12122477
Chicago/Turabian StyleKim, Sarah, Sehyeon Ji, David Cho, Ahrang Lee, Hae Seong Jeong, Minji Kim, Seong Eun Kim, Kyung-Hwa Park, Sook In Jung, Uh Jin Kim, and et al. 2024. "Persistence of Stenotrophomonas maltophilia in Patients with Bacteremia: Incidence, Clinical and Microbiologic Characters, and Outcomes" Microorganisms 12, no. 12: 2477. https://doi.org/10.3390/microorganisms12122477
APA StyleKim, S., Ji, S., Cho, D., Lee, A., Jeong, H. S., Kim, M., Kim, S. E., Park, K.-H., Jung, S. I., Kim, U. J., Shin, S. U., & Kang, S. J. (2024). Persistence of Stenotrophomonas maltophilia in Patients with Bacteremia: Incidence, Clinical and Microbiologic Characters, and Outcomes. Microorganisms, 12(12), 2477. https://doi.org/10.3390/microorganisms12122477