An Easy-to-Use Tool to Predict SARS-CoV-2 Risk of Infection in Closed Settings: Validation with the Use of an Individual-Based Monte Carlo Simulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mathematical Model
- and are the outward and inward mask filtration efficiency, respectively;
- I is the number of infectious individuals, r is the quanta emission rate, p is the pulmonary ventilation rate, V is the room volume, and t is the exposure time;
- are decay constants accounting for removing mechanisms; in particular, we considered ventilation, relative humidity, solar illumination, and droplet deposition.
2.2. Algorithm of the Monte Carlo Simulation
2.2.1. Initial Conditions
- Number of patients and healthcare workers. Let represent the number of patients hospitalized in the ward and the number of infected workers. Patients are distributed across rooms.
- Room assignment. Each patient (j = 1,…) is randomly assigned to room , chosen from the list of occupied rooms, with the corresponding volume .
- Controlled environment. To model real hospital conditions, ventilation, relative humidity, and illumination are assumed to be controlled uniformly across the ward.
2.2.2. Choice of Patient Zero
2.2.3. Computation of Infection Probability
2.2.4. Time Evolution of the Outbreak
2.2.5. Iterations of the Simulation Runs
2.3. Distribution of the Latency Periods
2.4. Distribution of Infected Workers
2.5. Effect of Containment Strategies
3. Results
3.1. The Simulation Scenario for the COVID-19 Clusters in the University Hospital of Trieste
3.2. Distribution of Latency Periods
3.3. Distribution of Infected Individuals
3.4. Effect of Ventilation and Mask Wearing
3.5. Evaluation of the Statistical Uncertainty on the Median Values
3.6. Sensitivity Analysis
- Time difference between the start of the infectiousness window and onset of symptoms.
4. Discussion
4.1. Dependence of the Results on Initial Conditions
4.2. Role of Environmental Variables in the Infection Dynamics
4.3. Role of Mask-Wearing
4.4. Conclusions and Future Work
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dbouk, T.; Drikakis, D. On respiratory droplets and face masks. Phys. Fluids 2020, 32, 063303. [Google Scholar] [CrossRef] [PubMed]
- Zhdanov, V.P.; Kasemo, B. Virions and respiratory droplets in air: Diffusion, drift, and contact with the epithelium. Biosystems 2020, 198, 104241. [Google Scholar] [CrossRef] [PubMed]
- Morawska, L.; Milton, D. It Is Time to Address Airborne Transmission of Coronavirus Disease 2019 (COVID-19). Clin. Infect. Dis. 2020, 71, 2311–2313. [Google Scholar] [CrossRef]
- Noorimotlagh, Z.; Jaafarzadeh, N.; Martínez, S.S.; Mirzaee, S.A. A systematic review of possible airborne transmission of the COVID-19 virus (SARS-CoV-2) in the indoor air environment. Environ. Res. 2021, 193, 110612. [Google Scholar] [CrossRef]
- Mehraeen, E.; Salehi, M.A.; Behnezhad, F.; Moghaddam, H.R.; SeyedAlinaghi, S. Transmission Modes of COVID-19: A Systematic Review. Infect. Disord. Drug Targets 2021, 21, e170721187995. [Google Scholar] [CrossRef]
- Setti, L.; Passarini, F.; De Gennaro, G.; Barbieri, P.; Perrone, M.G.; Borelli, M.; Palmisani, J.; Di Gilio, A.; Piscitelli, P.; Miani, A. Airborne Transmission Route of COVID-19: Why 2 Meters/6 Feet of Inter-Personal Distance Could Not Be Enough. Int. J. Environ. Res. Public Health 2020, 17, 2932. [Google Scholar] [CrossRef]
- Nissen, K.; Krambrich, J.; Akaberi, D.; Hoffman, T.; Ling, J. Long-distance airborne dispersal of SARS-CoV-2 in COVID-19 wards. Sci. Rep. 2020, 10, 19589. [Google Scholar] [CrossRef] [PubMed]
- Senatore, V.; Zarra, T.; Buonerba, A.; Choo, K.H.; Hasan, S.W.; Korshin, G.; Li, C.W.; Ksibi, M.; Belgiorno, V.; Naddeo, V. Indoor versus outdoor transmission of SARS-COV-2: Environmental factors in virus spread and underestimated sources of risk. Euro-Mediterr. J. Environ. Integr. 2021, 6, 30. [Google Scholar] [CrossRef]
- Kermack, W.; McKendrick, A. A Contribution to the Mathematical Theory of Epidemics. Proc. R. Soc. London. Ser. A Contain. Pap. A Math. Phys. Character 1927, 115, 700–721. [Google Scholar] [CrossRef]
- Caetano, C.; Morgado, M.L.; Patrício, P.; Pereira, J.F.; Nunes, B. Mathematical Modelling of the Impact of Non-Pharmacological Strategies to Control the COVID-19 Epidemic in Portugal. Mathematics 2021, 9, 1084. [Google Scholar] [CrossRef]
- Giordano, G.; Blanchini, F.; Bruno, R.; Colaneri, P.; Di Filippo, A.; Di Matteo, A.; Colaneri, M. Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nat. Med. 2020, 26, 855–860. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Magal, P.; Seydi, O.; Webb, G. A COVID-19 epidemic model with latency period. Infect. Dis. Model. 2020, 5, 323–337. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Tang, Y. Bayesian Framework for Multi-Wave COVID-19 Epidemic Analysis Using Empirical Vaccination Data. Mathematics 2021, 10, 21. [Google Scholar] [CrossRef]
- Rowe, B.; Canosa, A.; Drouffe, J.; Mitchell, J. Simple quantitative assessment of the outdoor versus indoor airborne transmission of viruses and COVID-19. Environ. Res. 2021, 198, 111189. [Google Scholar] [CrossRef]
- Riley, E.C.; Murphy, G.; Riley, R.L. Airborne Spread of Measles in a Suburban Elementary School. Am. J. Epidemiol. 1978, 107, 421–432. [Google Scholar] [CrossRef]
- Foster, A.; Kinzel, M. Estimating COVID-19 exposure in a classroom setting: A comparison between mathematical and numerical models. Phys. Fluids 2021, 33, 021904. [Google Scholar] [CrossRef]
- Santoro, B. COVID-19-Evaluation-Tool. 2024. Available online: https://github.com/benedettasantoro22/covid-19-evaluation-tool (accessed on 15 November 2024).
- Santoro, B.; Larese Filon, F.; Milotti, E. A User-Friendly Tool to compute Infection Probability of SARS-CoV-2 Indoor: The User Guide and its Application in Medical Practice. J. Mech. Med. Biol. 2023, 23, 2340018. [Google Scholar] [CrossRef]
- Harmon, M.; Lau, J. The Facility Infection Risk Estimator™: A web application tool for comparing indoor risk mitigation strategies by estimating airborne transmission risk. Indoor Built Environ. 2022, 31, 1339–1362. [Google Scholar] [CrossRef]
- Hallett, S.; Toro, F.; Ashurst, J.V. Physiology, Tidal Volume; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Schuit, M.; Ratnesar-Shumate, S.; Yolitz, J.; Williams, G.; Weaver, W.; Green, B.; Miller, D.; Krause, M.; Beck, K.; Wood, S.; et al. Airborne SARS-CoV-2 Is Rapidly Inactivated by Simulated Sunlight. J. Infect. Dis. 2020, 222, 564–571. [Google Scholar] [CrossRef]
- Buonanno, G.; Morawska, L.; Stabile, L. Quantitative assessment of the risk of airborne transmission of SARS-CoV-2 infection: Prospective and retrospective applications. Environ. Int. 2020, 145, 106112. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, X.; Qiu, Y.; Gao, F.; Xin, H.; Li, D.; Qin, Y.; Li, Z. Latent and incubation periods of Delta, BA.1, and BA.2 variant cases and associated factors: A cross-sectional study in China. BMC Infect. Dis. 2024, 24, 294. [Google Scholar] [CrossRef] [PubMed]
- Koh, X.Q.; Sng, A.; Chee, J.Y.; Sadovoy, A.; Ping, L.; Dan, D. Outward and inward protection efficiencies of different mask designs for different respiratory activities. J. Aerosol Sci. 2022, 160, 105905. [Google Scholar] [CrossRef]
- Tsvetkova, O.; Ouarda, T. A review of sensitivity analysis practices in wind resource assessment. Energy Convers. Manag. 2021, 238, 114112. [Google Scholar] [CrossRef]
- De Crane D’Heysselaer, S.; Parisi, G.; Lisson, M.; Bruyère, O.; Donneau, A.F.; Fontaine, S.; Gillet, L.; Bureau, F.; Darcis, G.; Thiry, E.; et al. Systematic Review of the Key Factors Influencing the Indoor Airborne Spread of SARS-CoV-2. Pathogens 2023, 12, 382. [Google Scholar] [CrossRef]
- Cotman, Z.J.; Bowden, M.J.; Richter, B.P.; Phelps, J.H.; Dibble, C.J. Factors affecting aerosol SARS-CoV-2 transmission via HVAC systems; a modeling study. PLoS Comput. Biol. 2021, 17, e1009474. [Google Scholar] [CrossRef]
- Buonanno, G.; Ricolfi, L.; Morawska, L.; Stabile, L. Increasing ventilation reduces SARS-CoV-2 airborne transmission in schools: A retrospective cohort study in Italy’s Marche region. Front. Public Health 2022, 10, 1087087. [Google Scholar] [CrossRef] [PubMed]
- Augenbraun, B.L.; Lasner, Z.D.; Mitra, D.; Prabhu, S.; Raval, S.; Sawaoka, H.; Doyle, J.M. Assessment and mitigation of aerosol airborne SARS-CoV-2 transmission in laboratory and office environments. J. Occup. Environ. Hyg. 2020, 17, 447–456. [Google Scholar] [CrossRef]
- Lelieveld, J.; Helleis, F.; Borrmann, S.; Cheng, Y.; Drewnick, F.; Haug, G.; Klimach, T.; Sciare, J.; Su, H.; Pöschl, U. Model Calculations of Aerosol Transmission and Infection Risk of COVID-19 in Indoor Environments. Int. J. Environ. Res. Public Health 2020, 17, 8114. [Google Scholar] [CrossRef]
- Zemouri, C.; Awad, S.; Volgenant, C.; Crielaard, W.; Laheij, A.; De Soet, J. Modeling of the Transmission of Coronaviruses, Measles Virus, Influenza Virus, Mycobacterium Tuberc. Legionella Pneumophila Dental Clinics. J. Dent. Res. 2020, 99, 1192–1198. [Google Scholar] [CrossRef]
- Ahadi, M.; Shams, A.H.; Yadollahi, M. Effect of COVID-19 pneumonia infection control protocols on nosocomial infection incidence in trauma patients. Chin. J. Traumatol. 2023, 26, 284–289. [Google Scholar] [CrossRef]
- Guo, Y.; Qian, H.; Sun, Z.; Cao, J.; Liu, F.; Luo, X.; Ling, R.; Weschler, L.B.; Mo, J.; Zhang, Y. Assessing and controlling infection risk with Wells-Riley model and spatial flow impact factor (SFIF). Sustain. Cities Soc. 2021, 67, 102719. [Google Scholar] [CrossRef] [PubMed]
- Deol, A.K.; Scarponi, D.; Beckwith, P.; Yates, T.A.; Karat, A.S.; Yan, A.W.C.; Baisley, K.S.; Grant, A.D.; White, R.G.; McCreesh, N. Estimating ventilation rates in rooms with varying occupancy levels: Relevance for reducing transmission risk of airborne pathogens. PLoS ONE 2021, 16, e0253096. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.; Sharpe, P.; Iddon, C.; Hathway, E.A.; Noakes, C.J.; Fitzgerald, S. Modelling uncertainty in the relative risk of exposure to the SARS-CoV-2 virus by airborne aerosol transmission in well mixed indoor air. Build. Environ. 2021, 191, 107617. [Google Scholar] [CrossRef]
- Vuorinen, V.; Aarnio, M.; Alava, M.; Alopaeus, V.; Atanasova, N.; Auvinen, M.; Balasubramanian, N.; Bordbar, H.; Erästö, P.; Grande, R.; et al. Modelling aerosol transport and virus exposure with numerical simulations in relation to SARS-CoV-2 transmission by inhalation indoors. Saf. Sci. 2020, 130, 104866. [Google Scholar] [CrossRef] [PubMed]
- Pascarella, G.; Rossi, M.; Montella, E.; Capasso, A.; De Feo, G.; Botti, G.; Nardone, A.; Montuori, P.; Triassi, M.; D’Auria, S.; et al. Risk Analysis in Healthcare Organizations: Methodological Framework and Critical Variables. Risk Manag. Healthc. Policy 2021, 14, 2897–2911. [Google Scholar] [CrossRef]
- Kudryashova, O.B.; Muravlev, E.V.; Antonnikova, A.A.; Titov, S.S. Propagation of viral bioaerosols indoors. PLoS ONE 2021, 16, e0244983. [Google Scholar] [CrossRef]
Volume [m3] | Beds | |
---|---|---|
Room 7 | 70.36 | 2 |
Room 9 | 69.08 | 2 |
Room 12 | 65.85 | 2 |
Room 16 | 61.29 | 2 |
Room 17a | 56.36 | 2 |
Room 18 | 60.34 | 2 |
Room 21 | 60.18 | 2 |
Room 24 | 60.18 | 2 |
Room 27 | 60.37 | 2 |
Room 29 | 60.34 | 2 |
Room 32 | 54.45 | 2 |
Room 34 | 54.49 | 2 |
Room 39 | 80.37 | 2 |
Parameter | Symbol | Value | Source |
---|---|---|---|
Outward mask efficiency | 0.0 | No mask | |
Inward mask efficiency | 0.0 | No mask | |
Quanta emission rate | r | 2856.0 quanta/h | [19] |
Pulmonary ventilation rate | p | 0.48 m3/h | [20] |
Exposure time | t | 0.30 h | Hospital staff |
Decay due to ventilation | 2.5 h−1 | Hospital staff | |
Decay due to RH | 0.158 h−1 | [19] for RH = 40% | |
Decay due to solar illumination | 7.26 h−1 | mean value from [21] | |
Decay due to droplets deposition | 0.24 h−1 | mean value from [22] |
Normal. [N] | Scale [] | Location [] | Shape [K] | |
---|---|---|---|---|
Uniform | (3.99 ± 0.01) · 104 | 9.82 ± 0.03 | 45.67 ± 0.03 | −3.29 ± 0.04 |
Gamma | (3.99 ± 0.01) · 104 | 8.76 ± 0.03 | 44.92 ± 0.03 | −2.81 ± 0.03 |
Mean | Std. dev. | Q1 | Q2 (Median) | Q3 | IQR | |
---|---|---|---|---|---|---|
Uniform | 37.64 | 6.30 | 34.20 | 38.95 | 42.81 | 8.62 |
Gamma | 37.82 | 5.76 | 34.78 | 39.98 | 42.53 | 7.75 |
Median (IQR) | |
---|---|
Room 7 | 38.41 (8.38) |
Room 9 | 38.49 (8.28) |
Room 12 | 38.77 (7.92) |
Room 16 | 39.06 (7.65) |
Room 17a | 39.47 (7.27) |
Room 18 | 39.24 (7.55) |
Room 21 | 39.12 (7.71) |
Room 24 | 39.04 (7.48) |
Room 27 | 38.96 (7.61) |
Room 29 | 39.05 (7.52) |
Room 32 | 39.52 (7.25) |
Room 34 | 39.67 (7.31) |
Room 39 | 37.52 (8.98) |
Normal. [N] | Scale [] | Location [] | Shape [K] |
---|---|---|---|
(3.99 ± 0.01) · 104 | 9.67 ± 0.04 | 41.57 ± 0.05 | −2.81 ± 0.03 |
Normal. [N] | Mean [] | Sigma [] |
---|---|---|
(5.58 ± 0.02) · 103 | 26.20 ± 0.02 | 7.14 ± 0.02 |
Uniform distribution of latency times | ||||
---|---|---|---|---|
Parameter | ||||
b | 37.71 | 37.74 | 38.54 | 2.12 |
Time diff. | 37.83 | 37.68 | 0.40 | |
Gamma distribution of latency times | ||||
Parameter | ||||
38.28 | 38.1 | 38.46 | 0.94 | |
37.86 | 38.43 | 1.49 | ||
Time diff. | 38.23 | 38.06 | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santoro, B.; Larese Filon, F.; Milotti, E. An Easy-to-Use Tool to Predict SARS-CoV-2 Risk of Infection in Closed Settings: Validation with the Use of an Individual-Based Monte Carlo Simulation. Microorganisms 2024, 12, 2401. https://doi.org/10.3390/microorganisms12122401
Santoro B, Larese Filon F, Milotti E. An Easy-to-Use Tool to Predict SARS-CoV-2 Risk of Infection in Closed Settings: Validation with the Use of an Individual-Based Monte Carlo Simulation. Microorganisms. 2024; 12(12):2401. https://doi.org/10.3390/microorganisms12122401
Chicago/Turabian StyleSantoro, Benedetta, Francesca Larese Filon, and Edoardo Milotti. 2024. "An Easy-to-Use Tool to Predict SARS-CoV-2 Risk of Infection in Closed Settings: Validation with the Use of an Individual-Based Monte Carlo Simulation" Microorganisms 12, no. 12: 2401. https://doi.org/10.3390/microorganisms12122401
APA StyleSantoro, B., Larese Filon, F., & Milotti, E. (2024). An Easy-to-Use Tool to Predict SARS-CoV-2 Risk of Infection in Closed Settings: Validation with the Use of an Individual-Based Monte Carlo Simulation. Microorganisms, 12(12), 2401. https://doi.org/10.3390/microorganisms12122401