Optimizing Ultrasound Probe Disinfection for Healthcare-Associated Infection Control: A Comparative Analysis of Disinfectant Efficacy
Abstract
:1. Introduction
Review Objective
2. Methods
2.1. Study Design
2.2. Identification of the Research Question
2.3. Inclusion and Exclusion Criteria
2.4. Search Strategy
2.5. Data Extraction and Synthesis
3. Results
3.1. Literature Screening
3.2. General Characteristics of the Studies Included
3.3. Disinfectant Efficacy and Infection Prevention
3.4. Comparative Analysis of Disinfectant Efficacy
4. Discussion
4.1. Future Directions
4.2. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marín Baselga, R.; Teigell-Muñoz, F.J.; Porcel, J.M.; Ramos Lázaro, J.; García Rubio, S. Ultrasound for Body Composition Assessment: A Narrative Review. Intern. Emerg. Med. 2024, 6. [Google Scholar] [CrossRef] [PubMed]
- Chelikam, N.; Vyas, A.; Desai, R.; Khan, N.; Raol, K.; Kavarthapu, A.; Kamani, P.; Ibrahim, G.; Madireddy, S.; Pothuru, S.; et al. Past and Present of Point-of-Care Ultrasound (PoCUS): A Narrative Review. Cureus 2023, 15, e50155. [Google Scholar] [CrossRef] [PubMed]
- de Souza Hajar, K.; Quartim de Moraes Bruna, C.; Uchikawa Graziano, K. Infection Transmission Associated with Contaminated Ultrasound Probes: A Systematic Review. AORN J. 2022, 115, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Safran, T.; Gorsky, K.; Viezel-Mathieu, A.; Kanevsky, J.; Gilardino, M.S. The Role of Ultrasound Technology in Plastic Surgery. J. Plast. Reconstr. Aesthet. Surg. 2018, 71, 416–424. [Google Scholar] [CrossRef]
- Recker, F.; Gembruch, U.; Strizek, B. Clinical Ultrasound Applications in Obstetrics and Gynecology in the Year 2024. J. Clin. Med. 2024, 13, 1244. [Google Scholar] [CrossRef]
- Wanyonyi, S.Z.; Mutiso, S.K. Monitoring Fetal Growth in Settings with Limited Ultrasound Access. Best Pract. Res. Clin. Obstet. Gynaecol. 2018, 49, 29–36. [Google Scholar] [CrossRef]
- Mendelson, E.B.; Bohm-Velez, M.; Joseph, N.; Neiman, H.L. Gynecologic Imaging: Comparison of Transabdominal and Transvaginal Sonography. Radiology 1988, 166, 321–324. [Google Scholar] [CrossRef]
- Crellin, H.B.; Singh, V. Sonography Evaluation of Amniotic Fluid. 2023, 16 January. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Sekhon, S.; Rosenbloom, J.I.; Doering, M.; Conner, S.N.; Macones, G.A.; Colditz, G.A.; Tuuli, M.G.; Carter, E.B. Diagnostic Utility of Maximum Vertical Pocket versus Amniotic Fluid Index in Assessing Amniotic Fluid Volume for the Prediction of Adverse Maternal and Fetal Outcomes: A Systematic Review and Meta-Analysis. J. Matern. Fetal Neonatal Med. 2021, 34, 3730–3739. [Google Scholar] [CrossRef]
- Thijssen, J.M.; de Korte, C.L. Cardiological Ultrasound Imaging. Curr. Pharm. Des. 2014, 20, 6150–6161. [Google Scholar] [CrossRef]
- Fornell Pérez, R. Focused Assessment with Sonography for Trauma (FAST) versus Multidetector Computed Tomography in Hemodynamically Unstable Emergency Patients. Radiologia 2017, 59, 531–534. [Google Scholar] [CrossRef]
- Magon, F.; Longhitano, Y.; Savioli, G.; Piccioni, A.; Tesauro, M.; Del Duca, F.; Napoletano, G.; Volonnino, G.; Maiese, A.; La Russa, R.; et al. Point-of-Care Ultrasound (POCUS) in Adult Cardiac Arrest: Clinical Review. Diagnostics 2024, 14, 434. [Google Scholar] [CrossRef] [PubMed]
- Noble, V.E.; Brown, D.F.M. Renal Ultrasound. Emerg. Med. Clin. N. Am. 2004, 22, 641–659. [Google Scholar] [CrossRef] [PubMed]
- Moslemi, M.K.; Mahfoozi, B. Urologist-Operated Ultrasound and Its Use in Urological Outpatient Clinics. Patient Prefer. Adherence 2011, 5, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Irshad, A. Sonography Doppler Flow Imaging Instrumentation. [Updated 2023 May 1]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Tagliafico, A.S. Musculoskeletal Ultrasound. Semin. Musculoskelet. Radiol. 2020, 24, 81–82. [Google Scholar] [CrossRef]
- Golemati, S.; Cokkinos, D.D. Recent Advances in Vascular Ultrasound Imaging Technology and Their Clinical Implications. Ultrasonics 2022, 119, 106599. [Google Scholar] [CrossRef]
- Gettle, L.M.; Revzin, M.V. Innovations in Vascular Ultrasound. Radiol. Clin. N. Am. 2020, 58, 653–669. [Google Scholar] [CrossRef]
- Nyhsen, C.M.; Humphreys, H.; Koerner, R.J.; Grenier, N.; Brady, A.; Sidhu, P.; Nicolau, C.; Mostbeck, G.; D’Onofrio, M.; Gangi, A.; et al. Infection Prevention and Control in Ultrasound—Best Practice Recommendations from the European Society of Radiology Ultrasound Working Group. Insights Imaging 2017, 8, 523–535. [Google Scholar] [CrossRef]
- Muradali, D.; Gold, W.L.; Phillips, A.; Wilson, S. Can Ultrasound Probes and Coupling Gel Be a Source of Nosocomial Infection in Patients Undergoing Sonography? An In Vivo and In Vitro Study. AJR Am. J. Roentgenol. 1995, 164, 1521–1524. [Google Scholar] [CrossRef]
- Schreiber, P.W.; Sax, H.; Wolfensberger, A.; Clack, L.; Kuster, S.P.; Swissnoso. The Preventable Proportion of Healthcare-Associated Infections 2005-2016: Systematic Review and Meta-Analysis. Infect. Control Hosp. Epidemiol. 2018, 39, 1277–1295. [Google Scholar] [CrossRef]
- Miyague, A.H.; Mauad, F.M.; Martins, W.d.P.; Benedetti, A.C.; Ferreira, A.E.; Mauad-Filho, F. Ultrasound Scan as a Potential Source of Nosocomial and Cross Infection: A Literature Review. Radiol. Bras. 2015, 48, 319–323. [Google Scholar] [CrossRef]
- Merz, E. Is Transducer Hygiene sufficient when Vaginal Probes are used in the Clinical Routine? Ultraschall Med. 2016, 37, 137–139. [Google Scholar] [CrossRef] [PubMed]
- Nyhsen, C.M.; Humphreys, H.; Nicolau, C.; Mostbeck, G.; Claudon, M. Infection prevention and ultrasound probe decontamination practices in Europe: A survey of the European Society of Radiology. Insights Imaging 2016, 7, 841–847. [Google Scholar] [CrossRef] [PubMed]
- Shokoohi, H.; Armstrong, P.; Tansek, R. Emergency Department Ultrasound Probe Infection Control: Challenges and Solutions. Open Access Emerg. Med. 2015, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hamed, S.T.; Mansour, S.M. Surface transperineal ultrasound and vaginal abnormalities: Applications and strengths. Br. J. Radiol. 2017, 90, 20170326. [Google Scholar] [CrossRef]
- Burgaya, J.; Marin, J.; Royer, G.; Condamine, B.; Gachet, B.; Clermont, O.; Jaureguy, F.; Burdet, C.; Lefort, A.; de Lastours, V.; et al. The bacterial genetic determinants of Escherichia coli capacity to cause bloodstream infections in humans. PLoS Genet. 2023, 19, e1010842. [Google Scholar] [CrossRef]
- Sartoretti, T.; Sartoretti, E.; Bucher, C.; Doert, A.; Binkert, C.; Hergan, K.; Meissnitzer, M.; Froehlich, J.; Kolokythas, O.; Matoori, S.; et al. Bacterial contamination of ultrasound probes in different radiological institutions before and after specific hygiene training: Do we have a general hygienical problem? Eur. Radiol. 2017, 27, 4181–4187. [Google Scholar] [CrossRef]
- Marhofer, P.; Gerhard, F. Sterile working in ultrasonography: The use of dedicated ultrasound covers and sterile ultrasound gel. Expert Rev. Med. Devices 2015, 12, 667–673. [Google Scholar] [CrossRef]
- Basseal, J.M.; Westerway, S.C.; Hyett, J.A. Analysis of the integrity of ultrasound probe covers used for transvaginal examinations. Infect. Dis. Health 2020, 25, 77–81. [Google Scholar] [CrossRef]
- Fowler, C.; McCracken, D. US probes: Risk of cross infection and ways to reduce it—Comparison of cleaning methods. Radiology 1999, 213, 299–300. [Google Scholar] [CrossRef]
- Westerway, S.C.; Basseal, J.M.; Brockway, A.; Hyett, J.A.; Carter, D.A. Potential infection control risks associated with ultrasound equipment—A bacterial perspective. Ultrasound Med. Biol. 2017, 43, 421–426. [Google Scholar] [CrossRef]
- Heldeweg, M.L.A.; Berend, K.; Cadenau, L.; Rosingh, A.; Duits, A.J.; van Mansfeld, R.; Tuinman, P.R. Bacterial contamination of ultrasound and stethoscope surfaces in low- and high-resource settings. Am. J. Trop. Med. Hyg. 2022, 107, 463–466. [Google Scholar] [CrossRef] [PubMed]
- Marhofer, P.; Schebesta, K.; Marhofer, D. Hygieneaspekte in der ultraschallgestützten Regionalanästhesie [Hygiene aspects in ultrasound-guided regional anesthesia]. Anaesthesist 2016, 65, 492–498. [Google Scholar] [CrossRef]
- Rutala, W.A.; Weber, D.J. Best practices for disinfection of noncritical environmental surfaces and equipment in health care facilities: A bundle approach. Am. J. Infect. Control 2019, 47S, A96–A105. [Google Scholar] [CrossRef] [PubMed]
- Koibuchi, H.; Kotani, K.; Taniguchi, N. Ultrasound probes as a possible vector of bacterial transmission. Med. Ultrason. 2013, 15. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Summary of Infection Prevention Practices in Dental Settings: Basic Expectations for Safe Care; Centers for Disease Control and Prevention, U.S. Dept of Health and Human Services: Atlanta, GA, USA, 2016.
- Sukhera, J. Narrative reviews: Flexible, rigorous, and practical. J. Grad. Med. Educ. 2022, 14, 414–417. [Google Scholar] [CrossRef] [PubMed]
- Richardson, W.S.; Wilson, M.C.; Nishikawa, J.; Hayward, R.S. The well-built clinical question: A key to evidence-based decisions. ACP J. Club 1995, 123, A12–A13. [Google Scholar] [CrossRef]
- Cangelosi, G.; Mancin, S.; Pantanetti, P.; Nguyen, C.T.T.; Morales Palomares, S.; Biondini, F.; Sguanci, M.; Petrelli, F. Lifestyle Medicine Case Manager Nurses for Type Two Diabetes Patients: An Overview of a Job Description Framework—A Narrative Review. Diabetology 2024, 5, 375–388. [Google Scholar] [CrossRef]
- Cangelosi, G.; Palomares, S.M.; Pantanetti, P.; De Luca, A.; Biondini, F.; Nguyen, C.T.T.; Mancin, S.; Sguanci, M.; Petrelli, F. COVID-19, Nutrients and Lifestyle Eating Behaviors: A Narrative Review. Diseases 2024, 12, 193. [Google Scholar] [CrossRef]
- Sguanci, M.; Mancin, S.; Piredda, M.; De Marinis, M.G. Protocol for conducting a systematic review on diagnostic accuracy in clinical research. MethodsX 2024, 12, 102569. [Google Scholar] [CrossRef]
- Ryndock, E.; Robison, R.; Meyers, C. Susceptibility of HPV16 and 18 to high-level disinfectants indicated for semi-critical ultrasound probes. J. Med. Virol. 2016, 88, 1076–1080. [Google Scholar] [CrossRef]
- Vikery, K.; Gorgis, V.Z.; Burdach, J.; Patel, D. Evaluation of an automated high-level disinfection technology for ultrasound transducers. J. Infect. Public Health 2014, 7, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Ienghong, K.; Kleebbuakwan, K.; Apiratwarakul, K.; Phungoen, P.; Gaysonsiri, D.; Bhudhisawasdi, V. Comparison of cleaning methods for ultrasound probes at an emergency department in a resource-limited country. J. Med. Assoc. Thai 2020, 103, 67–71. [Google Scholar]
- Lucet, J.C.; Heard, I.; Roueli, A.; Lafourcade, A.; Manderlbrot, L.; Estellat, C.; Dommerguess, M.; Preev Study Group. Transvaginal ultrasound probes are human papillomavirus-free following low-level disinfection: Cross-sectional multicenter survey. Ultrasound Obstet. Gynecol. 2019, 54, 688–695. [Google Scholar] [CrossRef] [PubMed]
- Abramowicz, J.S.; Evans, D.H.; Fowlkes, J.B.; Marsal, K.; Haar, G.; on behalf of the WFUMB safety committee. Guidelines for cleaning transvaginal ultrasound transducers between patients. Ultrasound Med. Biol. 2017, 43, 1076–1079. [Google Scholar] [CrossRef] [PubMed]
- Basseal, J.M.; Westerway, S.C.; McAuley, T. COVID-19: Infection prevention and control guidance for all ultrasound practitioners. Australas. Soc. Ultrasound Med. 2020, 23, 90–95. [Google Scholar] [CrossRef]
- ECRI Institute. Evaluations & Guidance—Guidance: Cleaning and Disinfecting Diagnostic Ultrasound Transducers: Our Recommendations; ECRI: Plymouth Meeting, PA, USA, 2018. [Google Scholar]
- Sherman, T.; Ferguson, J.; Davis, W.; Russo, M.; Argintar, E. Does the Use of Ultrasound Affect Contamination of Musculoskeletal Injection Sites? Clin. Orthop. Relat. Res. 2015, 473, 351–357. [Google Scholar] [CrossRef]
- Casalegno, J.-S.; Le Bail Carval, K.; Eibach, D.; Valdeyron, M.-L.; Lamblin, G.; Jacquemoud, H.; Mellier, G.; Lina, B.; Gaucherand, P.; Mathevet, P.; et al. High Risk HPV Contamination of Endocavity Vaginal Ultrasound Probes: An Underestimated Route of Nosocomial Infection? PLoS ONE 2012, 7, e48137. [Google Scholar] [CrossRef]
- Meyers, C.; Milici, J.; Robison, R. The Ability of Two Chlorine Dioxide Chemistries to Inactivate Human Papillomavirus-Contaminated Endocavitary Ultrasound Probes and Nasendoscopes. J. Med. Virol. 2020, 92, 1298–1302. [Google Scholar] [CrossRef]
- Siyez, E. Transrectal Povidone-Iodine Efficiency in Reducing Infections Occurring After Transrectal Ultrasound Guided Biopsy of the Prostate. Medicine 2021, 100, 41. [Google Scholar] [CrossRef]
- M’Zali, F.; Bounizra, C.; Leroy, S.; Mekki, Y.; Quentin-Noury, C.; Kann, M. Persistence of Microbial Contamination on Transvaginal Ultrasound Probes Despite Low-Level Disinfection Procedure. PLoS ONE 2014, 9, e93368. [Google Scholar] [CrossRef]
- Meyers, C.; Milici, J.; Robison, R. UVC Radiation as an Effective Disinfectant Method to Inactivate Human Papillomaviruses. PLoS ONE 2017, 12, e0187377. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, E.J.; Thompson, J.F.; Lewis, D.R. Contamination and Decontamination of Doppler Probes. Ann. R. Coll. Surg. Engl. 2006, 88, 479–481. [Google Scholar] [CrossRef] [PubMed]
- Rutala, W.A.; Gergen, M.F.; Sickbert-Bennett, E.E. Effectiveness of a hydrogen peroxide mist (Trophon) system in inactivating healthcare pathogens on surface and endocavitary probes. Infect. Control Hosp. Epidemiol. 2016, 37, 613–614. [Google Scholar] [CrossRef] [PubMed]
- Linley, E.; Denyer, S.P.; McDonnell, G.; Simons, C.; Maillard, J.Y. Use of hydrogen peroxide as a biocide: New consideration of its mechanisms of biocidal action. J. Antimicrob. Chemother. 2012, 67, 1589–1596. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.D.S.; Guedes, M.I.F.; Langa, G.P.J.; Rösing, C.K.; Cavagni, J.; Muniz, F.W.M.G. Virucidal efficacy of chlorhexidine: A systematic review. Odontology 2022, 110, 376–392. [Google Scholar] [CrossRef]
- Zambrano-Carrillo, M.F.; Hernandez-Jerez, A.F. Occupational risk assessment of glutaraldehyde through personal air monitoring in a hospital setting. Ann. Work Expo Health 2024, 68, 97–103. [Google Scholar] [CrossRef]
- Brill, F.H.H.; Becker, B.; Todt, D.; Steinmann, E.; Steinmann, J.; Paulmann, D.; Bischoff, B.; Steinmann, J. Virucidal efficacy of glutaraldehyde for instrument disinfection. GMS Hyg. Infect. Control 2020, 15, Doc34. [Google Scholar] [CrossRef]
- Otter, J.A.; Yezli, S.; Barbut, F.; Perl, T.M. An overview of automated room disinfection systems: When to use them and how to choose them. In Decontamination in Hospitals and Healthcare; Elsevier: Amsterdam, The Netherlands, 2020; pp. 323–369. [Google Scholar] [CrossRef]
- Otter, J.A.; Yezli, S.; Perl, T.M.; Barbut, F.; French, G.L. A guide to no-touch automated room disinfection (NTD) systems. In Decontamination in Hospitals and Healthcare; Elsevier: Amsterdam, The Netherlands, 2014; pp. 413–460. [Google Scholar] [CrossRef]
- Rutala, W.A.; Donskey, C.J.; Weber, D.J. Disinfection and sterilization: New technologies. Am. J. Infect. Control 2023, 51, A13–A21. [Google Scholar] [CrossRef]
- Legner, M.; Jonkman, J.; Swift, D. Evaluating the Effects of Disinfectants on Bacterial Biofilms Using a Microfluidics Flow Cell and Time-Lapse Fluorescence Microscopy. Microorganisms 2020, 8, 1837. [Google Scholar] [CrossRef]
- Kamionka, J.; Matthes, R.; Holtfreter, B.; Pink, C.; Schluter, R.; Von Woedtke, T.; Kocher, T.; Jablonowski, L. Efficiency of cold atmospheric plasma, cleaning powders and their combination for biofilm removal on two different titanium implant surfaces. Clin. Oral Investig. 2022, 26, 3179–3187. [Google Scholar] [CrossRef]
- Sguanci, M.; Mancin, S.; Morales Palomares, S.; Cangelosi, G.; Parozzi, M.; Piredda, M.; De Marinis, M.G. The Role of Clinical Nurse Specialist and the Safety Management in Operating Theatre During the COVID-19 Pandemic: An Integrative Scoping Review. Perioper. Care Oper. Manag. 2024, 37, 100437. [Google Scholar] [CrossRef]
- Romero Starke, K.; Friedrich, S.; Schubert, M.; Kämpf, D.; Girbig, M.; Pretzsch, A.; Nienhaus, A.; Seidler, A. Are Healthcare Workers at an Increased Risk for Obstructive Respiratory Diseases Due to Cleaning and Disinfection Agents? A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 5159. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, G.; Urrestarazu, M. Green chemistry in protected horticulture: The use of peroxyacetic acid as a sustainable strategy. Int. J. Mol. Sci. 2010, 11, 1999–2009. [Google Scholar] [CrossRef] [PubMed]
- Assadian, O.; Harbarth, S.; Vos, M.; Knobloch, J.K.; Asensio, A.; Widmer, A.F. Practical recommendations for routine cleaning and disinfection procedures in healthcare institutions: A narrative review. J. Hosp. Infect. 2021, 113, 104–114. [Google Scholar] [CrossRef]
Author, Year, Country | Design | Sample | Type of Probe | Objective | Disinfectant | Method | Results |
---|---|---|---|---|---|---|---|
Westerway SC et al. [32], 2016, Australia | Clinical Trial | 171 swabs | TA and TV | Prevalence of bacterial contamination on ultrasound probes | Alcohol-based wipes, glutaraldehyde 2.4% | LLD: alcohol-based wipe; HLD: glutaraldehyde 2.4% | LLD: 3% contamination on TA, 4% on TV; HLD: No contamination on either probe. |
Vickery K et al. [44] 2013, Australia | Clinical Trial | Tested against 21 species | Intracavitary probe | Efficacy of H2O2-based disinfectant in Trophon device | Automated H2O2, glutaraldehyde | Efficacy test with M. terrae as test organism | Device met HLD and sporicidal criteria for all tested standards. |
Ienghong K et al. [45] 2020, Thailand | RCT | 104 ultrasound probes | Intracavitary probe (TV, endocavitary) | Comparison of cleaning methods for bacterial contamination | Dry wipe, liquid soap, 4% chlorhexidine, dimethyl ammonium chloride | Random assignment of methods | Chlorhexidine: 84.62% reduction in bacterial contamination; Ammonium chloride: 73.08%; Liquid soap: 30.77%; Dry wipe: 7.69%. |
Lucet JC et al. [46] 2019, France | Observational Study | 676 TVS procedures | TVS | Frequency of HPV detection on TV ultrasound probes | HLD: glutaraldehyde, H2O2, peracetic acid; LLD: quaternary ammonium and detergent | Probe disinfection during TVS procedures | HPV detected on 0.3% of ultrasound keyboards; No trace on probes or gel. |
Ryndock E et al. [43] 2016, USA | Clinical Trial | N.A | Common ultrasound probe | Comparison of OPA and H2O2 devices against HPV16 and HPV18 | OPA, H2O2 | Efficacy test with 0.55% OPA and 35% and 31.5% H2O2 | H2O2: >5-log10 reductions; OPA: <0.6-log10 reductions (ineffective). |
ECRI [49] 2018, USA | Guideline | N.A | Probe classification | Recommendations for disinfection of ultrasound probes | Wipes/sprays with quaternary ammonium, H2O2, bleach | FDA-approved products per manufacturer’s instructions | Emphasizes importance of pre-cleaning and rinsing for efficacy. |
Basseal JM et al. [48] 2020, Australia | Guideline | N.A | All types of ultrasound | Preventing infections during COVID-19 pandemic | 70% ethanol, 0.5% H2O2, 0.1% sodium hypochlorite, 0.05–0.2% benzalkonium chloride | Two-step process: cleaning with detergent; disinfecting virucidal products or sodium hypochlorite | Strict disinfection measures essential during COVID-19. |
Abramowicz JS et al. [47] 2017, USA | Guideline | N.A | TVS | Guidelines for cleaning and disinfection of TVS and TR probes | 2.4–3.2% glutaraldehyde, ClO2, H2O2, sodium hypochlorite | Glutaraldehyde replaced by ClO2 and H2O2; sodium hypochlorite not recommended | Trophon EPR: 7 min disinfection; Glutaraldehyde: 5 min; Cidex: 20 min. |
Casalegno JS et al. [51] 2012, France | Cross-Sectional Study | 217 before and 200 after ultrasound examination | TSV | Effectiveness of disinfection procedure for covered endocavity probes | Quaternary ammonium wipes | Wipes for cleaning and disinfection | LLD: 3% samples contaminated with HR-HPV before disinfection. |
Sherman T et al. [50] 2015, USA | Observational Study | 26 outpatients | Common ultrasound probe | Effect of skin disinfection and gel on contamination | 70% isopropyl alcohol | Skin disinfection before injection | No contamination detected (0%); Skin disinfection reduced contamination significantly (OR = 21.0, p = 0.001). |
Siyez E et al. [53] 2021, Türkiye | Retrospective Observational Study | 112 patients undergoing TRUS-Bx | Transrectal ultrasound | Infectious complications in men undergoing TRUS-Bx with and without povidone-iodine | Povidone-iodine, ciprofloxacin | Transrectal injection with ciprofloxacin prophylaxis | Febrile complications: 15.38% with ciprofloxacin; 2% with both. |
M’Zali F et al. [54] 2014, France | Prospective Study | 300 samples | Endovaginal probes | Antimicrobial efficacy of LLD on microorganisms | Quaternary ammonium, chlorhexidine wipes | Cleaning with tissue, disinfection with wipes | HPV DNA: 13%; C. trachomatis: 20%; Mycoplasma: 8%. |
Meyers C et al. [52] 2020, UK | In Vitro Experimental Study | N.A. | Nasendoscopes, endocavity probes | Efficacy of chlorine dioxide against HPV16 and HPV18 | Chlorine dioxide solutions | Cleaning, disinfection, rinsing with 7% glycine | >99.99% reduction in HPV16/HPV18 infectivity. |
Whitehead E et al. [56], 2006, UK | Interventional Study | 10 samples | Doppler probes | Bacterial contamination and effect of staff education | Alcohol wipes | Doppler probes cleaned with alcohol wipes | Bacterial contamination before education: 26%; after education: 4.76% (χ2 p < 0.05). |
Meyers C et al. [55] 2017, USA | In Vitro Experimental Study | N.A. | Endocavitary probes | Efficacy of high-intensity UVC radiation on HPV16 and HPV18 | UVC radiation, OPA, sodium hypochlorite | UVC disinfection for 90 s, OPA and sodium hypochlorite as controls | UVC: >4-log10 reduction in HPV16, nearly 5-log10 in HPV18. |
Rutala WA et al. [57] 2016, USA | Experimental Study | 55 ultrasound probes | Surface and endocavitary | Effectiveness of Trophon EPR H2O2 mist system | Trophon EPR with H2O2 | HLD process with misting system | >6-log10 reduction in VRE and carbapenem-resistant Klebsiella pneumoniae; >5-log10 reduction in Mycobacterium terrae and C. difficile. |
Disinfectant | Pathogens Tested | Contamination Reduction | Effectiveness Against Viruses | Effectiveness Against Bacteria | Time Point * |
---|---|---|---|---|---|
H2O2 (35%) | HPV16, HPV18, VRE, Mycobacterium terrae | >5-log10 (HPV16 and HPV18) | Excellent (4–5-log10 against HPV) | >6-log10 (VRE), >5-log10 (Mycobacterium terrae) | 6–8 min |
Chlorhexidine Gluconate (4%) | Staphylococcus, Bacillus | 84.62% reduction | Uncertain (No HPV data) | 84.62% reduction | NR |
Glutaraldehyde (2.4–3.2%) | Staphylococcus, HPV (DNA) | Significant reduction (13% HPV) | Limited (13% HPV contamination) | Effective against bacteria | 20 min |
Dimethyl Ammonium Chloride (4%) | Staphylococcus, Bacillus | 73.08% reduction | Not tested against viruses | 73.08% reduction | NR |
Sodium Hypochlorite | Various pathogens | Uncertain (probe damage risk) | Effective against viruses (probe damage) | Effective but damages probes | 10 min |
Isopropyl Alcohol (70%) | Bacteria (no viral testing) | 100% reduction (bacteria) | Not tested against viruses | Excellent against bacteria | 1–2 min |
Chlorine Dioxide | HPV16, HPV18 | >99.99% viral infectivity reduction | Excellent (>99.99% reduction) | Effective against bacteria | 3–5 min |
Quaternary Ammonium Compounds | Staphylococcus, HPV (high risk) | Bacterial reduction (3% HPV) | Limited (3% HPV contamination) | Effective against bacteria | 10 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrara, G.; Cangelosi, G.; Morales Palomares, S.; Mancin, S.; Melina, M.; Diamanti, O.; Sguanci, M.; Amendola, A.; Petrelli, F. Optimizing Ultrasound Probe Disinfection for Healthcare-Associated Infection Control: A Comparative Analysis of Disinfectant Efficacy. Microorganisms 2024, 12, 2394. https://doi.org/10.3390/microorganisms12122394
Ferrara G, Cangelosi G, Morales Palomares S, Mancin S, Melina M, Diamanti O, Sguanci M, Amendola A, Petrelli F. Optimizing Ultrasound Probe Disinfection for Healthcare-Associated Infection Control: A Comparative Analysis of Disinfectant Efficacy. Microorganisms. 2024; 12(12):2394. https://doi.org/10.3390/microorganisms12122394
Chicago/Turabian StyleFerrara, Gaetano, Giovanni Cangelosi, Sara Morales Palomares, Stefano Mancin, Marianna Melina, Orejeta Diamanti, Marco Sguanci, Antonella Amendola, and Fabio Petrelli. 2024. "Optimizing Ultrasound Probe Disinfection for Healthcare-Associated Infection Control: A Comparative Analysis of Disinfectant Efficacy" Microorganisms 12, no. 12: 2394. https://doi.org/10.3390/microorganisms12122394
APA StyleFerrara, G., Cangelosi, G., Morales Palomares, S., Mancin, S., Melina, M., Diamanti, O., Sguanci, M., Amendola, A., & Petrelli, F. (2024). Optimizing Ultrasound Probe Disinfection for Healthcare-Associated Infection Control: A Comparative Analysis of Disinfectant Efficacy. Microorganisms, 12(12), 2394. https://doi.org/10.3390/microorganisms12122394