The Tick Microbiome: The “Other Bacterial Players” in Tick Biocontrol
Abstract
:1. Introduction
2. The Tick Microbiome
3. Beyond Tick Endosymbionts
4. Tick Microbial Interactions: Endosymbionts and Non-Endosymbionts
5. The Microbiome of Ixodes spp. (Ixodes scapularis, I. pacificus and I. ricinus)
6. The Microbiome of the Lone Star Tick, Amblyomma americanum
7. The Non-Endosymbiotic Bacteria and Culture-Dependent Isolation Methods
8. The (Un)Favorable Tick Midgut Environment for the Microbiota
9. Use of Bacillus spp. As a Tick Biocontrol Strategy
10. Bacillus Toxicity Mechanisms in the Tick Gut Are Unknown
11. Bacillus spp. As the Trojan Horse in Tick Control: A Paratransgenesis Approach
12. Concluding Remarks
Funding
Acknowledgments
Conflicts of Interest
References
- Bonnet, S.I.; Binetruy, F.; Hernandez-Jarguin, A.M.; Duron, O. The tick microbiome: Why non-pathogenic microorganisms matter in tick biology and pathogen transmission. Front. Cell. Infect. Microbiol. 2017, 7, 236. [Google Scholar] [CrossRef] [PubMed]
- Degli Esposti, M.; Martinez Romero, E. The functional microbiome of arthropods. PLoS ONE 2017, 12, e0176573. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Cortés, J.G.; García-Contreras, R.; Bucio-Torres, M.I.; Cabrera-Bravo, M.; Córdoba-Aguilar, A.; Benelli, G.; Salazar-Schettino, P.M. Bacterial symbionts in human blood-feeding arthropods: Patterns, general mechanisms and effects of global ecological changes. Acta Trop. 2018, 186, 69–101. [Google Scholar] [CrossRef] [PubMed]
- Zug, R.; Hammerstein, P. Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. Biol. Rev. 2015, 90, 89–111. [Google Scholar] [CrossRef]
- Hussain, S.; Perveen, N.; Hussain, A.; Song, B.; Aziz, M.U.; Zeb, J.; Li, J.; George, D.; Cabezas-Cruz, A.; Sparagano, O. The Symbiotic Continuum Within Ticks: Opportunities for Disease Control. Front. Microbiol. 2022, 13, 854803. [Google Scholar] [CrossRef] [PubMed]
- Vigneron, A.; Weiss, B.L. Role of the microbiota during development of the arthropod vector immune system. In Arthorpod Vector Controller of Disease Transmission; Academic Press: London, UK; San Diego, CA, USA; Cambridge, UK, 2017; Volume 1, pp. 161–172. [Google Scholar]
- Cibichakravarthy, B.; Shaked, N.; Kapri, E.; Gottlieb, Y. Endosymbiont-derived metabolites are essential for tick host reproductive fitness. mSphere 2024, 9, e0069323. [Google Scholar] [CrossRef] [PubMed]
- Sonenshine, D.E.; Stewart, P.E. Microbiomes of blood-feeding arthropods: Genes coding for essential nutrients and relation to vector fitness and pathogenic infections. A review. Microorganisms 2021, 9, 2433. [Google Scholar] [CrossRef]
- Smith, T.A.; Driscoll, T.; Gillespie, J.J.; Raghavan, R. A Coxiella-like endosymbiont is a potential vitamin source for the Lone Star tick. Genome Biol. Evol. 2015, 7, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Duron, O. Nutritional symbiosis in ticks: Singularities of the genus Ixodes. Trends Parasitol. 2024, 40, 696–706. [Google Scholar] [CrossRef]
- Chou, S.; Daugherty, M.D.; Peterson, S.B.; Biboy, J.; Yang, Y.; Jutras, B.L.; Fritz-Laylin, L.K.; Ferrin, M.A.; Harding, B.N.; Jacobs-Wagner, C.; et al. Transferred interbacterial antagonism genes augment eukaryotic innate immune function. Nature 2015, 518, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Sonenshine, D.E.; Roe, R.M. Biology of Ticks Volume 1; Oxford University Press: Oxford, UK; Incorporated: Cary, NC, USA, 2013. [Google Scholar]
- Brites-Neto, J.; Duarte, K.M.; Martins, T.F. Tick-borne infections in human and animal population worldwide. Vet. World 2015, 8, 301–315. [Google Scholar] [CrossRef] [PubMed]
- Dantas-Torres, F.; Chomel, B.B.; Otranto, D. Ticks and tick-borne diseases: A one health perspective. Trends Parasitol. 2012, 28, 437–446. [Google Scholar] [CrossRef] [PubMed]
- de la Fuente, J.; Estrada-Pena, A.; Venzal, J.M.; Kocan, K.M.; Sonenshine, D.E. Overview: Ticks as vectors of pathogens that cause disease in humans and animals. Front. Biosci. 2008, 13, 6938–6946. [Google Scholar] [CrossRef]
- Berger, J.J.; Hayes, B.K. (Eds.) Tick-Borne Disease Working Group. Congress Report; U.S. Department of Heatlh and Human Services: Washington, DC, USA, 2022; pp. 1–128.
- de la Fuente, J.; Estrada-Peña, A.; Rafael, M.; Almazán, C.; Bermúdez, S.; Abdelbaset, A.E.; Kasaija, P.D.; Kabi, F.; Akande, F.A.; Ajagbe, D.O.; et al. Perception of Ticks and Tick-Borne Diseases Worldwide. Pathogens 2023, 12, 1258. [Google Scholar] [CrossRef] [PubMed]
- Ahantarig, A.; Trinachartvanit, W.; Baimai, V.; Grubhoffer, L. Hard ticks and their bacterial endosymbionts (or would be pathogens). Folia Microbiol. 2013, 58, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Markéta, N.; David, Š. Rickettsial Endosymbionts of Ticks. In Ticks and Tick-Borne Pathogens; Muhammad, A., Piyumali, K.P., Eds.; IntechOpen: Rijeka, Croatia, 2018; Chapter 4. [Google Scholar]
- Kumar, D.; Sharma, S.R.; Adegoke, A.; Kennedy, A.; Tuten, H.C.; Li, A.Y.; Karim, S. Recently evolved Francisella-like endosymbiont outcompetes an ancient and evolutionarily associated Coxiella-like endosymbiont in the lone star tick (Amblyomma americanum) linked to the Alpha-Gal Syndrome. Front. Cell. Infect. Microbiol. 2022, 12, 787209. [Google Scholar] [CrossRef]
- Epis, S.; Sassera, D.; Beninati, T.; Lo, N.; Beati, L.; Piesman, J.; Rinaldi, L.; McCoy, K.; Torina, A.; Sacchi, L. Midichloria mitochondrii is widespread in hard ticks (Ixodidae) and resides in the mitochondria of phylogenetically diverse species. Parasitology 2008, 135, 485–494. [Google Scholar] [CrossRef]
- Wiesinger, A.; Wenderlein, J.; Ulrich, S.; Hiereth, S.; Chitimia-Dobler, L.; Straubinger, R.K. Revealing the Tick Microbiome: Insights into Midgut and Salivary Gland Microbiota of Female Ixodes ricinus Ticks. Int. J. Mol. Sci. 2023, 24, 1100. [Google Scholar] [CrossRef]
- Brenner, A.E.; Muñoz-Leal, S.; Sachan, M.; Labruna, M.B.; Raghavan, R. Coxiella burnetii and Related Tick Endosymbionts Evolved from Pathogenic Ancestors. Genome Biol. Evol. 2021, 13, evab108. [Google Scholar] [CrossRef] [PubMed]
- Gerhart, J.G.; Moses, A.S.; Raghavan, R. A Francisella-like endosymbiont in the Gulf Coast tick evolved from a mammalian pathogen. Sci. Rep. 2016, 6, 33670. [Google Scholar] [CrossRef] [PubMed]
- Maldonado-Ruiz, L.P.; Neupane, S.; Park, Y.; Zurek, L. The bacterial community of the lone star tick (Amblyomma americanum). Parasites Vectors 2021, 14, 49. [Google Scholar] [CrossRef]
- Ross, B.D.; Hayes, B.; Radey, M.C.; Lee, X.; Josek, T.; Bjork, J.; Neitzel, D.; Paskewitz, S.; Chou, S.; Mougous, J.D. Ixodes scapularis does not harbor a stable midgut microbiome. ISME J. 2018, 12, 2596–2607. [Google Scholar] [CrossRef] [PubMed]
- Guizzo, M.G.; Neupane, S.; Kucera, M.; Perner, J.; Frantová, H.; da Silva Vaz, I.; de Oliveira, P.L.; Kopacek, P.; Zurek, L. Poor Unstable Midgut Microbiome of Hard Ticks Contrasts with Abundant and Stable Monospecific Microbiome in Ovaries. Front. Cell. Infect. Microbiol. 2020, 10, 211. [Google Scholar] [CrossRef]
- Narasimhan, S.; Swei, A.; Abouneameh, S.; Pal, U.; Pedra, J.H.F.; Fikrig, E. Grappling with the tick microbiome. Trends Parasitol. 2021, 37, 722–733. [Google Scholar] [CrossRef] [PubMed]
- Maldonado-Ruiz, L.P.; Park, Y.; Zurek, L. Liquid water intake of the lone star tick, Amblyomma americanum: Implications for tick survival and management. Sci. Rep. 2020, 10, 6000. [Google Scholar] [CrossRef]
- Wilkinson, P. Observations on the sensory Physiology and Behaviour of larvae of the cattle tick, Boophilus Microplus (Can.) (Ixodidae). Aust. J. Zool. 1953, 1, 345–356. [Google Scholar] [CrossRef]
- Londt, J.G.H.; Whitehead, G.B. Ecological studies of larval ticks in South Africa (Acarina: Ixodidae). Parasitology 1972, 65, 469–490. [Google Scholar] [CrossRef]
- Kim, D.; Maldonado-Ruiz, P.; Zurek, L.; Park, Y. Water absorption through salivary gland type I acini in the blacklegged tick, Ixodes scapularis. PeerJ 2017, 5, e3984. [Google Scholar] [CrossRef]
- Varela-Stokes, A.S.; Park, S.H.; Kim, S.A.; Ricke, S.C. Microbial Communities in North American Ixodid Ticks of Veterinary and Medical Importance. Front. Vet. Sci. 2017, 4, 179. [Google Scholar] [CrossRef] [PubMed]
- de la Fuente, J.; Antunes, S.; Bonnet, S.; Cabezas-Cruz, A.; Domingos, A.G.; Estrada-Peña, A.; Johnson, N.; Kocan, K.M.; Mansfield, K.L.; Nijhof, A.M.; et al. Tick-Pathogen Interactions and Vector Competence: Identification of Molecular Drivers for Tick-Borne Diseases. Front. Cell. Infect. Microbiol. 2017, 7, 114. [Google Scholar] [CrossRef] [PubMed]
- Gall, C.A.; Reif, K.E.; Scoles, G.A.; Mason, K.L.; Mousel, M.; Noh, S.M.; Brayton, K.A. The bacterial microbiome of Dermacentor andersoni ticks influences pathogen susceptibility. ISME J. 2016, 10, 1846–1855. [Google Scholar] [CrossRef] [PubMed]
- Wei, N.; Cao, J.; Zhang, H.; Zhou, Y.; Zhou, J. The Tick Microbiota Dysbiosis Promote Tick-Borne Pathogen Transstadial Transmission in a Babesia microti-Infected Mouse Model. Front. Cell. Infect. Microbiol. 2021, 11, 713466. [Google Scholar] [CrossRef]
- Menchaca, A.C.; Visi, D.K.; Strey, O.F.; Teel, P.D.; Kalinowski, K.; Allen, M.S.; Williamson, P.C. Preliminary assessment of microbiome changes following blood-feeding and survivorship in the Amblyomma americanum nymph-to-adult transition using semiconductor sequencing. PLoS ONE 2013, 8, e67129. [Google Scholar] [CrossRef]
- Militzer, N.; Pinecki Socias, S.; Nijhof, A.M. Changes in the Ixodes ricinus microbiome associated with artificial tick feeding. Front. Microbiol. 2022, 13, 1050063. [Google Scholar] [CrossRef]
- Thapa, S.; Zhang, Y.; Allen, M.S. Effects of temperature on bacterial microbiome composition in Ixodes scapularis ticks. Microbiologyopen 2019, 8, e00719. [Google Scholar] [CrossRef]
- Brinkerhoff, R.J.; Clark, C.; Ocasio, K.; Gauthier, D.T.; Hynes, W.L. Factors affecting the microbiome of Ixodes scapularis and Amblyomma americanum. PLoS ONE 2020, 15, e0232398. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, S.I.; Pollet, T. Update on the intricate tango between tick microbiomes and tick-borne pathogens. Parasite Immunol. 2021, 43, e12813. [Google Scholar] [CrossRef] [PubMed]
- Holguin-Rocha, A.F.; Calle-Tobon, A.; Vásquez, G.M.; Astete, H.; Fisher, M.L.; Tobon-Castano, A.; Velez-Tobon, G.; Maldonado-Ruiz, L.P.; Silver, K.; Park, Y.; et al. Diversity of the Bacterial and Viral Communities in the Tropical Horse Tick, Dermacentor nitens, in Colombia. Pathogens 2023, 12, 942. [Google Scholar] [CrossRef]
- Tuininga, A.R.; Miller, J.L.; Morath, S.U.; Daniels, T.J.; Falco, R.C.; Marchese, M.; Sahabi, S.; Rosa, D.; Stafford, K.C., III. Isolation of Entomopathogenic Fungi From Soils and Ixodes scapularis (Acari: Ixodidae) Ticks: Prevalence and Methods. J. Med. Entomol. 2014, 46, 557–565. [Google Scholar] [CrossRef]
- Barbour, A.G.; Fish, D. The biological and social phenomenon of Lyme disease. Science 1993, 260, 1610–1616. [Google Scholar] [CrossRef] [PubMed]
- Sprong, H.; Azagi, T.; Hoornstra, D.; Nijhof, A.M.; Knorr, S.; Baarsma, M.E.; Hovius, J.W. Control of Lyme borreliosis and other Ixodes ricinus-borne diseases. Parasites Vectors 2018, 11, 145. [Google Scholar] [CrossRef]
- Olivieri, E.; Epis, S.; Castelli, M.; Varotto Boccazzi, I.; Romeo, C.; Desirò, A.; Bazzocchi, C.; Bandi, C.; Sassera, D. Tissue tropism and metabolic pathways of Midichloria mitochondrii suggest tissue-specific functions in the symbiosis with Ixodes ricinus. Ticks Tick-Borne Dis. 2019, 10, 1070–1077. [Google Scholar] [CrossRef]
- Kwan, J.Y.; Griggs, R.; Chicana, B.; Miller, C.; Swei, A. Vertical vs. horizontal transmission of the microbiome in a key disease vector, Ixodes pacificus. Mol. Ecol. 2017, 26, 6578–6589. [Google Scholar] [CrossRef]
- Gil, J.C.; Helal, Z.H.; Risatti, G.; Hird, S.M. Ixodes scapularis microbiome correlates with life stage, not the presence of human pathogens, in ticks submitted for diagnostic testing. PeerJ 2020, 8, e10424. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D.J.; Torkelson, J.L.; Bodnar, J.; Mortazavi, B.; Laurent, T.; Deason, J.; Thephavongsa, K.; Zhong, J. The Rickettsia endosymbiont of Ixodes pacificus contains all the genes of de novo folate biosynthesis. PLoS ONE 2015, 10, e0144552. [Google Scholar] [CrossRef] [PubMed]
- Zolnik, C.P.; Prill, R.J.; Falco, R.C.; Daniels, T.J.; Kolokotronis, S.O. Microbiome changes through ontogeny of a tick pathogen vector. Mol. Ecol. 2016, 25, 4963–4977. [Google Scholar] [CrossRef]
- Van Treuren, W.; Ponnusamy, L.; Brinkerhoff, R.J.; Gonzalez, A.; Parobek, C.M.; Juliano, J.J.; Andreadis, T.G.; Falco, R.C.; Ziegler, L.B.; Hathaway, N. Variation in the microbiota of Ixodes ticks with regard to geography, species, and sex. Appl. Environ. Microbiol. 2015, 81, 6200–6209. [Google Scholar] [CrossRef] [PubMed]
- Sperling, J.L.; Silva-Brandão, K.L.; Brandão, M.M.; Lloyd, V.K.; Dang, S.; Davis, C.S.; Sperling, F.A.H.; Magor, K.E. Comparison of bacterial 16S rRNA variable regions for microbiome surveys of ticks. Ticks Tick-Borne Dis. 2017, 8, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Martin, P.A.; Schmidtmann, E.T. Isolation of aerobic microbes from Ixodes scapularis (Acari: Ixodidae), the vector of Lyme disease in the eastern United States. J. Econ. Entomol. 1998, 91, 864–868. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Jarguin, A.; Diaz-Sanchez, S.; Villar, M.; de la Fuente, J. Integrated metatranscriptomics and metaproteomics for the characterization of bacterial microbiota in unfed Ixodes ricinus. Ticks Tick-Borne Dis. 2018, 9, 1241–1251. [Google Scholar] [CrossRef] [PubMed]
- Narasimhan, S.; Rajeevan, N.; Liu, L.; Zhao, Y.O.; Heisig, J.; Pan, J.; Eppler-Epstein, R.; Deponte, K.; Fish, D.; Fikrig, E. Gut microbiota of the tick vector Ixodes scapularis modulate colonization of the Lyme disease spirochete. Cell Host. Microbe 2014, 15, 58–71. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Smith, A.A.; Williams, M.S.; Pal, U. A dityrosine network mediated by dual oxidase and peroxidase influences the persistence of Lyme disease pathogens within the vector. J. Biol. Chem. 2014, 289, 12813–12822. [Google Scholar] [CrossRef] [PubMed]
- Guizzo, M.G.; Dolezelikova, K.; Neupane, S.; Frantova, H.; Hrbatova, A.; Pafco, B.; Fiorotti, J.; Kopacek, P.; Zurek, L. Characterization and manipulation of the bacterial community in the midgut of Ixodes ricinus. Parasites Vectors 2022, 15, 248. [Google Scholar] [CrossRef]
- Williams-Newkirk, A.J.; Rowe, L.A.; Mixson-Hayden, T.R.; Dasch, G.A. Characterization of the bacterial communities of life stages of free living lone star ticks (Amblyomma americanum). PLoS ONE 2014, 9, e102130. [Google Scholar] [CrossRef]
- Trout Fryxell, R.T.; DeBruyn, J.M. Correction: The microbiome of Ehrlichia-infected and uninfected lone star ticks (Amblyomma americanum). PLoS ONE 2016, 11, e0155559. [Google Scholar] [CrossRef] [PubMed]
- Clay, K.; Klyachko, O.; Grindle, N.; Civitello, D.; Oleske, D.; Fuqua, C. Microbial communities and interactions in the lone star tick, Amblyomma americanum. Mol. Ecol. 2008, 17, 4371–4381. [Google Scholar] [CrossRef]
- CDC. Map of Established Amblyomma americanum Tick Populations in the United States. 2019. Available online: https://www.cdc.gov/ticks/maps/lone_star_tick.pdf (accessed on 25 November 2024).
- Raghavan, R.K.; Peterson, A.T.; Cobos, M.E.; Ganta, R.; Foley, D. Current and future distribution of the lone star tick, Amblyomma americanum (L.) (Acari: Ixodidae) in North America. PLoS ONE 2019, 14, e0209082. [Google Scholar] [CrossRef] [PubMed]
- Rochlin, I.; Egizi, A.; Lindström, A. The Original Scientific Description of the Lone Star Tick (Amblyomma americanum, Acari: Ixodidae) and Implications for the Species’ Past and Future Geographic Distributions. J. Med. Entomol. 2022, 59, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Springer, Y.P.; Jarnevich, C.S.; Barnett, D.T.; Monaghan, A.J.; Eisen, R.J. Modeling the present and future geographic distribution of the lone star tick, Amblyomma americanum (Ixodida: Ixodidae), in the continental United States. Am. J. Trop. Med. Hyg. 2015, 93, 875–890. [Google Scholar] [CrossRef] [PubMed]
- Tokarz, R.; Sameroff, S.; Tagliafierro, T.; Jain, K.; Williams, S.H.; Cucura, D.M.; Rochlin, I.; Monzon, J.; Carpi, G.; Tufts, D.; et al. Identification of novel viruses in Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis ticks. mSphere 2018, 3, e00614-17. [Google Scholar] [CrossRef]
- Sayler, K.A.; Loftis, A.D.; Beatty, S.K.; Boyce, C.L.; Garrison, E.; Clemons, B.; Cunningham, M.; Alleman, A.R.; Barbet, A.F. Prevalence of tick-borne pathogens in host-seeking Amblyomma americanum (Acari: Ixodidae) and Odocoileus virginianus (Artiodactyla: Cervidae) in Florida. J. Med. Entomol. 2016, 53, 949–956. [Google Scholar] [CrossRef]
- Mixson, T.R.; Campbell, S.R.; Gill, J.S.; Ginsberg, H.S.; Reichard, M.V.; Schulze, T.L.; Dasch, G.A. Prevalence of Ehrlichia, Borrelia, and Rickettsial agents in Amblyomma americanum (Acari: Ixodidae) collected from nine states. J. Med. Entomol. 2006, 43, 1261–1268. [Google Scholar] [CrossRef]
- Diniz, P.P.V.P.; Moura de Aguiar, D. Ehrlichiosis and Anaplasmosis: An Update. Vet. Clin. Small Anim. Pract. 2022, 52, 1225–1266. [Google Scholar] [CrossRef] [PubMed]
- Platts-Mills, T.A.E.; Commins, S.P.; Biedermann, T.; van Hage, M.; Levin, M.; Beck, L.A.; Diuk-Wasser, M.; Jappe, U.; Apostolovic, D.; Minnicozzi, M.; et al. On the cause and consequences of ige to galactose-α-1,3-galactose: A report from the National Institute of Allergy and Infectious Diseases workshop on understanding IgE-mediated mammalian meat allergy. J. Allergy Clin. Immunol. 2020, 145, 1061–1071. [Google Scholar] [CrossRef] [PubMed]
- Crispell, G.; Commins, S.P.; Archer-Hartman, S.A.; Choudhary, S.; Dharmarajan, G.; Azadi, P.; Karim, S. Discovery of alpha-gal-containing antigens in North American tick species believed to Induce red meat allergy. Front. Immunol. 2019, 10, 1056. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.A.-O.; Kim, D.; Boorgula, G.D.; De Schutter, K.A.-O.; Smagghe, G.A.-O.; Šimo, L.; Archer-Hartmann, S.A.-O.; Azadi, P. Alpha-Gal and Cross-Reactive Carbohydrate Determinants in the N-Glycans of Salivary Glands in the Lone Star Tick, Amblyomma americanum. Vaccines 2019, 8, 18. [Google Scholar] [CrossRef]
- Thompson, J.M.; Carpenter, A.; Kersh, G.J.; Wachs, T.; Commins, S.P.; Salzer, J.S. Geographic Distribution of Suspected Alpha-gal Syndrome Cases—United States, January 2017–December 2022. CDC Morb. Mortal. Wkly. Rep. 2023, 72, 815–820. [Google Scholar] [CrossRef] [PubMed]
- Maldonado-Ruiz, L.P.; Reif, K.E.; Ghosh, A.; Foré, S.; Johnson, R.L.; Park, Y. High levels of alpha-gal with large variation in the salivary glands of lone star ticks fed on human blood. Sci. Rep. 2023, 13, 21409. [Google Scholar] [CrossRef] [PubMed]
- Montassier, E.; Al-Ghalith, G.A.; Mathé, C.; Le Bastard, Q.; Douillard, V.; Garnier, A.; Guimon, R.; Raimondeau, B.; Touchefeu, Y.; Duchalais, E.; et al. Distribution of Bacterial α1,3-Galactosyltransferase Genes in the Human Gut Microbiome. Front. Immunol. 2019, 10, 3000. [Google Scholar] [CrossRef]
- Heise, S.R.; Elshahed, M.S.; Little, S.E. Bacterial diversity in Amblyomma americanum (Acari: Ixodidae) with a focus on members of the genus Rickettsia. J. Med. Entomol. 2010, 47, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Jasinskas, A.; Zhong, J.; Barbour, A.G. Highly prevalent Coxiella sp. bacterium in the tick vector Amblyomma americanum. Appl. Environ. Microbiol. 2007, 73, 334–336. [Google Scholar] [CrossRef]
- Klyachko, O.; Stein, B.D.; Grindle, N.; Clay, K.; Fuqua, C. Localization and visualization of a Coxiella-type symbiont within the lone star tick, Amblyomma americanum. Appl. Environ. Microbiol. 2007, 73, 6584–6594. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Jasinskas, A.; Barbour, A.G. Antibiotic Treatment of the Tick Vector Amblyomma americanum Reduced Reproductive Fitness. PLoS ONE 2007, 2, e405. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.-Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef]
- Binetruy, F.; Dupraz, M.; Buysse, M.; Duron, O. Surface sterilization methods impact measures of internal microbial diversity in ticks. Parasites Vectors 2019, 12, 268. [Google Scholar] [CrossRef] [PubMed]
- Hajdušek, O.; Síma, R.; Ayllón, N.; Jalovecká, M.; Perner, J.; de la Fuente, J.; Kopáček, P. Interaction of the tick immune system with transmitted pathogens. Front. Cell. Infect. Microbiol. 2013, 3, 26. [Google Scholar] [CrossRef] [PubMed]
- Sojka, D.; Franta, Z.; Horn, M.; Caffrey, C.R.; Mareš, M.; Kopáček, P. New insights into the machinery of blood digestion by ticks. Trends Parasitol. 2013, 29, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Dai, J.; Zhao, Y.O.; Narasimhan, S.; Yang, Y.; Zhang, L.; Fikrig, E. Ixodes scapularis JAK-STAT pathway regulates tick antimicrobial peptides, thereby controlling the agent of human granulocytic anaplasmosis. J. Infect. Dis. 2012, 206, 1233–1241. [Google Scholar] [CrossRef] [PubMed]
- Rana, V.S.; Kitsou, C.; Dutta, S.; Ronzetti, M.H.; Zhang, M.; Bernard, Q.; Smith, A.A.; Tomás-Cortázar, J.; Yang, X.; Wu, M.J.; et al. Dome1-JAK-STAT signaling between parasite and host integrates vector immunity and development. Science 2023, 379, eabl3837. [Google Scholar] [CrossRef] [PubMed]
- Shaw, D.K.; Wang, X.; Brown, L.J.; Chávez, A.S.O.; Reif, K.E.; Smith, A.A.; Scott, A.J.; McClure, E.E.; Boradia, V.M.; Hammond, H.L. Infection-derived lipids elicit an immune deficiency circuit in arthropods. Nat. Commun. 2017, 8, 14401. [Google Scholar] [CrossRef] [PubMed]
- Buchon, N.; Broderick, N.A.; Lemaitre, B. Gut homeostasis in a microbial world: Insights from Drosophila melanogaster. Nat. Rev. Microbiol. 2013, 11, 615–626. [Google Scholar] [CrossRef] [PubMed]
- Ha, E.-M.; Lee, K.-A.; Seo, Y.Y.; Kim, S.-H.; Lim, J.-H.; Oh, B.-H.; Kim, J.; Lee, W.-J. Coordination of multiple dual oxidase–regulatory pathways in responses to commensal and infectious microbes in drosophila gut. Nat. Immunol. 2009, 10, 949–957. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Koči, J.; Smith, A.A.; Zhuang, X.; Sharma, K.; Dutta, S.; Rana, V.S.; Kitsou, C.; Yas, O.B.; Mongodin, E.F. A novel tick protein supports integrity of gut peritrophic matrix impacting existence of gut microbiome and Lyme disease pathogens. Cell. Microbiol. 2021, 23, e13275. [Google Scholar] [CrossRef] [PubMed]
- Kitsou, C.; Foor, S.D.; Dutta, S.; Bista, S.; Pal, U. Tick gut barriers impacting tick-microbe interactions and pathogen persistence. Mol. Microbiol. 2021, 116, 1241–1248. [Google Scholar] [CrossRef]
- Hegedus, D.D.; Toprak, U.; Erlandson, M. Peritrophic matrix formation. J. Insect Physiol. 2019, 117, 103898. [Google Scholar] [CrossRef] [PubMed]
- Dieppois, G.; Opota, O.; Lalucat, J.; Lemaitre, B. Pseudomonas entomophila: A versatile bacterium with entomopathogenic properties. In Pseudomonas: Volume 7: New Aspects of Pseudomonas Biology; Springer: Berlin/Heidelberg, Germany, 2014; pp. 25–49. [Google Scholar]
- Ruiu, L.; Marche, M.G.; Mura, M.E.; Tarasco, E. Involvement of a novel Pseudomonas protegens strain associated with entomopathogenic nematode infective juveniles in insect pathogenesis. Pest Manag. Sci. 2022, 78, 5437–5443. [Google Scholar] [CrossRef]
- Bravo, A.; Likitvivatanavong, S.; Gill, S.S.; Soberón, M. Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 2011, 7, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Ruiu, L.; Satta, A.; Floris, I. Emerging entomopathogenic bacteria for insect pest management. Bull. Insectol. 2013, 66, 181–186. [Google Scholar]
- Fernández-Ruvalcaba, M.; Peña-Chora, G.; Romo-Martínez, A.; Hernández-Velázquez, V.; Parra, A.B.D.L.; Rosa, D.P.D.L. Evaluation of Bacillus thuringiensis pathogenicity for a strain of the tick, Rhipicephalus microplus, resistant to chemical pesticides. J. Insect Sci. 2010, 10, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Hassanain, M.A.; Garhy, M.F.E.; Abdel-Ghaffar, F.A.; El-Sharaby, A.; Megeed, K.N.A. Biological control studies of soft and hard ticks in Egypt. Parasitol. Res. 1997, 83, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Noor, P.S.; Ahmed, M.; Ansari, A.S.; Gadahi, J.A.; Memon, S.B.; Tariq, M.; Laghari, Z.A.; Soomro, F.; Bhutto, B.; Mari, N.U.; et al. Molecular Identification of Hyalomma Ticks and Application of Bacillus thuringiensis Toxins as an Effective Biological Acaricide. J. Parasitol. Res. 2024, 2024, 9952738. [Google Scholar] [CrossRef]
- Szczepańska, A.; Kiewra, D.; Guz-Regner, K. Sensitivity of Ixodes ricinus (L.; 1758) and Dermacentor reticulatus (Fabr., 1794) ticks to Bacillus thuringiensis isolates: Preliminary study. Parasitol. Res. 2018, 117, 3897–3902. [Google Scholar] [CrossRef] [PubMed]
- Zhioua, E.; Heyer, K.; Browning, M.; Ginsberg, H.S.; LeBrun, R.A. Pathogenicity of Bacillus thuringiensis Variety kurstaki to Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol. 1999, 36, 900–902. [Google Scholar] [CrossRef] [PubMed]
- Caperucci, D.; Bechara, G.H.; Mathias, M.I.C. Ultrastructure features of the midgut of the female adult Amblyomma cajennense ticks Fabricius, 1787 (Acari: Ixodidae) in several feeding stages and subjected to three infestations. Micron 2010, 41, 710–721. [Google Scholar] [CrossRef]
- Grigor’eva, L. Morphofunctional changes in the midgut of tick nymphs of the genus Ixodes (Acarina: Ixodidae) during and after feeding. Parazitologiia 2004, 38, 219–224. [Google Scholar] [PubMed]
- Lu, S.; Martins, L.A.; Kotál, J.; Ribeiro, J.M.; Tirloni, L. A longitudinal transcriptomic analysis from unfed to post-engorgement midguts of adult female Ixodes scapularis. Sci. Rep. 2023, 13, 11360. [Google Scholar] [CrossRef] [PubMed]
- Whalon, M.E.; Wingerd, B.A. Bt: Mode of action and use. Arch. Insect Biochem. 2003, 54, 200–211. [Google Scholar] [CrossRef]
- Zhang, X.; Candas, M.; Griko, N.; Rose-Young, L.; Bulla, L. Cytotoxicity of Bacillus thuringiensis Cry1Ab toxin depends on specific binding of the toxin to the cadherin receptor BT-R1 expressed in insect cells. Cell Death Differ. 2005, 12, 1407–1416. [Google Scholar] [CrossRef] [PubMed]
- Castro, B.M.d.C.e.; Martinez, L.C.; Barbosa, S.G.; Serrão, J.E.; Wilcken, C.F.; Soares, M.A.; da Silva, A.A.; de Carvalho, A.G.; Zanuncio, J.C. Toxicity and cytopathology mediated by Bacillus thuringiensis in the midgut of Anticarsia gemmatalis (Lepidoptera: Noctuidae). Sci. Rep. 2019, 9, 6667. [Google Scholar] [CrossRef] [PubMed]
- Daquila, B.V.; Scudeler, E.L.; Dossi, F.C.A.; Moreira, D.R.; Pamphile, J.A.; Conte, H. Action of Bacillus thuringiensis (Bacillales: Bacillaceae) in the midgut of the sugarcane borer Diatraea saccharalis (Fabricius, 1794) (Lepidoptera: Crambidae). Ecotoxicol. Environ. Saf. 2019, 184, 109642. [Google Scholar] [CrossRef] [PubMed]
- Beard, C.B.; Mason, P.W.; Aksoy, S.; Tesh, R.B.; Richards, F.F. Transformation of an insect symbiont and expression of a foreign gene in the Chagas’ disease vector Rhodnius prolixus. Am. J. Trop. Med. Hyg. 1992, 46, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Beard, C.B.; O’Neill, S.L.; Tesh, R.B.; Richards, F.F.; Aksoy, S. Modification of arthropod vector competence via symbiotic bacteria. Parasitol. Today 1993, 9, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Evans, B.R.; Kotsakiozi, P.; Costa-da-Silva, A.L.; Ioshino, R.S.; Garziera, L.; Pedrosa, M.C.; Malavasi, A.; Virginio, J.F.; Capurro, M.L.; Powell, J.R. Transgenic Aedes aegypti Mosquitoes Transfer Genes into a Natural Population. Sci. Rep. 2019, 9, 13047. [Google Scholar] [CrossRef] [PubMed]
- Wilke, A.B.; Marrelli, M.T. Genetic control of mosquitoes: Population suppression strategies. Rev. Inst. Med. Trop. Sao Paulo 2012, 54, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.L.; O’Brochta, D.A.; Atkinson, P.W.; Levesque, C.S. Stable, Germ-Line Transformation of Culex quinquefasciatus (Diptera: Culicidae). J. Med. Entomol. 2001, 38, 701–710. [Google Scholar] [CrossRef]
- Yoshida, S.; Ioka, D.; Matsuoka, H.; Endo, H.; Ishii, A. Bacteria expressing single-chain immunotoxin inhibit malaria parasite development in mosquitoes. Mol. Biochem. Parasitol. 2001, 113, 89–96. [Google Scholar] [CrossRef]
- Wilke, A.B.B.; Marrelli, M.T. Paratransgenesis: A promising new strategy for mosquito vector control. Parasit. Vectors 2015, 8, 342. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Pham, M.N.; Reyes, J.B.; Chana, R.; Yim, W.C.; Heu, C.C.; Kim, D.; Chaverra-Rodriguez, D.; Rasgon, J.L.; Harrell, R.A., 2nd; et al. Cas9-mediated gene editing in the black-legged tick, Ixodes scapularis, by embryo injection and ReMOT Control. iScience 2022, 25, 103781. [Google Scholar] [CrossRef] [PubMed]
- Aksoy, S.; Weiss, B.; Attardo, G. Paratransgenesis Applied for Control of Tsetse Transmitted Sleeping Sickness. In Transgenesis and the Management of Vector-Borne Disease; Aksoy, S., Ed.; Springer: New York, NY, USA, 2008; pp. 35–48. [Google Scholar]
- De Vooght, L.; Caljon, G.; Stijlemans, B.; De Baetselier, P.; Coosemans, M.; Van Den Abbeele, J. Expression and extracellular release of a functional anti-trypanosome Nanobody® in Sodalis glossinidius, a bacterial symbiont of the tsetse fly. Microb. Cell Fact. 2012, 11, 23. [Google Scholar] [CrossRef] [PubMed]
- Weiss, B.L.; Mouchotte, R.; Rio, R.V.M.; Wu, Y.-n.; Wu, Z.; Heddi, A.; Aksoy, S. Interspecific Transfer of Bacterial Endosymbionts between Tsetse Fly Species: Infection Establishment and Effect on Host Fitness. Appl. Environ. Microbiol. 2006, 72, 7013–7021. [Google Scholar] [CrossRef]
Tick Species | Bacterial Taxa (Genus, Genus and Species or Family) | Tick Stage/Feeding Status/Tissue | Method | Ref. |
---|---|---|---|---|
Ixodes scapularis | Enterobacteriaceae, Mycobacterium, Sphingomonas, Pseudomonas | Female and male/engorged and unfed/individual whole body Larva/unfed/individual whole body | Culture independent/16S rDNA Illumina MiSeq V3–V4 regions | [40] |
Ixodes scapularis | Pseudomonas, Brevibacterium, Bradyrhizobium, Phenylobacterium, Sphingomonas, Acinetobacter | Male/unfed/individual, whole body | Culture independent/16S rDNA Illumina MiSeq V4 region | [39] |
Ixodes scapularis | * Bacillus thuringiensis, Bacillus spp., Pseudomonas diminuta, Corynebacterium, Pasteurella | Female and male/partially-fed/individual whole body | Culture dependent | [53] |
Ixodes ricinus | * Bacillus, Mycobacterium, Staphylococcus epidermidis, Micrococcus luteus, Rhodococcus, Pseudomonas, Enterobacter | Female/questing/individual midgut | Culture dependent and culture independent/16S rDNA Illumina MiSeq V3–V4 regions | [57] |
Amblyomma americanum | Bacillus thuringiensis, Pseudomonas, Micrococcus luetus, Staphylococcus epidermidis, Microbacterium, brevibacterium, Brevibacillus | Female/questing/individual midgut | Culture dependent and culture independent/16S rDNA Illumina MiSeq V3–V4 regions | [25] |
Sphingomonas, Pseudomonas | Female and male/engorged and unfed/individual whole body Larva/unfed/individual whole body | Culture independent/16S rDNA Illumina MiSeq V3–V4 regions | [40] | |
** Enterobacteriaceae, Bacillales, Pseudomonas, Bacillus | Male and female/questing/whole body-pooled Nymph/unfed/pool | Culture independent/16S rDNA 454 V3–V5 | [58] | |
† Flavobacterium, Methylobacterium, Cloacibacterium | Adult female and male/questing/individual whole body | Culture independent/16S rDNA Illumina MiSeq V3–V4 regions | [59] | |
Rhizobiales, Enterobacter, Klebsiella, Pantoea, Pseudomonadales, Flavobacteriales | Female/engorged/individual whole body and Larvae/unfed/pooled sample | Culture independent/16S rDNA Eubacterial primers | [60] |
Tick Species | Stage/Sex | Bt Strain | Concentration (CFU/mL) | Exposure Time/Method | Length of Bioassay | n (♂,♀) | Mortality (%) | Ref. |
---|---|---|---|---|---|---|---|---|
Amblyomma americanum | Unfed male and female ** | kurstaki | 1.5 × 107 | 60 min daily for 3 days (♂), 60 min daily for 7 days (♀)/voluntary feeding | 15 | 18 (8,10) | 61.2 | [29] |
israelensis | 1.5 × 107 | 18 (8,10) | 44.5 | |||||
morrisoni | 1.0 × 107 | 18 (8,10) | 38.9 | |||||
Unfed nymphs | kurstaki | 1.8 × 107 | 60 min daily for 7 days/voluntary feeding | 7 | 10 | 30 | ||
Amblyomma americanum | Unfed female | kurstaki | 1.6 × 107 | 60 min daily (3 days)/voluntary feeding | 8 | 16 | 60.5 | This study |
israelensis | 1.6 × 107 | 60 min daily (3 days)/voluntary feeding | 8 | 16 | 20 | |||
Ixodes scapularis | Engorged larvae | kurstaki | 1 × 108 | 30 s/immersion | 15 | 96 | [99] | |
Ixodes ricinus | Unfed/female | Bt QpB11 * | 2.25 × 109 | 1 time (length not specified)/immersion | 15 | 130 | 30 | [98] |
Bt KpC1 * | 2.33 × 109 | 20 | ||||||
Unfed/male | Bt QpB11 * | 2.25 × 109 | 15 | 130 | 80 | |||
2.25 × 106 | 30 | |||||||
Bt KpC1 * | 2.33 × 109 | 80 | ||||||
2.33 × 106 | 40 | |||||||
Dermacentor reticulatus | Unfed/female | Bt PO14 * | 2.88 × 108 | 15 | 130 | 50 | ||
Bt OpQ3 * | 1.48 × 107 | 10 | ||||||
4.17 × 108 | 40 | |||||||
Unfed/male | Bt PO13 * | 2.88 × 108 | 15 | 130 | 80 | |||
4.17 × 108 | 70 | |||||||
Studies on tick mortality induced by Bt toxins or Bt-extracted proteins | ||||||||
Tick species | Stage/sex | Bt strain | Concentration (mg/mL) | Days of exposure | Length of bioassay | n (♀) | Mortality (%) | Ref. |
Rhipicephalus microplus | Engorged/females | Bt GP138 | 1.25 | 60 s/immersion | 20 | 95.8 ± 2.42 | [95] | |
Bt GP140 | 85.41 ± 8.6 | |||||||
Bt GP139 | 79.15 ± 12.5 | |||||||
Bt GP123 | 91.6 ± 0.00 | |||||||
Hyalomma dromedarii | Engorged/males and females ** | kurstaki * | 10,000 | 1 time exposure (length not specified)/spraying | 5 | 50 (25,25) | 90.0 | [96] |
5000 | 50 (25,25) | 80.0 | ||||||
Israelensis * | 10,000 | 50 (25,25) | 80.0 | |||||
5000 | 50 (25,25) | 70.0 | ||||||
thuringiensis * | 10,000 | 50 (25,25) | 70.0 | |||||
5000 | 50 (25,25) | 63.3 | ||||||
Unfed/males and females ** | kurstaki * | 10,000 | 50 (25,25) | 83.3 | ||||
5000 | 50 (25,25) | 63.3 | ||||||
israelensis * | 10,000 | 50 (25,25) | 76.7 | |||||
5000 | 50 (25,25) | 66.6 | ||||||
thuringiensis * | 10,000 | 50 (25,25) | 70.0 | |||||
5000 | 50 (25,25) | 63.3 | ||||||
2500 | 50 (25,25) | 53.3 | ||||||
1250 | 50 (25,25) | 33.3 | ||||||
Hyalomma spp. | Adult/not specified | Btcps | 3000 | 5 min/immersion | 15 days | Not specified | 15.0 | [97] |
2500 | 89.0 | |||||||
2000 | 87.0 | |||||||
1500 | 75.0 | |||||||
BtSCM | 3000 | 15 days | 68.0 | |||||
2500 | 67.0 | |||||||
2000 | 51.0 | |||||||
1500 | 54.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maldonado-Ruiz, P. The Tick Microbiome: The “Other Bacterial Players” in Tick Biocontrol. Microorganisms 2024, 12, 2451. https://doi.org/10.3390/microorganisms12122451
Maldonado-Ruiz P. The Tick Microbiome: The “Other Bacterial Players” in Tick Biocontrol. Microorganisms. 2024; 12(12):2451. https://doi.org/10.3390/microorganisms12122451
Chicago/Turabian StyleMaldonado-Ruiz, Paulina. 2024. "The Tick Microbiome: The “Other Bacterial Players” in Tick Biocontrol" Microorganisms 12, no. 12: 2451. https://doi.org/10.3390/microorganisms12122451
APA StyleMaldonado-Ruiz, P. (2024). The Tick Microbiome: The “Other Bacterial Players” in Tick Biocontrol. Microorganisms, 12(12), 2451. https://doi.org/10.3390/microorganisms12122451