Development of Effective Medical Countermeasures Against the Main Biowarfare Agents: The Importance of Antibodies
Abstract
:1. Introduction
1.1. Definitions
1.2. History of Biological Agents as Bioweapons
Year | Event | Reference |
---|---|---|
1350 BCE | Hittites leave animals contaminated with tularemia in plundered villages. | [8] |
4th Century BCE | According to Herodotus, Scythian archers infect their arrows by dipping them into decomposing corpses. | [8] |
1155 | Emperor Barbarossa poisons water wells with human bodies. | [8] |
1346 | Mongols catapult bodies of plague victims over the fortifications of Kaffa (Feodosia, Crimean Peninsula). | [8] |
1422 | Prince Zygmunt Korybutovic hurls corpses of plague-stricken soldiers, dead cows and excrement during the siege of Karistejn (the modern-day Czech Republic). | [8] |
1495 | The Spanish mix wine with the blood of leprosy patients to sell to their French foe (Naples, Italy). | [8] |
1650 | Polish General Kazimierz Siemienowicz fires hollow artillery shells filled with the saliva of rabid dogs. | [8] |
1763 | British troops give smallpox-infected blankets to the Native Americans. | [8] |
1797 | Napoleon floods the plains around Mantua, Italy, to enhance the spread of malaria. | [8] |
1785 | Tunisians throw plague-infected clothing into the Christian-held city of La Calle (modern-day Algeria). | [8] |
1863 | Confederates sell clothing from yellow fever and smallpox patients to Union troops, USA. | [8] |
1942 | Japanese Unit 731 uses bioweapons against the Chinese. | [8] |
27 May 1942 | Jan Kubis, a Czech member of the Resistance uses a grenade coated with botulinum toxins to kill Nazi General Reinhard Heydrich. | [8] |
1978 | The KGB kills Georgi Markov in London with a system hidden inside an umbrella that injects spheres containing ricin. | [8] |
1984 | The Rajneesh cult contaminates salad bars with Salmonella typhimurium in Dallas (USA). | [8] |
April 1990 | The Aum Shinrikyō sect tries to spray what they think is botulinum toxin throughout Tokyo, Yokohama, Yokosuka and Narita using nebulizers placed in trucks. | [8] |
June 1993 | The Aum Shinrikyō sect tries to spread anthrax spores from trucks. | [8] |
Summer 1993 | The Aum Shinrikyō sect tries to spread anthrax spores in Tokyo from a rooftop. | [8] |
Autumn 2001 | Letters containing anthrax spores are sent to American officials (probably sent by the researcher Bruce Ivins). | [8] |
April 2013 | Three letters containing ricin are sent to the President of the USA and to American officials. | [8] |
2016 | DAESH plans to use anthrax in a mall in Nairobi. | [8] |
2018 | Terrorists arrested in Cologne (Germany) with explosive devices that contain 84.3 mg of ricin. | [9] |
2018 and 2020 | Letters containing ricin are sent to President Donald Trump. | [10,11] |
1.3. International Regulation of Research on Biological Agents
1.4. Lessons Learned from the COVID-19 and Mpox Crises
1.5. Antibodies as Ideal Medical Countermeasures
1.6. Objective of This Review
2. Anthrax
2.1. Background
2.2. Therapy
2.2.1. Antibodies
2.2.2. Antibiotherapy
2.2.3. Chemical Inhibitors
2.2.4. Vaccine
3. Ricin
3.1. Background
3.2. Therapy
3.2.1. Antibodies
3.2.2. Chemical Inhibitors
3.2.3. Vaccines
4. Botulism
4.1. Background
4.2. Therapy
4.2.1. Antibodies
4.2.2. Antibiotherapy
4.2.3. Chemical Inhibitors
4.2.4. Vaccines
5. Plague
5.1. Background
5.2. Therapy
5.2.1. Antibodies
5.2.2. Antibiotherapy
5.2.3. Chemical Inhibitors
5.2.4. Vaccine
6. Tularemia
6.1. Background
6.2. Therapy
6.2.1. Antibodies
6.2.2. Antibiotherapy
6.2.3. Chemical Inhibitors
6.2.4. Vaccines
7. Viral Hemorrhagic Fevers
7.1. Background
7.2. Therapy
7.2.1. Antibodies
7.2.2. Chemical Inhibitors
7.2.3. Vaccine
8. Smallpox
8.1. Background
8.2. Therapy
8.2.1. Antibodies
8.2.2. Chemical Inhibitors
8.2.3. Vaccines
9. Concluding Remarks and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Trevisanato, S.I. The “Hittite Plague”, an Epidemic of Tularemia and the First Record of Biological Warfare. Med. Hypotheses 2007, 69, 1371–1374. [Google Scholar] [CrossRef] [PubMed]
- Wheelis, M. Biological Warfare at the 1346 Siege of Caffa. Emerg. Infect. Dis. 2002, 8, 971–975. [Google Scholar] [CrossRef] [PubMed]
- Meselson, M.; Guillemin, J.; Hugh-Jones, M.; Langmuir, A.; Popova, I.; Shelokov, A.; Yampolskaya, O. The Sverdlovsk Anthrax Outbreak of 1979. Science 1994, 266, 1202–1208. [Google Scholar] [CrossRef] [PubMed]
- Girdwood, R.H. Experimentation on Prisoners by the Japanese during World War II. Br. Med. J. (Clin. Res. Ed.) 1985, 291, 530–531. [Google Scholar]
- Barenblatt, D. A Plague upon Humanity, 1st ed.; Harper: New York, NY, USA, 2004; ISBN 978-0060186258. [Google Scholar]
- Riedel, S. Biological Warfare and Bioterrorism: A Historical Review. Bayl. Univ. Med. Cent. Proc. 2004, 17, 400–406. [Google Scholar] [CrossRef] [PubMed]
- FBI Amerithrax or Anthrax Investigation. Available online: https://www.fbi.gov/history/famous-cases/amerithrax-or-anthrax-investigation (accessed on 5 December 2024).
- Avril, A. Therapeutic Antibodies for Biodefense. In Recombinant Antibodies for Infectious Diseases; Lim, T.S., Ed.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2017; Volume 1053, pp. 173–206. ISBN 978-3-319-72076-0. [Google Scholar]
- BBC Ricin Threat: Cologne Anti-Terror Police Search Flats. Available online: https://www.bbc.com/news/world-europe-44494010 (accessed on 25 November 2024).
- CNN; Barbarra, S.; Ryan, B.; Jim, A.; Eli, W. Suspected Ricin Detected in Mail Sent to Trump, Pentagon. Available online: https://edition.cnn.com/2018/10/02/politics/pentagon-ricin-mail/index.html (accessed on 25 November 2024).
- Justice.gov. Foreign National Sentenced to over 21 Years for Mailing Ricin to President of the United States in 2020. Available online: https://www.justice.gov/opa/pr/foreign-national-sentenced-over-21-years-mailing-ricin-president-united-states-2020 (accessed on 25 November 2024).
- Koch, L.; Lopes, A.-A.; Maiguy, A.; Guillier, S.; Guillier, L.; Tournier, J.-N.; Biot, F. Natural Outbreaks and Bioterrorism: How to Deal with the Two Sides of the Same Coin? J. Glob. Health 2020, 10, 020317. [Google Scholar] [CrossRef] [PubMed]
- United Nation Office for Disarmament Affairs Member States and Non-Member States. Website. Available online: https://www.un.org/disarmament/geneva/bwc/ (accessed on 5 December 2024).
- Committee Security Council Established Pursuant to Resolution 1540. 1540 Fact Sheet. Available online: https://www.un.org/en/sc/1540/1540-fact-sheet.shtml (accessed on 5 December 2024).
- Ruiz-Medina, B.E.; Varela-Ramirez, A.; Kirken, R.A.; Robles-Escajeda, E. The SARS-CoV-2 Origin Dilemma: Zoonotic Transfer or Laboratory Leak? Bioessays 2022, 44, 2100189. [Google Scholar] [CrossRef] [PubMed]
- Asselah, T.; Durantel, D.; Pasmant, E.; Lau, G.; Schinazi, R.F. COVID-19: Discovery, Diagnostics and Drug Development. J. Hepatol. 2021, 74, 168–184. [Google Scholar] [CrossRef] [PubMed]
- Segreto, R.; Deigin, Y. The Genetic Structure of SARS-CoV-2 Does Not Rule out a Laboratory Origin: SARS-CoV-2 Chimeric Structure and Furin Cleavage Site Might Be the Result of Genetic Manipulation. Bioessays 2021, 43, 2000240. [Google Scholar] [CrossRef] [PubMed]
- Jo, W.K.; de Oliveira-Filho, E.F.; Rasche, A.; Greenwood, A.D.; Osterrieder, K.; Drexler, J.F. Potential Zoonotic Sources of SARS-CoV-2 Infections. Transbound. Emerg. Dis. 2021, 68, 1824–1834. [Google Scholar] [CrossRef] [PubMed]
- Seyran, M.; Pizzol, D.; Adadi, P.; El-Aziz, T.M.A.; Hassan, S.S.; Soares, A.; Kandimalla, R.; Lundstrom, K.; Tambuwala, M.; Aljabali, A.A.A.; et al. Questions Concerning the Proximal Origin of SARS-CoV-2. J. Med. Virol. 2021, 93, 1204. [Google Scholar] [CrossRef] [PubMed]
- Lundstrom, K.; Seyran, M.; Pizzol, D.; Adadi, P.; Mohamed Abd El-Aziz, T.; Hassan, S.S.; Soares, A.; Kandimalla, R.; Tambuwala, M.M.; Aljabali, A.A.A.; et al. Viewpoint: Origin of SARS-CoV-2. Viruses 2020, 12, 1203. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.J.; Liu, P.; Lei, W.; Jia, Z.; He, X.; Shi, W.; Tan, Y.; Zou, S.; Wong, G.; Wang, J.; et al. Surveillance of SARS-CoV-2 at the Huanan Seafood Market. Nature 2024, 631, 402–408. [Google Scholar] [CrossRef]
- Alwine, J.C.; Casadevall, A.; Enquist, L.W.; Goodrum, F.D.; Imperiale, M.J. A Critical Analysis of the Evidence for the SARS-CoV-2 Origin Hypotheses. mBio 2023, 14, e0058323. [Google Scholar] [CrossRef] [PubMed]
- Select Subcommittee on the Coronavirus Pandemic Chairman Brad Wenstrup: After Action Review of the COVID-19 Pandemic: The Lessons Learned and a Path Forward; US House of Representatives: Washington, DC, USA, 2024.
- Sven Clement Report—Biological Threats: Technological Progress and the Spectre of Bioterrorism in the Post-COVID-19 Era. 2021. Available online: https://www.nato-pa.int/document/2021-biological-threats-technological-progress-and-spectre-bioterrorism-post-covid-19-era (accessed on 5 December 2024).
- Abbey, E.J.; Khalifa, B.A.A.; Oduwole, M.O.; Ayeh, S.K.; Nudotor, R.D.; Salia, E.L.; Lasisi, O.; Bennett, S.; Yusuf, H.E.; Agwu, A.L.; et al. The Global Health Security Index Is Not Predictive of Coronavirus Pandemic Responses among Organization for Economic Cooperation and Development Countries. PLoS ONE 2020, 15, e0239398. [Google Scholar] [CrossRef] [PubMed]
- King’s College London Global BioLabs Report. 2023. Available online: https://www.kcl.ac.uk/warstudies/assets/global-biolabs-report-2023.pdf (accessed on 5 December 2024).
- Rizk, J.G.; Lippi, G.; Henry, B.M.; Forthal, D.N.; Rizk, Y. Prevention and Treatment of Monkeypox. Drugs 2022, 82, 957–963. [Google Scholar] [CrossRef]
- Bunge, E.M.; Hoet, B.; Chen, L.; Lienert, F.; Weidenthaler, H.; Baer, L.R.; Steffen, R. The Changing Epidemiology of Human Monkeypox—A Potential Threat? A Systematic Review. PLoS Negl. Trop. Dis. 2022, 16, e0010141. [Google Scholar] [CrossRef] [PubMed]
- FDA Bispecific Antibodies: An Area of Research and Clinical Applications. Available online: https://www.fda.gov/drugs/spotlight-cder-science/bispecific-antibodies-area-research-and-clinical-applications (accessed on 5 December 2024).
- Crescioli, S.; Kaplon, H.; Chenoweth, A.; Wang, L.; Visweswaraiah, J.; Reichert, J.M. Antibodies to Watch in 2024. MAbs 2024, 16, 2297450. [Google Scholar] [CrossRef] [PubMed]
- Mullard, A. Parsing Clinical Success Rates. Nat. Rev. Drug Discov. 2016, 15, 447. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.-M.; Hwang, Y.-C.; Liu, I.-J.; Lee, C.-C.; Tsai, H.-Z.; Li, H.-J.; Wu, H.-C. Development of Therapeutic Antibodies for the Treatment of Diseases. J. Biomed. Sci. 2020, 27, 1. [Google Scholar] [CrossRef] [PubMed]
- Friebe, S.; van der Goot, F.G.; Bürgi, J. The Ins and Outs of Anthrax Toxin. Toxins 2016, 8, 69. [Google Scholar] [CrossRef] [PubMed]
- Jernigan, D.B.; Raghunathan, P.L.; Bell, B.P.; Brechner, R.; Bresnitz, E.A.; Butler, J.C.; Cetron, M.; Cohen, M.; Doyle, T.; Fischer, M.; et al. Investigation of Bioterrorism-Related Anthrax, United States, 2001: Epidemiologic Findings. Emerg. Infect. Dis. 2002, 8, 1019–1028. [Google Scholar] [CrossRef]
- Thouret, J.-M.; Rogeaux, O.; Beaudouin, E.; Levast, M.; Ramisse, V.; Biot, F.V.; Valade, E.; Thibault, F.; Gorgé, O.; Tournier, J.-N. Case Report of an Injectional Anthrax in France, 2012. Microorganisms 2020, 8, 985. [Google Scholar] [CrossRef] [PubMed]
- Abramova, F.A.; Grinberg, L.M.; Yampolskaya, O.V.; Walker, D.H. Pathology of Inhalational Anthrax in 42 Cases from the Sverdlovsk Outbreak of 1979. Proc. Natl. Acad. Sci. USA 1993, 90, 2291–2294. [Google Scholar] [CrossRef]
- Wilkening, D.A. Sverdlovsk Revisited: Modeling Human Inhalation Anthrax. Proc. Natl. Acad. Sci. USA 2006, 103, 7589–7594. [Google Scholar] [CrossRef]
- Goossens, P.L.; Tournier, J.-N. Crossing of the Epithelial Barriers by Bacillus anthracis: The Known and the Unknown. Front. Microbiol. 2015, 6, 1122. [Google Scholar] [CrossRef] [PubMed]
- Couse, Z.; Cui, X.; Li, Y.; Moayeri, M.; Leppla, S.; Eichacker, P.Q. A Review of the Efficacy of FDA-Approved B. anthracis Anti-Toxin Agents When Combined with Antibiotic or Hemodynamic Support in Infection- or Toxin-Challenged Preclinical Models. Toxins 2021, 13, 53. [Google Scholar] [CrossRef]
- Xu, W.; Ohanjanian, L.; Sun, J.; Cui, X.; Suffredini, D.; Li, Y.; Welsh, J.; Eichacker, P.Q. A Systematic Review and Meta-Analysis of Preclinical Trials Testing Anti-Toxin Therapies for B. anthracis Infection: A Need for More Robust Study Designs and Results. PLoS ONE 2017, 12, e0182879. [Google Scholar] [CrossRef] [PubMed]
- Vietri, N.J. Does Anthrax Antitoxin Therapy Have a Role in the Treatment of Inhalational Anthrax? Curr. Opin. Infect. Dis. 2018, 31, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Glinert, I.; Bar-David, E.; Sittner, A.; Weiss, S.; Schlomovitz, J.; Ben-Shmuel, A.; Mechaly, A.; Altboum, Z.; Kobiler, D.; Levy, H. Revisiting the Concept of Targeting Only Bacillus anthracis Toxins as a Treatment for Anthrax. Antimicrob. Agents Chemother. 2016, 60, 4878–4885. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Nolen, L.D.; Sun, J.; Booth, M.; Donaldson, L.; Quinn, C.P.; Boyer, A.E.; Hendricks, K.; Shadomy, S.; Bothma, P.; et al. Analysis of Anthrax Immune Globulin Intravenous with Antimicrobial Treatment in Injection Drug Users, Scotland, 2009–2010. Emerg. Infect. Dis. 2017, 23, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Raxibacumab Package Insert. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/125349s000lbl.pdf (accessed on 12 December 2024).
- Migone, T.-S.; Subramanian, G.M.; Zhong, J.; Healey, L.M.; Corey, A.; Devalaraja, M.; Lo, L.; Ullrich, S.; Zimmerman, J.; Chen, A.; et al. Raxibacumab for the Treatment of Inhalational Anthrax. N. Engl. J. Med. 2009, 361, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Nagy, C.F.; Leach, T.S.; Hoffman, J.H.; Czech, A.; Carpenter, S.E.; Guttendorf, R. Pharmacokinetics and Tolerability of Obiltoxaximab: A Report of 5 Healthy Volunteer Studies. Clin. Ther. 2016, 38, 2083–2097.e7. [Google Scholar] [CrossRef] [PubMed]
- Greig, S.L. Obiltoxaximab: First Global Approval. Drugs 2016, 76, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Anthim. Efficacy of Anthim. Available online: https://anthim.com/efficacy.html (accessed on 5 December 2024).
- Cangene Anthrasil Package Insert. Available online: https://www.fda.gov/media/91577/download (accessed on 5 December 2024).
- Mytle, N.; Hopkins, R.J.; Malkevich, N.V.; Basu, S.; Meister, G.T.; Sanford, D.C.; Comer, J.E.; Van Zandt, K.E.; Al-Ibrahim, M.; Kramer, W.G.; et al. Evaluation of Intravenous Anthrax Immune Globulin for Treatment of Inhalation Anthrax. Antimicrob. Agents Chemother. 2013, 57, 5684–5692. [Google Scholar] [CrossRef]
- Mercaldi, C.J.; Lanes, S.F. Ultrasound Guidance Decreases Complications and Improves the Cost of Care among Patients Undergoing Thoracentesis and Paracentesis. Chest 2013, 143, 532–538. [Google Scholar] [CrossRef]
- Pillai, S.K.; Huang, E.; Guarnizo, J.T.; Hoyle, J.D.; Katharios-Lanwermeyer, S.; Turski, T.K.; Bower, W.A.; Hendricks, K.A.; Meaney-Delman, D. Antimicrobial Treatment for Systemic Anthrax: Analysis of Cases from 1945 to 2014 Identified Through a Systematic Literature Review. Health Secur. 2015, 13, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Hendricks, K.A.; Wright, M.E.; Shadomy, S.V.; Bradley, J.S.; Morrow, M.G.; Pavia, A.T.; Rubinstein, E.; Holty, J.-E.C.; Messonnier, N.E.; Smith, T.L.; et al. Centers for Disease Control and Prevention Expert Panel Meetings on Prevention and Treatment of Anthrax in Adults. Emerg. Infect. Dis. 2014, 20, e130687. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Update: Investigation of Bioterrorism-Related Anthrax and Adverse Events from Antimicrobial Prophylaxis. MMWR Morb. Mortal. Wkly. Rep. 2001, 50, 973–976. [Google Scholar]
- Athamna, A.; Athamna, M.; Abu-Rashed, N.; Medlej, B.; Bast, D.J.; Rubinstein, E. Selection of Bacillus anthracis Isolates Resistant to Antibiotics. J. Antimicrob. Chemother. 2004, 54, 424–428. [Google Scholar] [CrossRef]
- Price, L.B.; Vogler, A.; Pearson, T.; Busch, J.D.; Schupp, J.M.; Keim, P. In Vitro Selection and Characterization of Bacillus anthracis Mutants with High-Level Resistance to Ciprofloxacin. Antimicrob. Agents Chemother. 2003, 47, 2362–2365. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Tenover, F.C.; Koehler, T.M. Beta-Lactamase Gene Expression in a Penicillin-Resistant Bacillus anthracis Strain. Antimicrob. Agents Chemother. 2004, 48, 4873–4877. [Google Scholar] [CrossRef] [PubMed]
- Dassanayake, M.K.; Khoo, T.-J.; An, J. Antibiotic Resistance Modifying Ability of Phytoextracts in Anthrax Biological Agent Bacillus anthracis and Emerging Superbugs: A Review of Synergistic Mechanisms. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 79. [Google Scholar] [CrossRef] [PubMed]
- García, M.T.; Carreño, D.; Tirado-Vélez, J.M.; Ferrándiz, M.J.; Rodrigues, L.; Gracia, B.; Amblar, M.; Ainsa, J.A.; de la Campa, A.G. Boldine-Derived Alkaloids Inhibit the Activity of DNA Topoisomerase I and Growth of Mycobacterium Tuberculosis. Front. Microbiol. 2018, 9, 1659. [Google Scholar] [CrossRef] [PubMed]
- Lamontagne Boulet, M.; Isabelle, C.; Guay, I.; Brouillette, E.; Langlois, J.-P.; Jacques, P.-É.; Rodrigue, S.; Brzezinski, R.; Beauregard, P.B.; Bouarab, K.; et al. Tomatidine Is a Lead Antibiotic Molecule That Targets Staphylococcus aureus ATP Synthase Subunit C. Antimicrob. Agents Chemother. 2018, 62, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Vaccine to Prevent Anthrax; Centers for Disease Control and Prevention: Atlanta, GA, USA.
- Henning, L.; Anderson, M.; Triplett, C.; Smith, T.; Boyce, K.; Hendey, L.; Ridenour, A.; Eng, J.; Schaeufele, D.; Wilson, E.; et al. Efficacy of Different AV7909 Dose Regimens in a Nonclinical Model of Pulmonary Anthrax. Hum. Vaccin. Immunother. 2023, 19, 2290345. [Google Scholar] [CrossRef] [PubMed]
- Rao, V.V.; Godin, C.S.; Lacy, M.J.; Inglefield, J.R.; Park, S.; Blauth, B.; Reece, J.J.; Ionin, B.; Savransky, V. Evaluation of the AV7909 Anthrax Vaccine Toxicity in Sprague Dawley Rats Following Three Intramuscular Administrations. Int. J. Toxicol. 2021, 40, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Shearer, J.D.; Henning, L.; Sanford, D.C.; Li, N.; Skiadopoulos, M.H.; Reece, J.J.; Ionin, B.; Savransky, V. Efficacy of the AV7909 Anthrax Vaccine Candidate in Guinea Pigs and Nonhuman Primates Following Two Immunizations Two Weeks Apart. Vaccine 2021, 39, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Polito, L.; Bortolotti, M.; Battelli, M.G.; Calafato, G.; Bolognesi, A. Ricin: An Ancient Story for a Timeless Plant Toxin. Toxins 2019, 11, 324. [Google Scholar] [CrossRef]
- Olsnes, S.; Fernandez-Puentes, C.; Carrasco, L.; Vazquez, D. Ribosome Inactivation by the Toxic Lectins Abrin and Ricin. Kinetics of the Enzymic Activity of the Toxin A-Chains. Eur. J. Biochem. 1975, 60, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Sowa-Rogozińska, N.; Sominka, H.; Nowakowska-Gołacka, J.; Sandvig, K.; Słomińska-Wojewódzka, M. Intracellular Transport and Cytotoxicity of the Protein Toxin Ricin. Toxins 2019, 11, 350. [Google Scholar] [CrossRef] [PubMed]
- Audi, J.; Belson, M.; Patel, M.; Schier, J.; Osterloh, J. Ricin Poisoning: A Comprehensive Review. JAMA 2005, 294, 2342–2351. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, J.M.; Yermakova, A.; Mantis, N.J. Immunity to Ricin: Fundamental Insights into Toxin-Antibody Interactions. Curr. Top. Microbiol. Immunol. 2012, 357, 209–241. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Wu, M.; Zhao, N.; Dong, M.; Wang, Y.; Yu, K.; Sun, C.; Xu, N.; Ge, L.; Liu, W. Anti-Ricin Toxin Human Neutralizing Antibodies and DMAbs Protection against Ricin Toxin Poisoning. Toxicol. Lett. 2023, 383, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Lamont, E.A.; He, L.; Warriner, K.; Labuza, T.P.; Sreevatsan, S. A Single DNA Aptamer Functions as a Biosensor for Ricin. Analyst 2011, 136, 3884–3895. [Google Scholar] [CrossRef] [PubMed]
- Rong, Y.; Pauly, M.; Guthals, A.; Pham, H.; Ehrbar, D.; Zeitlin, L.; Mantis, N.J. A Humanized Monoclonal Antibody Cocktail to Prevent Pulmonary Ricin Intoxication. Toxins 2020, 12, 215. [Google Scholar] [CrossRef]
- Pelat, T.; Hust, M.; Hale, M.; Lefranc, M.-P.; Dübel, S.; Thullier, P. Isolation of a Human-like Antibody Fragment (ScFv) That Neutralizes Ricin Biological Activity. BMC Biotechnol. 2009, 9, 60. [Google Scholar] [CrossRef]
- Respaud, R.; Marchand, D.; Pelat, T.; Tchou-Wong, K.-M.; Roy, C.J.; Parent, C.; Cabrera, M.; Guillemain, J.; Mac Loughlin, R.; Levacher, E.; et al. Development of a Drug Delivery System for Efficient Alveolar Delivery of a Neutralizing Monoclonal Antibody to Treat Pulmonary Intoxication to Ricin. J. Control Release 2016, 234, 21–32. [Google Scholar] [CrossRef]
- Orsini Delgado, M.L.; Avril, A.; Prigent, J.; Dano, J.; Rouaix, A.; Worbs, S.; Dorner, B.G.; Rougeaux, C.; Becher, F.; Fenaille, F.; et al. Ricin Antibodies’ Neutralizing Capacity against Different Ricin Isoforms and Cultivars. Toxins 2021, 13, 100. [Google Scholar] [CrossRef] [PubMed]
- Falach, R.; Sapoznikov, A.; Evgy, Y.; Aftalion, M.; Makovitzki, A.; Agami, A.; Mimran, A.; Lerer, E.; Ben David, A.; Zichel, R.; et al. Post-Exposure Anti-Ricin Treatment Protects Swine Against Lethal Systemic and Pulmonary Exposures. Toxins 2020, 12, 354. [Google Scholar] [CrossRef] [PubMed]
- Herrera, C.; Klokk, T.I.; Cole, R.; Sandvig, K.; Mantis, N.J. A Bispecific Antibody Promotes Aggregation of Ricin Toxin on Cell Surfaces and Alters Dynamics of Toxin Internalization and Trafficking. PLoS ONE 2016, 11, e0156893. [Google Scholar] [CrossRef]
- Aitbakieva, V.R.; Ahmad, R.; Singh, S.; Domashevskiy, A. V Inhibition of Ricin A-Chain (RTA) Catalytic Activity by a Viral Genome-Linked Protein (VPg). Biochim. Biophys. Acta Proteins Proteom. 2019, 1867, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Forrester, A.; Rathjen, S.J.; Daniela Garcia-Castillo, M.; Bachert, C.; Couhert, A.; Tepshi, L.; Pichard, S.; Martinez, J.; Munier, M.; Sierocki, R.; et al. Functional Dissection of the Retrograde Shiga Toxin Trafficking Inhibitor Retro-2. Nat. Chem. Biol. 2020, 16, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Noël, R.; Goudet, A.; Hinsinger, K.; Michau, A.; Pons, V.; Abdelkafi, H.; Secher, T.; Shima, A.; Shtanko, O.; et al. Inhibitors of Retrograde Trafficking Active against Ricin and Shiga Toxins Also Protect Cells from Several Viruses, Leishmania and Chlamydiales. Chem. Biol. Interact. 2017, 267, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Sandvig, K.; Kavaliauskiene, S.; Myrann, A.G.; Iversen, T.G.; Skotland, T. Modulation of Ricin Intoxication by the Autophagy Inhibitor EACC. Toxins 2022, 14, 360. [Google Scholar] [CrossRef]
- Maddaloni, M.; Cooke, C.; Wilkinson, R.; Stout, A.V.; Eng, L.; Pincus, S.H. Immunological Characteristics Associated with the Protective Efficacy of Antibodies to Ricin. J. Immunol. 2004, 172, 6221–6228. [Google Scholar] [CrossRef] [PubMed]
- Brey, R.N.; Mantis, N.J.; Pincus, S.H.; Vitetta, E.S.; Smith, L.A.; Roy, C.J. Recent Advances in the Development of Vaccines against Ricin. Hum. Vaccin. Immunother. 2016, 12, 1196–1201. [Google Scholar] [CrossRef] [PubMed]
- Vitetta, E.S.; Smallshaw, J.E.; Coleman, E.; Jafri, H.; Foster, C.; Munford, R.; Schindler, J. A Pilot Clinical Trial of a Recombinant Ricin Vaccine in Normal Humans. Proc. Natl. Acad. Sci. USA 2006, 103, 2268–2273. [Google Scholar] [CrossRef] [PubMed]
- Vitetta, E.S.; Smallshaw, J.E.; Schindler, J. Pilot Phase IB Clinical Trial of an Alhydrogel-Adsorbed Recombinant Ricin Vaccine. Clin. Vaccine Immunol. 2012, 19, 1697–1699. [Google Scholar] [CrossRef]
- Roy, C.J.; Ehrbar, D.; Van Slyke, G.; Doering, J.; Didier, P.J.; Doyle-Meyers, L.; Donini, O.; Vitetta, E.S.; Mantis, N.J. Serum Antibody Profiling Identifies Vaccine-Induced Correlates of Protection against Aerosolized Ricin Toxin in Rhesus Macaques. npj Vaccines 2022, 7, 164. [Google Scholar] [CrossRef] [PubMed]
- Porter, A.; Phillips, G.; Smith, L.; Erwin-Cohen, R.; Tammariello, R.; Hale, M.; DaSilva, L. Evaluation of a Ricin Vaccine Candidate (RVEc) for Human Toxicity Using an in Vitro Vascular Leak Assay. Toxicon 2011, 58, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Carra, J.H.; Wannemacher, R.W.; Tammariello, R.F.; Lindsey, C.Y.; Dinterman, R.E.; Schokman, R.D.; Smith, L.A. Improved Formulation of a Recombinant Ricin A-Chain Vaccine Increases Its Stability and Effective Antigenicity. Vaccine 2007, 25, 4149–4158. [Google Scholar] [CrossRef] [PubMed]
- McLain, D.E.; Horn, T.L.; Detrisac, C.J.; Lindsey, C.Y.; Smith, L.A. Progress in Biological Threat Agent Vaccine Development: A Repeat-Dose Toxicity Study of a Recombinant Ricin Toxin A-Chain (RRTA) 1-33/44-198 Vaccine (RVEc) in Male and Female New Zealand White Rabbits. Int. J. Toxicol. 2011, 30, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, V.A.; Lindsey, C.Y.; Smith, L.A.; Webb, R.P. Development of an O-Pthalaldehyde (OPA) Assay to Measure Protein Content in Ricin Vaccine E. coli (RVEcTM). Vaccine 2021, 39, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Gill, D.M. Bacterial Toxins: A Table of Lethal Amounts. Microbiol. Rev. 1982, 46, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Wein, L.M.; Liu, Y. Analyzing a Bioterror Attack on the Food Supply: The Case of Botulinum Toxin in Milk. Proc. Natl. Acad. Sci. USA 2005, 102, 9984–9989. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K.H.; Hill, E.V. Practical Media and Control Measures for Producing Highly Toxic Cultures of Clostridium Botulinum, Type A. J. Bacteriol. 1947, 53, 213–230. [Google Scholar] [CrossRef] [PubMed]
- Gessler, F.; Böhnel, H. Production and Purification of Clostridium Botulinum Type C and D Neurotoxin. FEMS Immunol. Med. Microbiol. 1999, 24, 361–367. [Google Scholar] [CrossRef]
- Cohrane, T.C. History of the Chemical Warfare Service in World War II (1 July 1940–15 August 1945), Biological Warfare Research in the United States; US Government Printing Office: Washington, DC, USA, 1947. [Google Scholar]
- Bozheyeva, G.; Kunakbayev, Y.; Yeleukenov, D. Former Soviet Biological Weapons Facilities in Kazakhstan: Past, Present, and Future; Center for Nonproliferation Studies, Monterey Institute of International Studies: Monterey, CA, USA, 1999. [Google Scholar]
- Alibek, K.; Handelman, S. Biohazard: The Chilling True Story of the Largest Covert Biological Weapons Program in the World—Told from Inside by the Man Who Ran It; Random House: New York, NY, USA, 1999; ISBN 0-385-33496-6. [Google Scholar]
- Dhaked, R.K.; Singh, M.K.; Singh, P.; Gupta, P. Botulinum Toxin: Bioweapon & Magic Drug. Indian J. Med. Res. 2010, 132, 489–503. [Google Scholar] [PubMed]
- Brunt, J.; van Vliet, A.H.M.; Carter, A.T.; Stringer, S.C.; Amar, C.; Grant, K.A.; Godbole, G.; Peck, M.W. Diversity of the Genomes and Neurotoxins of Strains of Clostridium Botulinum Group I and Clostridium Sporogenes Associated with Foodborne, Infant and Wound Botulism. Toxins 2020, 12, 586. [Google Scholar] [CrossRef]
- Brunt, J.; Carter, A.T.; Stringer, S.C.; Peck, M.W. Identification of a Novel Botulinum Neurotoxin Gene Cluster in Enterococcus. FEBS Lett. 2018, 592, 310–317. [Google Scholar] [CrossRef]
- Peck, M.W.; Smith, T.J.; Anniballi, F.; Austin, J.W.; Bano, L.; Bradshaw, M.; Cuervo, P.; Cheng, L.W.; Derman, Y.; Dorner, B.G.; et al. Historical Perspectives and Guidelines for Botulinum Neurotoxin Subtype Nomenclature. Toxins 2017, 9, 38. [Google Scholar] [CrossRef]
- Johnson, E.A. Validity of Botulinum Neurotoxin Serotype H. J. Infect. Dis. 2014, 210, 992–993. [Google Scholar] [CrossRef]
- Maslanka, S.E.; Lúquez, C.; Dykes, J.K.; Tepp, W.H.; Pier, C.L.; Pellett, S.; Raphael, B.H.; Kalb, S.R.; Barr, J.R.; Rao, A.; et al. A Novel Botulinum Neurotoxin, Previously Reported as Serotype H, Has a Hybrid-Like Structure With Regions of Similarity to the Structures of Serotypes A and F and Is Neutralized With Serotype A Antitoxin. J. Infect. Dis. 2016, 213, 379–385. [Google Scholar] [CrossRef]
- Rasetti-Escargueil, C.; Lemichez, E.; Popoff, M.R. Human Botulism in France, 1875–2016. Toxins 2020, 12, 338. [Google Scholar] [CrossRef] [PubMed]
- Berger, T.; Eisenkraft, A.; Bar-Haim, E.; Kassirer, M.; Aran, A.A.; Fogel, I. Toxins as Biological Weapons for Terror-Characteristics, Challenges and Medical Countermeasures: A Mini-Review. Disaster Mil. Med. 2016, 2, 7. [Google Scholar] [CrossRef] [PubMed]
- Košenina, S.; Masuyer, G.; Zhang, S.; Dong, M.; Stenmark, P. Crystal Structure of the Catalytic Domain of the Weissella oryzae Botulinum-like Toxin. FEBS Lett. 2019, 593, 1403–1410. [Google Scholar] [CrossRef] [PubMed]
- Zornetta, I.; Azarnia Tehran, D.; Arrigoni, G.; Anniballi, F.; Bano, L.; Leka, O.; Zanotti, G.; Binz, T.; Montecucco, C. The First Non Clostridial Botulinum-like Toxin Cleaves VAMP within the Juxtamembrane Domain. Sci. Rep. 2016, 6, 30257. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Masuyer, G.; Zhang, J.; Shen, Y.; Lundin, D.; Henriksson, L.; Miyashita, S.-I.; Martínez-Carranza, M.; Dong, M.; Stenmark, P. Identification and Characterization of a Novel Botulinum Neurotoxin. Nat. Commun. 2017, 8, 14130. [Google Scholar] [CrossRef] [PubMed]
- Barash, J.R.; Arnon, S.S. Dual Toxin-Producing Strain of Clostridium Botulinum Type Bf Isolated from a California Patient with Infant Botulism. J. Clin. Microbiol. 2004, 42, 1713–1715. [Google Scholar] [CrossRef] [PubMed]
- Dabritz, H.A.; Hill, K.K.; Barash, J.R.; Ticknor, L.O.; Helma, C.H.; Dover, N.; Payne, J.R.; Arnon, S.S. Molecular Epidemiology of Infant Botulism in California and Elsewhere, 1976–2010. J. Infect. Dis. 2014, 210, 1711–1722. [Google Scholar] [CrossRef] [PubMed]
- Lacy, D.B.; Tepp, W.; Cohen, A.C.; DasGupta, B.R.; Stevens, R.C. Crystal Structure of Botulinum Neurotoxin Type A and Implications for Toxicity. Nat. Struct. Biol. 1998, 5, 898–902. [Google Scholar] [CrossRef] [PubMed]
- Montecucco, C.; Schiavo, G. Structure and Function of Tetanus and Botulinum Neurotoxins. Q. Rev. Biophys. 1995, 28, 423–472. [Google Scholar] [CrossRef] [PubMed]
- Montal, M. Botulinum Neurotoxin: A Marvel of Protein Design. Annu. Rev. Biochem. 2010, 79, 591–617. [Google Scholar] [CrossRef] [PubMed]
- Verderio, C.; Rossetto, O.; Grumelli, C.; Frassoni, C.; Montecucco, C.; Matteoli, M. Entering Neurons: Botulinum Toxins and Synaptic Vesicle Recycling. EMBO Rep. 2006, 7, 995–999. [Google Scholar] [CrossRef]
- Rossetto, O.; Deloye, F.; Poulain, B.; Pellizzari, R.; Schiavo, G.; Montecucco, C. The Metallo-Proteinase Activity of Tetanus and Botulism Neurotoxins. J. Physiol. Paris 1995, 89, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Kantha, S.S. A Centennial Review; the 1890 Tetanus Antitoxin Paper of von Behring and Kitasato and the Related Developments. Keio J. Med. 1991, 40, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Arnon, S.S.; Schechter, R.; Maslanka, S.E.; Jewell, N.P.; Hatheway, C.L. Human Botulism Immune Globulin for the Treatment of Infant Botulism. N. Engl. J. Med. 2006, 354, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Robinson, R.F.; Nahata, M.C. Management of Botulism. Ann. Pharmacother. 2003, 37, 127–131. [Google Scholar] [CrossRef]
- Rusnak, J.M.; Smith, L.A. Botulinum Neurotoxin Vaccines: Past History and Recent Developments. Hum. Vaccin. 2009, 5, 794–805. [Google Scholar] [CrossRef]
- Fagan, R.P.; Neil, K.P.; Sasich, R.; Luquez, C.; Asaad, H.; Maslanka, S.; Khalil, W. Initial Recovery and Rebound of Type f Intestinal Colonization Botulism after Administration of Investigational Heptavalent Botulinum Antitoxin. Clin. Infect. Dis. 2011, 53, e125–e128. [Google Scholar] [CrossRef] [PubMed]
- Ben David, A.; Barnea, A.; Torgeman, A.; Diamant, E.; Dor, E.; Schwartz, A.; Rosen, O.; Caspi, N.; Saraf, M.; Lerer, E.; et al. Immunologic and Protective Properties of Subunit- vs. Whole Toxoid-Derived Anti-Botulinum Equine Antitoxin. Vaccines 2022, 10, 1522. [Google Scholar] [CrossRef]
- Rosenfeld, R.; Alcalay, R.; Zvi, A.; Ben-David, A.; Noy-Porat, T.; Chitlaru, T.; Epstein, E.; Israeli, O.; Lazar, S.; Caspi, N.; et al. Centaur Antibodies: Engineered Chimeric Equine-Human Recombinant Antibodies. Front. Immunol. 2022, 13, 942317. [Google Scholar] [CrossRef]
- Garcia-Rodriguez, C.; Geren, I.N.; Lou, J.; Conrad, F.; Forsyth, C.; Wen, W.; Chakraborti, S.; Zao, H.; Manzanarez, G.; Smith, T.J.; et al. Neutralizing Human Monoclonal Antibodies Binding Multiple Serotypes of Botulinum Neurotoxin. Protein Eng. Des. Sel. 2011, 24, 321–331. [Google Scholar] [CrossRef]
- Fan, Y.; Geren, I.N.; Dong, J.; Lou, J.; Wen, W.; Conrad, F.; Smith, T.J.; Smith, L.A.; Ho, M.; Pires-Alves, M.; et al. Monoclonal Antibodies Targeting the Alpha-Exosite of Botulinum Neurotoxin Serotype/A Inhibit Catalytic Activity. PLoS ONE 2015, 10, e0135306. [Google Scholar] [CrossRef] [PubMed]
- Nowakowski, A.; Wang, C.; Powers, D.B.; Amersdorfer, P.; Smith, T.J.; Montgomery, V.A.; Sheridan, R.; Blake, R.; Smith, L.A.; Marks, J.D. Potent Neutralization of Botulinum Neurotoxin by Recombinant Oligoclonal Antibody. Proc. Natl. Acad. Sci. USA 2002, 99, 11346–11350. [Google Scholar] [CrossRef]
- Mazuet, C.; Dano, J.; Popoff, M.R.; Créminon, C.; Volland, H. Characterization of Botulinum Neurotoxin Type A Neutralizing Monoclonal Antibodies and Influence of Their Half-Lives on Therapeutic Activity. PLoS ONE 2010, 5, e12416. [Google Scholar] [CrossRef] [PubMed]
- Diamant, E.; Lachmi, B.-E.; Keren, A.; Barnea, A.; Marcus, H.; Cohen, S.; David, A.B.; Zichel, R. Evaluating the Synergistic Neutralizing Effect of Anti-Botulinum Oligoclonal Antibody Preparations. PLoS ONE 2014, 9, e87089. [Google Scholar] [CrossRef] [PubMed]
- Guptill, J.T.; Raja, S.M.; Juel, V.C.; Walter, E.B.; Cohen-Wolkowiez, M.; Hill, H.; Sendra, E.; Hauser, B.; Jackson, P.; Swamy, G.K. Safety, Tolerability, and Pharmacokinetics of NTM-1632, a Novel Mixture of Three Monoclonal Antibodies against Botulinum Toxin B. Antimicrob. Agents Chemother. 2021, 65, e0232920. [Google Scholar] [CrossRef]
- Yeadon, M.; Kitchen, I. Multiple Opioid Receptors Mediate the Respiratory Depressant Effects of Fentanyl-like Drugs in the Rat. Gen. Pharmacol. 1990, 21, 655–664. [Google Scholar] [CrossRef]
- Matsumura, T.; Amatsu, S.; Misaki, R.; Yutani, M.; Du, A.; Kohda, T.; Fujiyama, K.; Ikuta, K.; Fujinaga, Y. Fully Human Monoclonal Antibodies Effectively Neutralizing Botulinum Neurotoxin Serotype B. Toxins 2020, 12, 302. [Google Scholar] [CrossRef] [PubMed]
- Abbasova, S.G.; Ruddenko, N.V.; Gorokhovatskiĭ, A.I.; Kapralova, M.V.; Vinogradova, I.D.; Vertiev, I.V.; Nesmeianov, V.A.; Grishin, E.V. Monoclonal Antibodies to Type A, B, E and F Botulinum Neurotoxins. Bioorg. Khim. 2011, 37, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, J.; McCann, C.; Ofori, K.; Hill, J.; Baldwin, K.; Shoemaker, C.B.; Harrison, P.; Tzipori, S. Sheep Monoclonal Antibodies Prevent Systemic Effects of Botulinum Neurotoxin A1. Toxins 2012, 4, 1565. [Google Scholar] [CrossRef]
- Tremblay, J.M.; Vazquez-Cintron, E.; Lam, K.-H.; Mukherjee, J.; Bedenice, D.; Ondeck, C.A.; Conroy, M.T.; Bodt, S.M.L.; Winner, B.M.; Webb, R.P.; et al. Camelid VHH Antibodies That Neutralize Botulinum Neurotoxin Serotype E Intoxication or Protease Function. Toxins 2020, 12, 611. [Google Scholar] [CrossRef] [PubMed]
- Raja, S.M.; Guptill, J.T.; Juel, V.C.; Walter, E.B.; Cohen-Wolkowiez, M.; Hill, H.; Sendra, E.; Hauser, B.; Jackson, P.; Tomic, M.; et al. First-in-Human Clinical Trial to Assess the Safety, Tolerability and Pharmacokinetics of Single Doses of NTM-1633, a Novel Mixture of Monoclonal Antibodies against Botulinum Toxin E. Antimicrob. Agents Chemother. 2022, 66, e0173221. [Google Scholar] [CrossRef] [PubMed]
- Tomic, M.T.; Espinoza, Y.; Martinez, Z.; Pham, K.; Cobb, R.R.; Snow, D.M.; Earnhart, C.G.; Pals, T.; Syar, E.S.; Niemuth, N.; et al. Monoclonal Antibody Combinations Prevent Serotype A and Serotype B Inhalational Botulism in a Guinea Pig Model. Toxins 2019, 11, 208. [Google Scholar] [CrossRef] [PubMed]
- Snow, D.M.; Cobb, R.R.; Martinez, J.; Finger-Baker, I.; Collins, L.; Terpening, S.; Syar, E.S.; Niemuth, N.; Kobs, D.; Barnewall, R.; et al. A Monoclonal Antibody Combination against Both Serotypes A and B Botulinum Toxin Prevents Inhalational Botulism in a Guinea Pig Model. Toxins 2021, 13, 31. [Google Scholar] [CrossRef] [PubMed]
- Tomic, M.T.; Farr-Jones, S.; Syar, E.S.; Niemuth, N.; Kobs, D.; Hackett, M.J.; Espinoza, Y.; Martinez, Z.; Pham, K.; Snow, D.M.; et al. Neutralizing Concentrations of Anti-Botulinum Toxin Antibodies Positively Correlate with Mouse Neutralization Assay Results in a Guinea Pig Model. Toxins 2021, 13, 671. [Google Scholar] [CrossRef]
- Lu, J.; Jiang, Y.; Guo, J.; Chen, L.; Liu, F.; Li, Z.; Liu, X.; Du, P.; Yu, Y.; Wang, R.; et al. A Human Bispecific Antibody Neutralizes Botulinum Neurotoxin Serotype A. Sci. Rep. 2023, 13, 1–12. [Google Scholar] [CrossRef]
- Mukamoto, M.; Maeda, H.; Kohda, T.; Nozaki, C.; Takahashi, M.; Kozaki, S. Characterization of Neutralizing Mouse-Human Chimeric and Shuffling Antibodies against Botulinum Neurotoxin A. Microbiol. Immunol. 2012, 56, 748–755. [Google Scholar] [CrossRef] [PubMed]
- Brier, S.; Rasetti-Escargueil, C.; Wijkhuisen, A.; Simon, S.; Marechal, M.; Lemichez, E.; Popoff, M.R. Characterization of a Highly Neutralizing Single Monoclonal Antibody to Botulinum Neurotoxin Type A. FASEB J. 2021, 35, e21540. [Google Scholar] [CrossRef] [PubMed]
- Amersdorfer, P.; Wong, C.; Chen, S.; Smith, T.; Deshpande, S.; Sheridan, R.; Finnern, R.; Marks, J.D. Molecular Characterization of Murine Humoral Immune Response to Botulinum Neurotoxin Type A Binding Domain as Assessed by Using Phage Antibody Libraries. Infect. Immun. 1997, 65, 3743–3752. [Google Scholar] [CrossRef] [PubMed]
- Amersdorfer, P.; Wong, C.; Smith, T.; Chen, S.; Deshpande, S.; Sheridan, R.; Marks, J.D. Genetic and Immunological Comparison of Anti-Botulinum Type A Antibodies from Immune and Non-Immune Human Phage Libraries. Vaccine 2002, 20, 1640–1648. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Wang, S.; Yu, Y.-Z.; Du, W.-S.; Yang, F.; Yu, W.-Y.; Sun, Z.-W. Neutralizing Antibodies of Botulinum Neurotoxin Serotype A Screened from a Fully Synthetic Human Antibody Phage Display Library. J. Biomol. Screen. 2009, 14, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Alcala-Torano, R.; Islam, M.; Cika, J.; Lam, K.H.; Jin, R.; Ichtchenko, K.; Shoemaker, C.B.; Van Deventer, J.A. Yeast Display Enables Identification of Covalent Single-Domain Antibodies against Botulinum Neurotoxin Light Chain A. ACS Chem. Biol. 2022, 17, 3435–3449. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Barash, J.R.; Lou, J.; Conrad, F.; Marks, J.D.; Arnon, S.S. Immunological Characterization and Neutralizing Ability of Monoclonal Antibodies Directed Against Botulinum Neurotoxin Type H. J. Infect. Dis. 2016, 213, 1606–1614. [Google Scholar] [CrossRef]
- Fan, Y.; Lou, J.; Tam, C.C.; Wen, W.; Conrad, F.; Leal da Silva Alves, P.; Cheng, L.W.; Garcia-Rodriguez, C.; Farr-Jones, S.; Marks, J.D. A Three-Monoclonal Antibody Combination Potently Neutralizes BoNT/G Toxin in Mice. Toxins 2023, 15, 316. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Lee, D.; Obi, C.R.; Freeberg, J.K.; Farr-Jones, S.; Tomic, M.T. An Ambient Temperature-Stable Antitoxin of Nine Co-Formulated Antibodies for Botulism Caused by Serotypes A, B and E. PLoS ONE 2018, 13, e0197011. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Rodriguez, C.; Razai, A.; Geren, I.N.; Lou, J.; Conrad, F.; Wen, W.-H.; Farr-Jones, S.; Smith, T.J.; Brown, J.L.; Skerry, J.C.; et al. A Three Monoclonal Antibody Combination Potently Neutralizes Multiple Botulinum Neurotoxin Serotype E Subtypes. Toxins 2018, 10, 105. [Google Scholar] [CrossRef]
- Nayak, S.U.; Griffiss, J.M.; McKenzie, R.; Fuchs, E.J.; Jurao, R.A.; An, A.T.; Ahene, A.; Tomic, M.; Hendrix, C.W.; Zenilman, J.M. Safety and Pharmacokinetics of XOMA 3AB, a Novel Mixture of Three Monoclonal Antibodies against Botulinum Toxin A. Antimicrob. Agents Chemother. 2014, 58, 5047–5053. [Google Scholar] [CrossRef]
- Rasetti-Escargueil, C.; Avril, A.; Miethe, S.; Mazuet, C.; Derman, Y.; Selby, K.; Thullier, P.; Pelat, T.; Urbain, R.; Fontayne, A.; et al. The European AntibotABE Framework Program and Its Update: Development of Innovative Botulinum Antibodies. Toxins 2017, 9, 309. [Google Scholar] [CrossRef] [PubMed]
- Siegel, L.S. Evaluation of Neutralizing Antibodies to Type A, B, E, and F Botulinum Toxins in Sera from Human Recipients of Botulinum Pentavalent (ABCDE) Toxoid. J. Clin. Microbiol. 1989, 27, 1906–1908. [Google Scholar] [CrossRef]
- Fiock, M.A.; Cardella, M.A.; Gearinger, N.F. Studies on Immunity to Toxins of Clostridium Botulinum. Ix. Immunologic Response of Man to Purified Pentavalent Abcde Botulinum Toxiod. J. Immunol. 1963, 90, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Keller, J.E. Characterization of New Formalin-Detoxified Botulinum Neurotoxin Toxoids. Clin. Vaccine Immunol. 2008, 15, 1374–1379. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Mattoo, P.; Keller, J.E. New Equine Antitoxins to Botulinum Neurotoxins Serotypes A and B. Biologicals 2012, 40, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Yutani, M.; Senoh, M.; Yano, H.; Kenri, T.; Iwaki, M. Standardization of the Japanese National Standard, Equine Botulinum Antitoxin Type A, and Factors Affecting Standardization. Jpn. J. Infect. Dis. 2024, 77, 16–20. [Google Scholar] [CrossRef]
- Bakherad, H.; Mousavi Gargari, S.L.; Rasooli, I.; Rajabibazl, M.; Mohammadi, M.; Ebrahimizadeh, W.; Safaee Ardakani, L.; Zare, H. In Vivo Neutralization of Botulinum Neurotoxins Serotype E with Heavy-Chain Camelid Antibodies (VHH). Mol. Biotechnol. 2013, 55, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Peet, N.P.; Butler, M.M.; Burnett, J.C.; Moir, D.T.; Bowlin, T.L. Small Molecule Inhibitors as Countermeasures for Botulinum Neurotoxin Intoxication. Molecules 2010, 16, 202–220. [Google Scholar] [CrossRef] [PubMed]
- Azarnia Tehran, D.; Zanetti, G.; Leka, O.; Lista, F.; Fillo, S.; Binz, T.; Shone, C.C.; Rossetto, O.; Montecucco, C.; Paradisi, C.; et al. A Novel Inhibitor Prevents the Peripheral Neuroparalysis of Botulinum Neurotoxins. Sci. Rep. 2015, 5, 17513. [Google Scholar] [CrossRef]
- Bradford, A.B.; Machamer, J.B.; Russo, T.M.; McNutt, P.M. 3,4-Diaminopyridine Reverses Paralysis in Botulinum Neurotoxin-Intoxicated Diaphragms through Two Functionally Distinct Mechanisms. Toxicol. Appl. Pharmacol. 2018, 341, 77–86. [Google Scholar] [CrossRef] [PubMed]
- McNutt, P.M.; Vazquez-Cintron, E.J.; Tenezaca, L.; Ondeck, C.A.; Kelly, K.E.; Mangkhalakhili, M.; Machamer, J.B.; Angeles, C.A.; Glotfelty, E.J.; Cika, J.; et al. Neuronal Delivery of Antibodies Has Therapeutic Effects in Animal Models of Botulism. Sci. Transl. Med. 2021, 13, eabd7789. [Google Scholar] [CrossRef] [PubMed]
- Machamer, J.B.; Vazquez-Cintron, E.J.; O’Brien, S.W.; Kelly, K.E.; Altvater, A.C.; Pagarigan, K.T.; Dubee, P.B.; Ondeck, C.A.; McNutt, P.M. Antidotal Treatment of Botulism in Rats by Continuous Infusion with 3,4-Diaminopyridine. Mol. Med. 2022, 28, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Wang, L.; Tan, X.; Wang, X.; Yang, C.; Wang, Y.; Liu, Z.; Liu, B.; Zhu, H.; Zhi, D.; et al. A Novel RRGW Derived Peptide Is a Promising Inhibitor of BoNT/A. J. Enzyme Inhib. Med. Chem. 2023, 38, 2203878. [Google Scholar] [CrossRef] [PubMed]
- Aldridge, J.H.R. Botulinum Neurotoxin: A Therapeutic Powerhouse with Broad Clinical Implications. JAAPA 2023, 36, 39–41. [Google Scholar] [CrossRef] [PubMed]
- Brideau-Andersen, A.; Dolly, J.O.; Brin, M.F. Botulinum Neurotoxins: Future Innovations. Medicine 2023, 102, e32378. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.A. Botulism and Vaccines for Its Prevention. Vaccine 2009, 27 (Suppl. 4), D33–D39. [Google Scholar] [CrossRef] [PubMed]
- Fonfria, E.; Maignel, J.; Lezmi, S.; Martin, V.; Splevins, A.; Shubber, S.; Kalinichev, M.; Foster, K.; Picaut, P.; Krupp, J. The Expanding Therapeutic Utility of Botulinum Neurotoxins. Toxins 2018, 10, 208. [Google Scholar] [CrossRef] [PubMed]
- Jankovic, J.; Tsui, J.; Brin, M.F. Treatment of Cervical Dystonia with Botox (OnabotulinumtoxinA): Development, Insights, and Impact. Medicine 2023, 102, e32403. [Google Scholar] [CrossRef] [PubMed]
- Dressler, D.; Johnson, E.A. Botulinum Toxin Therapy: Past, Present and Future Developments. J. Neural Transm. (Vienna) 2022, 129, 829–833. [Google Scholar] [CrossRef] [PubMed]
- Wollmer, M.A.; de Boer, C.; Kalak, N.; Beck, J.; Götz, T.; Schmidt, T.; Hodzic, M.; Bayer, U.; Kollmann, T.; Kollewe, K.; et al. Facing Depression with Botulinum Toxin: A Randomized Controlled Trial. J. Psychiatr. Res. 2012, 46, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Przedpelski, A.; Tepp, W.H.; Zuverink, M.; Johnson, E.A.; Pellet, S.; Barbieri, J.T. Enhancing Toxin-Based Vaccines Against Botulism. Vaccine 2018, 36, 827–832. [Google Scholar] [CrossRef]
- Trollet, C.; Pereira, Y.; Burgain, A.; Litzler, E.; Mezrahi, M.; Seguin, J.; Manich, M.; Popoff, M.R.; Scherman, D.; Bigey, P. Generation of High-Titer Neutralizing Antibodies against Botulinum Toxins A, B, and E by DNA Electrotransfer. Infect. Immun. 2009, 77, 2221–2229. [Google Scholar] [CrossRef] [PubMed]
- Scott, V.L.; Villarreal, D.O.; Hutnick, N.A.; Walters, J.N.; Ragwan, E.; Bdeir, K.; Yan, J.; Sardesai, N.Y.; Finnefrock, A.C.; Casimiro, D.R.; et al. DNA Vaccines Targeting Heavy Chain C-Terminal Fragments of Clostridium Botulinum Neurotoxin Serotypes A, B, and E Induce Potent Humoral and Cellular Immunity and Provide Protection from Lethal Toxin Challenge. Hum. Vaccin. Immunother. 2015, 11, 1961–1971. [Google Scholar] [CrossRef] [PubMed]
- Torii, Y.; Sugimoto, N.; Kohda, T.; Kozaki, S.; Morokuma, K.; Horikawa, Y.; Ginnaga, A.; Yamamoto, A.; Takahashi, M. Clinical Study of New Tetravalent (Type A, B, E, and F) Botulinum Toxoid Vaccine Derived from M Toxin in Japan. Jpn. J. Infect. Dis. 2017, 70, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.H.; Song, D.H.; Choi, J.Y.; Joe, H.E.; Jeong, W.H.; Hur, G.H.; Shin, Y.K.; Jeong, S.T. A Mutated Recombinant Subunit Vaccine Protects Mice and Guinea Pigs against Botulinum Type A Intoxication. Hum. Vaccin. Immunother. 2018, 14, 329–336. [Google Scholar] [CrossRef]
- Li, B.-L.; Wang, J.-R.; Liu, X.-Y.; Lu, J.-S.; Wang, R.; Du, P.; Yu, S.; Pang, X.-B.; Yu, Y.-Z.; Yang, Z.-X. Tetanus Toxin and Botulinum Neurotoxin-Derived Fusion Molecules Are Effective Bivalent Vaccines. Appl. Microbiol. Biotechnol. 2023, 107, 7197–7211. [Google Scholar] [CrossRef] [PubMed]
- Andrianaivoarimanana, V.; Piola, P.; Wagner, D.M.; Rakotomanana, F.; Maheriniaina, V.; Andrianalimanana, S.; Chanteau, S.; Rahalison, L.; Ratsitorahina, M.; Rajerison, M. Trends of Human Plague, Madagascar, 1998–2016. Emerg. Infect. Dis. 2019, 25, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Richard, V.; Riehm, J.M.; Herindrainy, P.; Soanandrasana, R.; Ratsitoharina, M.; Rakotomanana, F.; Andrianalimanana, S.; Scholz, H.C.; Rajerison, M. Pneumonic Plague Outbreak, Northern Madagascar, 2011. Emerg. Infect. Dis. 2015, 21, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Lawrenz, M.B. Model Systems to Study Plague Pathogenesis and Develop New Therapeutics. Front. Microbiol. 2010, 1, 7457. [Google Scholar] [CrossRef] [PubMed]
- Kugeler, K.J.; Staples, J.E.; Hinckley, A.F.; Gage, K.L.; Mead, P.S. Epidemiology of Human Plague in the United States, 1900–2012. Emerg. Infect. Dis. 2015, 21, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Dillard, R.L.; Juergens, A.L. Plague. 7 August 2023. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar] [PubMed]
- Kool, J.L. Risk of Person-to-Person Transmission of Pneumonic Plague. Clin. Infect. Dis. 2005, 40, 1166–1172. [Google Scholar] [CrossRef] [PubMed]
- Nelson, C.A.; Meaney-Delman, D.; Fleck-Derderian, S.; Cooley, K.M.; Yu, P.A.; Mead, P.S. Contributors Antimicrobial Treatment and Prophylaxis of Plague: Recommendations for Naturally Acquired Infections and Bioterrorism Response. MMWR Recomm. Rep. 2021, 70, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Spyrou, M.A.; Tukhbatova, R.I.; Wang, C.-C.; Valtueña, A.A.; Lankapalli, A.K.; Kondrashin, V.V.; Tsybin, V.A.; Khokhlov, A.; Kühnert, D.; Herbig, A.; et al. Analysis of 3800-Year-Old Yersinia pestis Genomes Suggests Bronze Age Origin for Bubonic Plague. Nat. Commun. 2018, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Andrades Valtueña, A.; Mittnik, A.; Key, F.M.; Haak, W.; Allmäe, R.; Belinskij, A.; Daubaras, M.; Feldman, M.; Jankauskas, R.; Janković, I.; et al. The Stone Age Plague and Its Persistence in Eurasia. Curr. Biol. 2017, 27, 3683–3691.e8. [Google Scholar] [CrossRef] [PubMed]
- Susat, J.; Lübke, H.; Immel, A.; Brinker, U.; Macāne, A.; Meadows, J.; Steer, B.; Tholey, A.; Zagorska, I.; Gerhards, G.; et al. A 5,000-Year-Old Hunter-Gatherer Already Plagued by Yersinia pestis. Cell Rep. 2021, 35, 109278. [Google Scholar] [CrossRef] [PubMed]
- Parkhill, J.; Wren, B.W.; Thomson, N.R.; Titball, R.W.; Holden, M.T.; Prentice, M.B.; Sebaihia, M.; James, K.D.; Churcher, C.; Mungall, K.L.; et al. Genome Sequence of Yersinia pestis, the Causative Agent of Plague. Nature 2001, 413, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Chain, P.S.G.; Carniel, E.; Larimer, F.W.; Lamerdin, J.; Stoutland, P.O.; Regala, W.M.; Georgescu, A.M.; Vergez, L.M.; Land, M.L.; Motin, V.L.; et al. Insights into the Evolution of Yersinia pestis through Whole-Genome Comparison with Yersinia Pseudotuberculosis. Proc. Natl. Acad. Sci. USA 2004, 101, 13826–13831. [Google Scholar] [CrossRef]
- Perry, R.D.; Fetherston, J.D. Yersinia pestis—Etiologic Agent of Plague. Clin. Microbiol. Rev. 1997, 10, 35–66. [Google Scholar] [CrossRef] [PubMed]
- Demeure, C.E.; Dussurget, O.; Mas Fiol, G.; Le Guern, A.-S.; Savin, C.; Pizarro-Cerdá, J. Yersinia pestis and Plague: An Updated View on Evolution, Virulence Determinants, Immune Subversion, Vaccination, and Diagnostics. Genes. Immun. 2019, 20, 357–370. [Google Scholar] [CrossRef]
- D’Ortenzio, E.; Lemaître, N.; Brouat, C.; Loubet, P.; Sebbane, F.; Rajerison, M.; Baril, L.; Yazdanpanah, Y. Plague: Bridging Gaps towards Better Disease Control. Med. Mal. Infect. 2018, 48, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Chanteau, S.; Rahalison, L.; Ralafiarisoa, L.; Foulon, J.; Ratsitorahina, M.; Ratsifasoamanana, L.; Carniel, E.; Nato, F. Development and Testing of a Rapid Diagnostic Test for Bubonic and Pneumonic Plague. Lancet 2003, 361, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Pal, V.; Tripathi, N.K.; Goel, A.K. Development of a Pair of Real-Time Loop Mediated Isothermal Amplification Assays for Detection of Yersinia pestis, the Causative Agent of Plague. Mol. Cell Probes 2020, 54, 101670. [Google Scholar] [CrossRef]
- Gérôme, P.; Le Flèche, P.; Blouin, Y.; Scholz, H.C.; Thibault, F.M.; Raynaud, F.; Vergnaud, G.; Pourcel, C. Yersinia Pseudotuberculosis ST42 (O:1) Strain Misidentified as Yersinia pestis by Mass Spectrometry Analysis. Genome Announc. 2014, 2, e00435-14. [Google Scholar] [CrossRef] [PubMed]
- Sergueev, K.V.; He, Y.; Borschel, R.H.; Nikolich, M.P.; Filippov, A.A. Rapid and Sensitive Detection of Yersinia pestis Using Amplification of Plague Diagnostic Bacteriophages Monitored by Real-Time PCR. PLoS ONE 2010, 5, e11337. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, N.H.; Prener, A.; Hansen, J.P.; Jensen, O.M. Current Trends in Cancer Incidence in Greenland. Arctic Med. Res. 1988, 47 (Suppl. 1), 640–641. [Google Scholar] [PubMed]
- Hirakawa, M. Hemodynamic Changes in Prone Position. Masui 1988, 37, 1314–1320. [Google Scholar] [PubMed]
- Liu, W.; Ren, J.; Zhang, J.; Song, X.; Liu, S.; Chi, X.; Chen, Y.; Wen, Z.; Li, J.; Chen, W. Identification and Characterization of a Neutralizing Monoclonal Antibody That Provides Complete Protection against Yersinia pestis. PLoS ONE 2017, 12, e0177012. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Zhu, Z.; Dankmeyer, J.L.; Wormald, M.M.; Fast, R.L.; Worsham, P.L.; Cote, C.K.; Amemiya, K.; Dimitrov, D.S. Human Anti-Plague Monoclonal Antibodies Protect Mice from Yersinia pestis in a Bubonic Plague Model. PLoS ONE 2010, 5, e13047. [Google Scholar] [CrossRef]
- Andrianaivoarimanana, V.; Randriantseheno, L.N.; Moore, K.M.; Walker, N.J.; Lonsdale, S.G.; Kempster, S.; Almond, N.A.; Rajerison, M.; Williamson, E.D. Potential Human Immunotherapeutics for Plague. Immunother. Adv. 2021, 1, ltab020. [Google Scholar] [CrossRef]
- Lei, C.; Kumar, S. Yersinia pestis Antibiotic Resistance: A Systematic Review. Osong Public Health Res. Perspect. 2022, 13, 24–36. [Google Scholar] [CrossRef] [PubMed]
- Anisimov, A.P.; Amoako, K.K. Treatment of Plague: Promising Alternatives to Antibiotics. J. Med. Microbiol. 2006, 55, 1461–1475. [Google Scholar] [CrossRef] [PubMed]
- Andrianaivoarimanana, V.; Wagner, D.M.; Birdsell, D.N.; Nikolay, B.; Rakotoarimanana, F.; Randriantseheno, L.N.; Vogler, A.J.; Sahl, J.W.; Hall, C.M.; Somprasong, N.; et al. Transmission of Antimicrobial Resistant Yersinia pestis During a Pneumonic Plague Outbreak. Clin. Infect. Dis. 2022, 74, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Galimand, M.; Guiyoule, A.; Gerbaud, G.; Rasoamanana, B.; Chanteau, S.; Carniel, E.; Courvalin, P. Multidrug Resistance in Yersinia pestis Mediated by a Transferable Plasmid. N. Engl. J. Med. 1997, 337, 677–681. [Google Scholar] [CrossRef]
- Guiyoule, A.; Gerbaud, G.; Buchrieser, C.; Galimand, M.; Rahalison, L.; Chanteau, S.; Courvalin, P.; Carniel, E. Transferable Plasmid-Mediated Resistance to Streptomycin in a Clinical Isolate of Yersinia pestis. Emerg. Infect. Dis. 2001, 7, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Cabanel, N.; Bouchier, C.; Rajerison, M.; Carniel, E. Plasmid-Mediated Doxycycline Resistance in a Yersinia pestis Strain Isolated from a Rat. Int. J. Antimicrob. Agents 2018, 51, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Dai, R.; He, J.; Zha, X.; Wang, Y.; Zhang, X.; Gao, H.; Yang, X.; Li, J.; Xin, Y.; Wang, Y.; et al. A Novel Mechanism of Streptomycin Resistance in Yersinia pestis: Mutation in the RpsL Gene. PLoS Negl. Trop. Dis. 2021, 15, e0009324. [Google Scholar] [CrossRef] [PubMed]
- Kiefer, D.; Dalantai, G.; Damdindorj, T.; Riehm, J.M.; Tomaso, H.; Zöller, L.; Dashdavaa, O.; Pfister, K.; Scholz, H.C. Phenotypical Characterization of Mongolian Yersinia pestis Strains. Vector Borne Zoonotic Dis. 2012, 12, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Sebbane, F.; Lemaître, N. Antibiotic Therapy of Plague: A Review. Biomolecules 2021, 11, 724. [Google Scholar] [CrossRef]
- Abdelbaqi, S.; Deslouches, B.; Steckbeck, J.; Montelaro, R.; Reed, D.S. Novel Engineered Cationic Antimicrobial Peptides Display Broad-Spectrum Activity against Francisella tularensis, Yersinia pestis and Burkholderia pseudomallei. J. Med. Microbiol. 2016, 65, 188–194. [Google Scholar] [CrossRef]
- Zhang, W.; Song, X.; Zhai, L.; Guo, J.; Zheng, X.; Zhang, L.; Lv, M.; Hu, L.; Zhou, D.; Xiong, X.; et al. Complete Protection Against Yersinia pestis in BALB/c Mouse Model Elicited by Immunization With Inhalable Formulations of RF1-V10 Fusion Protein via Aerosolized Intratracheal Inoculation. Front. Immunol. 2022, 13, 793382. [Google Scholar] [CrossRef] [PubMed]
- Quenee, L.E.; Ciletti, N.A.; Elli, D.; Hermanas, T.M.; Schneewind, O. Prevention of Pneumonic Plague in Mice, Rats, Guinea Pigs and Non-Human Primates with Clinical Grade RV10, RV10-2 or F1-V Vaccines. Vaccine 2011, 29, 6572–6583. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, R.; Motin, V.L.; Brubaker, R.R. Suppression of Cytokines in Mice by Protein A-V Antigen Fusion Peptide and Restoration of Synthesis by Active Immunization. Infect. Immun. 1995, 63, 3021–3029. [Google Scholar] [CrossRef] [PubMed]
- Heath, D.G.; Anderson, G.W.; Mauro, J.M.; Welkos, S.L.; Andrews, G.P.; Adamovicz, J.; Friedlander, A.M. Protection against Experimental Bubonic and Pneumonic Plague by a Recombinant Capsular F1-V Antigen Fusion Protein Vaccine. Vaccine 1998, 16, 1131–1137. [Google Scholar] [CrossRef] [PubMed]
- Biryukov, S.; Dankmeyer, J.L.; Shamsuddin, Z.; Velez, I.; Rill, N.O.; Rosario-Acevedo, R.; Klimko, C.P.; Shoe, J.L.; Hunter, M.; Ward, M.D.; et al. Impact of Toll-Like Receptor-Specific Agonists on the Host Immune Response to the Yersinia pestis Plague RF1V Vaccine. Front. Immunol. 2021, 12, 726416. [Google Scholar] [CrossRef] [PubMed]
- Chung, W.K. Efforts on the Plague Rf1v Vaccine since 2018. Dynavax Communication JPEO-CBRND. Available online: https://cdn.who.int/media/docs/default-source/documents/r-d-blueprint-meetings/global-consultation-on-plague-vaccines/2_wai-chung_20231012-who-meeting-rf1v-vaccine-dod_dvax-final.pdf?sfvrsn=c07e8548_3 (accessed on 5 December 2024).
- Moore, B.D.; New, R.R.C.; Butcher, W.; Mahood, R.; Steward, J.; Bayliss, M.; MacLeod, C.; Bogus, M.; Williamson, E.D. Dual Route Vaccination for Plague with Emergency Use Applications. Vaccine 2018, 36, 5210–5217. [Google Scholar] [CrossRef] [PubMed]
- Dentovskaya, S.V.; Ivanov, S.A.; Kopylov, P.K.; Shaikhutdinova, R.Z.; Platonov, M.E.; Kombarova, T.I.; Gapel’chenkova, T.V.; Balakhonov, S.V.; Anisimov, A.P. Selective Protective Potency of Yersinia pestis ΔnlpD Mutants. Acta Naturae 2015, 7, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Kon, E.; Levy, Y.; Elia, U.; Cohen, H.; Hazan-Halevy, I.; Aftalion, M.; Ezra, A.; Bar-Haim, E.; Naidu, G.S.; Diesendruck, Y.; et al. A Single-Dose F1-Based MRNA-LNP Vaccine Provides Protection against the Lethal Plague Bacterium. Sci. Adv. 2023, 9, eadg1036. [Google Scholar] [CrossRef] [PubMed]
- Derbise, A.; Hanada, Y.; Khalifé, M.; Carniel, E.; Demeure, C.E. Complete Protection against Pneumonic and Bubonic Plague after a Single Oral Vaccination. PLoS Negl. Trop. Dis. 2015, 9, e0004162. [Google Scholar] [CrossRef]
- Pechous, R.D.; McCarthy, T.R.; Zahrt, T.C. Working toward the Future: Insights into Francisella tularensis Pathogenesis and Vaccine Development. Microbiol. Mol. Biol. Rev. 2009, 73, 684–711. [Google Scholar] [CrossRef] [PubMed]
- Wawszczak, M.; Banaszczak, B.; Rastawicki, W. Tularaemia—A Diagnostic Challenge. Ann. Agric. Environ. Med. 2022, 29, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Tärnvik, A.; Berglund, L. Tularaemia. Eur. Respir. J. 2003, 21, 361–373. [Google Scholar] [CrossRef] [PubMed]
- Kavanaugh, C.N. TULAREMIA. Arch. Intern. Med. 1935, 55, 61–85. [Google Scholar] [CrossRef]
- Oyston, P.C.F. Francisella tularensis: Unravelling the Secrets of an Intracellular Pathogen. J. Med. Microbiol. 2008, 57, 921–930. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.E.; Gregory, D.W.; Schaffner, W.; McGee, Z.A. Tularemia: A 30-Year Experience with 88 Cases. Medicine 1985, 64, 251–269. [Google Scholar] [CrossRef] [PubMed]
- Dennis, D.T.; Inglesby, T.V.; Henderson, D.A.; Bartlett, J.G.; Ascher, M.S.; Eitzen, E.; Fine, A.D.; Friedlander, A.M.; Hauer, J.; Layton, M.; et al. Tularemia as a Biological Weapon: Medical and Public Health Management. JAMA 2001, 285, 2763–2773. [Google Scholar] [CrossRef] [PubMed]
- Dienst, F.T. Tularemia: A Perusal of Three Hundred Thirty-Nine Cases. J. La State Med. Soc. 1963, 115, 114–127. [Google Scholar] [PubMed]
- Degabriel, M.; Valeva, S.; Boisset, S.; Henry, T. Pathogenicity and Virulence of Francisella tularensis. Virulence 2023, 14, 2274638. [Google Scholar] [CrossRef] [PubMed]
- Johansson, A.; Petersen, J.M. Genotyping of Francisella tularensis, the Causative Agent of Tularemia. J. AOAC Int. 2010, 93, 1930–1943. [Google Scholar] [CrossRef] [PubMed]
- Larsson, P.; Oyston, P.C.F.; Chain, P.; Chu, M.C.; Duffield, M.; Fuxelius, H.-H.; Garcia, E.; Hälltorp, G.; Johansson, D.; Isherwood, K.E.; et al. The Complete Genome Sequence of Francisella tularensis, the Causative Agent of Tularemia. Nat. Genet. 2005, 37, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Yeni, D.K.; Büyük, F.; Ashraf, A.; Shah, M.S.U.D. Tularemia: A Re-Emerging Tick-Borne Infectious Disease. Folia Microbiol (Praha) 2021, 66, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, P. Collaboration Is Considered One of the Central Tenets of Quality Improvement Philosophies. J. Nurs. Care Qual. 1992, 6, 15–19. [Google Scholar]
- Rawool, D.B.; Bitsaktsis, C.; Li, Y.; Gosselin, D.R.; Lin, Y.; Kurkure, N.V.; Metzger, D.W.; Gosselin, E.J. Utilization of Fc Receptors as a Mucosal Vaccine Strategy against an Intracellular Bacterium, Francisella tularensis. J. Immunol. 2008, 180, 5548–5557. [Google Scholar] [CrossRef] [PubMed]
- Savitt, A.G.; Mena-Taboada, P.; Monsalve, G.; Benach, J.L. Francisella tularensis Infection-Derived Monoclonal Antibodies Provide Detection, Protection, and Therapy. Clin. Vaccine Immunol. 2009, 16, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Boisset, S.; Caspar, Y.; Sutera, V.; Maurin, M. New Therapeutic Approaches for Treatment of Tularaemia: A Review. Front. Cell Infect. Microbiol. 2014, 4, 40. [Google Scholar] [CrossRef] [PubMed]
- Golovliov, I.; Ericsson, M.; Akerblom, L.; Sandström, G.; Tärnvik, A.; Sjöstedt, A. Adjuvanticity of ISCOMs Incorporating a T Cell-Reactive Lipoprotein of the Facultative Intracellular Pathogen Francisella tularensis. Vaccine 1995, 13, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.M.; Titball, R.W.; Oyston, P.C.F.; Griffin, K.; Waters, E.; Hitchen, P.G.; Michell, S.L.; Grice, I.D.; Wilson, J.C.; Prior, J.L. The Immunologically Distinct O Antigens from Francisella tularensis Subspecies Tularensis and Francisella novicida Are Both Virulence Determinants and Protective Antigens. Infect. Immun. 2007, 75, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Prior, J.L.; Prior, R.G.; Hitchen, P.G.; Diaper, H.; Griffin, K.F.; Morris, H.R.; Dell, A.; Titball, R.W. Characterization of the O Antigen Gene Cluster and Structural Analysis of the O Antigen of Francisella tularensis Subsp. Tularensis. J. Med. Microbiol. 2003, 52, 845–851. [Google Scholar] [CrossRef] [PubMed]
- Apicella, M.A.; Post, D.M.B.; Fowler, A.C.; Jones, B.D.; Rasmussen, J.A.; Hunt, J.R.; Imagawa, S.; Choudhury, B.; Inzana, T.J.; Maier, T.M.; et al. Identification, Characterization and Immunogenicity of an O-Antigen Capsular Polysaccharide of Francisella tularensis. PLoS ONE 2010, 5, e11060. [Google Scholar] [CrossRef] [PubMed]
- Conlan, J.W.; Shen, H.; Webb, A.; Perry, M.B. Mice Vaccinated with the O-Antigen of Francisella tularensis LVS Lipopolysaccharide Conjugated to Bovine Serum Albumin Develop Varying Degrees of Protective Immunity against Systemic or Aerosol Challenge with Virulent Type A and Type B Strains of the Pathogen. Vaccine 2002, 20, 3465–3471. [Google Scholar] [CrossRef] [PubMed]
- Loveless, B.M.; Yermakova, A.; Christensen, D.R.; Kondig, J.P.; Heine, H.S.; Wasieloski, L.P.; Kulesh, D.A. Identification of ciprofloxacin resistance by SimpleProbe™, High Resolution Melt and Pyrosequencing™ nucleic acid analysis in biothreat agents: Bacillus anthracis, Yersinia pestis and Francisella tularensis. Mol. Cell Probes 2010, 24, 154–160. [Google Scholar] [CrossRef]
- Sutera, V.; Levert, M.; Burmeister, W.P.; Schneider, D.; Maurin, M. Evolution toward High-Level Fluoroquinolone Resistance in Francisella Species. J. Antimicrob. Chemother. 2014, 69, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Biot, F.V.; Bachert, B.A.; Mlynek, K.D.; Toothman, R.G.; Koroleva, G.I.; Lovett, S.P.; Klimko, C.P.; Palacios, G.F.; Cote, C.K.; Ladner, J.T.; et al. Evolution of Antibiotic Resistance in Surrogates of Francisella tularensis (LVS and Francisella novicida): Effects on Biofilm Formation and Fitness. Front. Microbiol. 2020, 11, 593542. [Google Scholar] [CrossRef] [PubMed]
- Antunes, N.T.; Frase, H.; Toth, M.; Vakulenko, S.B. The Class A β-Lactamase FTU-1 Is Native to Francisella tularensis. Antimicrob. Agents Chemother. 2012, 56, 666–671. [Google Scholar] [CrossRef] [PubMed]
- Maurin, M.; Mersali, N.F.; Raoult, D. Bactericidal Activities of Antibiotics against Intracellular Francisella tularensis. Antimicrob. Agents Chemother. 2000, 44, 3428–3431. [Google Scholar] [CrossRef] [PubMed]
- Tomaso, H.; Hotzel, H.; Otto, P.; Myrtennäs, K.; Forsman, M. Antibiotic Susceptibility in Vitro of Francisella tularensis Subsp. holarctica Isolates from Germany. J. Antimicrob. Chemother. 2017, 72, 2539–2543. [Google Scholar] [CrossRef]
- Tomaso, H.; Al Dahouk, S.; Hofer, E.; Splettstoesser, W.D.; Treu, T.M.; Dierich, M.P.; Neubauer, H. Antimicrobial Susceptibilities of Austrian Francisella tularensis Holarctica Biovar II Strains. Int. J. Antimicrob. Agents 2005, 26, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Lembo, A.; Pelletier, M.; Iyer, R.; Timko, M.; Dudda, J.C.; West, T.E.; Wilson, C.B.; Hajjar, A.M.; Skerrett, S.J. Administration of a Synthetic TLR4 Agonist Protects Mice from Pneumonic Tularemia. J. Immunol. 2008, 180, 7574–7581. [Google Scholar] [CrossRef] [PubMed]
- Pyles, R.B.; Jezek, G.E.; Eaves-Pyles, T.D. Toll-like Receptor 3 Agonist Protection against Experimental Francisella tularensis Respiratory Tract Infection. Infect. Immun. 2010, 78, 1700–1710. [Google Scholar] [CrossRef] [PubMed]
- Conlan, J.W. Tularemia Vaccines: Recent Developments and Remaining Hurdles. Future Microbiol. 2011, 6, 391–405. [Google Scholar] [CrossRef] [PubMed]
- Eigelsbach, H.T.; Downs, C.M. Prophylactic Effectiveness of Live and Killed Tularemia Vaccines. I. Production of Vaccine and Evaluation in the White Mouse and Guinea Pig. J. Immunol. 1961, 87, 415–425. [Google Scholar] [CrossRef]
- Saslaw, S.; Eigelsbach, H.T.; Wilson, H.E.; Prior, J.A.; Carhart, S. Tularemia Vaccine Study. I. Intracutaneous Challenge. Arch. Intern. Med. 1961, 107, 689–701. [Google Scholar] [CrossRef] [PubMed]
- Sunagar, R.; Kumar, S.; Franz, B.J.; Gosselin, E.J. Tularemia Vaccine Development: Paralysis or Progress? Vaccine Dev. Ther. 2016, 6, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Hartley, G.; Taylor, R.; Prior, J.; Newstead, S.; Hitchen, P.G.; Morris, H.R.; Dell, A.; Titball, R.W. Grey Variants of the Live Vaccine Strain of Francisella tularensis Lack Lipopolysaccharide O-Antigen, Show Reduced Ability to Survive in Macrophages and Do Not Induce Protective Immunity in Mice. Vaccine 2006, 24, 989–996. [Google Scholar] [CrossRef]
- Mulligan, M.J.; Stapleton, J.T.; Keitel, W.A.; Frey, S.E.; Chen, W.H.; Rouphael, N.; Edupuganti, S.; Beck, A.; Winokur, P.L.; El Sahly, H.M.; et al. Tularemia Vaccine: Safety, Reactogenicity, “Take” Skin Reactions, and Antibody Responses Following Vaccination with a New Lot of the Francisella tularensis Live Vaccine Strain—A Phase 2 Randomized Clinical Trial. Vaccine 2017, 35, 4730–4737. [Google Scholar] [CrossRef] [PubMed]
- Nutter, J.E. Effect of Vaccine, Route, and Schedule on Antibody Response of Rabbits to Pasteurella Tularensis. Appl. Microbiol. 1969, 17, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Baron, S.D.; Singh, R.; Metzger, D.W. Inactivated Francisella tularensis Live Vaccine Strain Protects against Respiratory Tularemia by Intranasal Vaccination in an Immunoglobulin A-Dependent Fashion. Infect. Immun. 2007, 75, 2152–2162. [Google Scholar] [CrossRef] [PubMed]
- Lavine, C.L.; Clinton, S.R.; Angelova-Fischer, I.; Marion, T.N.; Bina, X.R.; Bina, J.E.; Whitt, M.A.; Miller, M.A. Immunization with Heat-Killed Francisella tularensis LVS Elicits Protective Antibody-Mediated Immunity. Eur. J. Immunol. 2007, 37, 3007–3020. [Google Scholar] [CrossRef] [PubMed]
- Hong, K.-J.; Park, P.-G.; Seo, S.-H.; Rhie, G.-E.; Hwang, K.-J. Current Status of Vaccine Development for Tularemia Preparedness. Clin. Exp. Vaccine Res. 2013, 2, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Roberts, L.M.; Wehrly, T.D.; Leighton, I.; Hanley, P.; Lovaglio, J.; Smith, B.J.; Bosio, C.M. Circulating T Cells Are Not Sufficient for Protective Immunity against Virulent Francisella tularensis. J. Immunol. 2022, 208, 1180–1188. [Google Scholar] [CrossRef] [PubMed]
- Moncayo, A.C.; Fernandez, Z.; Ortiz, D.; Diallo, M.; Sall, A.; Hartman, S.; Davis, C.T.; Coffey, L.; Mathiot, C.C.; Tesh, R.B.; et al. Dengue Emergence and Adaptation to Peridomestic Mosquitoes. Emerg. Infect. Dis. 2004, 10, 1790–1796. [Google Scholar] [CrossRef] [PubMed]
- Nguyet, M.N.; Duong, T.H.K.; Trung, V.T.; Nguyen, T.H.Q.; Tran, C.N.B.; Long, V.T.; Dui, L.T.; Nguyen, H.L.; Farrar, J.J.; Holmes, E.C.; et al. Host and Viral Features of Human Dengue Cases Shape the Population of Infected and Infectious Aedes Aegypti Mosquitoes. Proc. Natl. Acad. Sci. USA 2013, 110, 9072–9077. [Google Scholar] [CrossRef] [PubMed]
- Hooper, J.W.; Larsen, T.; Custer, D.M.; Schmaljohn, C.S. A Lethal Disease Model for Hantavirus Pulmonary Syndrome. Virology 2001, 289, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, J.; Richards, G.A.; Jiménez, J.I.S.; Baker, T.; Amin, P. Viral Hemorrhagic Fever in the Tropics: Report from the Task Force on Tropical Diseases by the World Federation of Societies of Intensive and Critical Care Medicine. J. Crit. Care 2017, 42, 366–372. [Google Scholar] [CrossRef]
- Cieslak, T.J.; Herstein, J.J.; Kortepeter, M.G.; Hewlett, A.L. A Methodology for Determining Which Diseases Warrant Care in a High-Level Containment Care Unit. Viruses 2019, 11, 773. [Google Scholar] [CrossRef] [PubMed]
- Belhadi, D.; El Baied, M.; Mulier, G.; Malvy, D.; Mentré, F.; Laouénan, C. The Number of Cases, Mortality and Treatments of Viral Hemorrhagic Fevers: A Systematic Review. PLoS Negl. Trop. Dis. 2022, 16, e0010889. [Google Scholar] [CrossRef] [PubMed]
- PREVAIL II Writing Group; Multi-National PREVAIL II Study Team; Davey, R.T.; Dodd, L.; Proschan, M.A.; Neaton, J.; Neuhaus Nordwall, J.; Koopmeiners, J.S.; Beigel, J.; Tierney, J.; et al. A Randomized, Controlled Trial of ZMapp for Ebola Virus Infection. N. Engl. J. Med. 2016, 375, 1448–1456. [Google Scholar] [CrossRef] [PubMed]
- Nicastri, E.; Kobinger, G.; Vairo, F.; Montaldo, C.; Mboera, L.E.G.; Ansunama, R.; Zumla, A.; Ippolito, G. Ebola Virus Disease: Epidemiology, Clinical Features, Management, and Prevention. Infect. Dis. Clin. N. Am. 2019, 33, 953–976. [Google Scholar] [CrossRef] [PubMed]
- Markham, A. REGN-EB3: First Approval. Drugs 2021, 81, 175–178. [Google Scholar] [CrossRef]
- Pascal, K.E.; Dudgeon, D.; Trefry, J.C.; Anantpadma, M.; Sakurai, Y.; Murin, C.D.; Turner, H.L.; Fairhurst, J.; Torres, M.; Rafique, A.; et al. Development of Clinical-Stage Human Monoclonal Antibodies That Treat Advanced Ebola Virus Disease in Nonhuman Primates. J. Infect. Dis. 2018, 218, S612–S626. [Google Scholar] [CrossRef]
- Gaudinski, M.R.; Coates, E.E.; Novik, L.; Widge, A.; Houser, K.V.; Burch, E.; Holman, L.A.; Gordon, I.J.; Chen, G.L.; Carter, C.; et al. Safety, Tolerability, Pharmacokinetics, and Immunogenicity of the Therapeutic Monoclonal Antibody MAb114 Targeting Ebola Virus Glycoprotein (VRC 608): An Open-Label Phase 1 Study. Lancet 2019, 393, 889–898. [Google Scholar] [CrossRef]
- Corti, D.; Misasi, J.; Mulangu, S.; Stanley, D.A.; Kanekiyo, M.; Wollen, S.; Ploquin, A.; Doria-Rose, N.A.; Staupe, R.P.; Bailey, M.; et al. Protective Monotherapy against Lethal Ebola Virus Infection by a Potently Neutralizing Antibody. Science 2016, 351, 1339–1342. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhao, Y.; Guyatt, G.; Fowler, R.; Kojan, R.; Ge, L.; Tian, J.; Collaborators; Hao, Q. Effects of Therapies for Ebola Virus Disease: A Systematic Review and Network Meta-Analysis. Lancet Microbe 2022, 3, e683–e692. [Google Scholar] [CrossRef] [PubMed]
- Salam, A.P.; Duvignaud, A.; Jaspard, M.; Malvy, D.; Carroll, M.; Tarning, J.; Olliaro, P.L.; Horby, P.W. Ribavirin for Treating Lassa Fever: A Systematic Review of Pre-Clinical Studies and Implications for Human Dosing. PLoS Negl. Trop. Dis. 2022, 16, e0010289. [Google Scholar] [CrossRef] [PubMed]
- Feldmann, H.; Sprecher, A.; Geisbert, T.W. Ebola. N. Engl. J. Med. 2020, 382, 1832–1842. [Google Scholar] [CrossRef] [PubMed]
- Yan, V.C.; Muller, F.L. Why Remdesivir Failed: Preclinical Assumptions Overestimate the Clinical Efficacy of Remdesivir for COVID-19 and Ebola. Antimicrob. Agents Chemother. 2021, 65, e0111721. [Google Scholar] [CrossRef] [PubMed]
- Gowen, B.B.; Hickerson, B.T.; York, J.; Westover, J.B.; Sefing, E.J.; Bailey, K.W.; Wandersee, L.; Nunberg, J.H. Second-Generation Live-Attenuated Candid#1 Vaccine Virus Resists Reversion and Protects against Lethal Junín Virus Infection in Guinea Pigs. J. Virol. 2021, 95, e0039721. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Reyna, R.A.; Taniguchi, S.; Littlefield, K.; Paessler, S.; Maruyama, J. Vaccine Candidates against Arenavirus Infections. Vaccines 2023, 11, 635. [Google Scholar] [CrossRef]
- Centers For Disease Control and Prevention. History of Smallpox; Centers for Disease Control and Prevention: Atlanta, GA, USA; Available online: https://www.cdc.gov/smallpox/about/history.html (accessed on 12 December 2024).
- Meyer, H.; Ehmann, R.; Smith, G.L. Smallpox in the Post-Eradication Era. Viruses 2020, 12, 138. [Google Scholar] [CrossRef] [PubMed]
- Pajer, P.; Dresler, J.; Kabíckova, H.; Písa, L.; Aganov, P.; Fucik, K.; Elleder, D.; Hron, T.; Kuzelka, V.; Velemínsky, P.; et al. Characterization of Two Historic Smallpox Specimens from a Czech Museum. Viruses 2017, 9, 200. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.; Chew, C. Parton Branching Model for Pp-Bar Collisions. Phys. Rev. D Part. Fields 1990, 41, 851–862. [Google Scholar] [CrossRef] [PubMed]
- Gilchuk, I.; Gilchuk, P.; Sapparapu, G.; Lampley, R.; Singh, V.; Kose, N.; Blum, D.L.; Hughes, L.J.; Satheshkumar, P.S.; Townsend, M.B.; et al. Cross-Neutralizing and Protective Human Antibody Specificities to Poxvirus Infections. Cell 2016, 167, 684–694.e9. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Pevear, D.C.; Davies, M.H.; Collett, M.S.; Bailey, T.; Rippen, S.; Barone, L.; Burns, C.; Rhodes, G.; Tohan, S.; et al. An Orally Bioavailable Antipoxvirus Compound (ST-246) Inhibits Extracellular Virus Formation and Protects Mice from Lethal Orthopoxvirus Challenge. J. Virol. 2005, 79, 13139–13149. [Google Scholar] [CrossRef] [PubMed]
- Huggins, J.; Goff, A.; Hensley, L.; Mucker, E.; Shamblin, J.; Wlazlowski, C.; Johnson, W.; Chapman, J.; Larsen, T.; Twenhafel, N.; et al. Nonhuman Primates Are Protected from Smallpox Virus or Monkeypox Virus Challenges by the Antiviral Drug ST-246. Antimicrob. Agents Chemother. 2009, 53, 2620–2625. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.G.; Gigante, C.M.; Wynn, N.T.; Matheny, A.; Davidson, W.; Yang, Y.; Condori, R.E.; O’Connell, K.; Kovar, L.; Williams, T.L.; et al. Tecovirimat Resistance in Mpox Patients, United States, 2022–2023. Emerg. Infect. Dis. 2023, 29, 2426–2432. [Google Scholar] [CrossRef] [PubMed]
- Broekema, F.I.; Dikkers, F.G. Side-Effects of Cidofovir in the Treatment of Recurrent Respiratory Papillomatosis. Eur. Arch. Otorhinolaryngol. 2008, 265, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Huston, J.; Curtis, S.; Egelund, E.F. Brincidofovir: A Novel Agent for the Treatment of Smallpox. Ann. Pharmacother. 2023, 57, 1198–1206. [Google Scholar] [CrossRef]
- Detweiler, C.J.; Mueller, S.B.; Sung, A.D.; Saullo, J.L.; Prasad, V.K.; Cardona, D.M. Brincidofovir (CMX001) Toxicity Associated with Epithelial Apoptosis and Crypt Drop Out in a Hematopoietic Cell Transplant Patient: Challenges in Distinguishing Drug Toxicity from GVHD. J. Pediatr. Hematol. Oncol. 2018, 40, e364–e368. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Mahendra Raj, S. Efficacy of Three Key Antiviral Drugs Used to Treat Orthopoxvirus Infections: A Systematic Review. Glob. Biosecurity 2019, 1, 28. [Google Scholar] [CrossRef]
- Jeziorski, K.G.; Borkowski, M. Advances in the Treatment of Diabetic Foot Syndrome. Pol. Tyg. Lek. 1986, 41, 1500–1501. [Google Scholar]
- Pütz, M.M.; Midgley, C.M.; Law, M.; Smith, G.L. Quantification of Antibody Responses against Multiple Antigens of the Two Infectious Forms of Vaccinia Virus Provides a Benchmark for Smallpox Vaccination. Nat. Med. 2006, 12, 1310–1315. [Google Scholar] [CrossRef] [PubMed]
- Paran, N.; Suezer, Y.; Lustig, S.; Israely, T.; Schwantes, A.; Melamed, S.; Katz, L.; Preuss, T.; Hanschmann, K.-M.; Kalinke, U.; et al. Postexposure Immunization with Modified Vaccinia Virus Ankara or Conventional Lister Vaccine Provides Solid Protection in a Murine Model of Human Smallpox. J. Infect. Dis. 2009, 199, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Stittelaar, K.J.; Kuiken, T.; de Swart, R.L.; van Amerongen, G.; Vos, H.W.; Niesters, H.G.; van Schalkwijk, P.; van der Kwast, T.; Wyatt, L.S.; Moss, B.; et al. Safety of Modified Vaccinia Virus Ankara (MVA) in Immune-Suppressed Macaques. Vaccine 2001, 19, 3700–3709. [Google Scholar] [CrossRef] [PubMed]
- Sang, Y.; Zhang, Z.; Liu, F.; Lu, H.; Yu, C.; Sun, H.; Long, J.; Cao, Y.; Mai, J.; Miao, Y.; et al. Monkeypox Virus Quadrivalent MRNA Vaccine Induces Immune Response and Protects against Vaccinia Virus. Signal Transduct. Target. Ther. 2023, 8, 172. [Google Scholar] [CrossRef] [PubMed]
Genus | Example of Virus | Transmission to Humans | Natural Human-to-Human Transmission | Indicative ID50 | Indicative Human R0 (if Applicable) | Main Treatment | Mortality (%) |
---|---|---|---|---|---|---|---|
Bunyaviridae | Crimean Congo Hemorrhagic Fever | Tick | Yes | ND | <1 | Ribavirin (some benefits) | 3–40 |
Flaviviridae | Severe dengue | Mosquito | Rare (but mosquitoes can form a cluster): Mother-to-baby: during pregnancy, delivery or breastfeeding | Mosquito ID50: 6.29 to 7.52 log 10 RNA copies/mL of plasma | NA | Supportive Prophylaxis: vaccine. | 1–20 |
Flaviviridae | Yellow fever | Mosquito | No (but mosquitoes can form a cluster) | 8–6.5 log 10 TCID50·mL−1 | NA | Supportive Prophylaxis: vaccine | 25–50 |
Flaviviridae | West Nile | Mosquito | Mother-to-baby: during pregnancy, delivery or breastfeeding | Low | Supportive | <1% | |
Filoviridae | Ebola | Primate | Yes | 1–10 aerosolized virus particles | 1.3–2.53 | Supportive Inmazeb (Ebola Zaire) Ansuvimab (Ebola Zaire) | 50–90 |
Filoviridae | Marburg | Primate | Yes | 1–10 aerosolized virus particles | 1.59 | Supportive | 50–90 |
Bunyaviridae | Hantavirus | Rodent | Yes (but rare) | 3 PFU in a hamster model for ANDV | 2.12 in a cluster | Ribavirin (may have some benefits) | From 1 (Seoul and Pumaala), 5–15 (Hantaan) to 50 (Sin Nombre) |
Bunyaviridae | Rift Valley Fever | Mosquito | No | Low to moderate | Ribavirin | 1 RVHF, up to 40 (CCHF) | |
Arenaviridae | Lassa | Rodent | Yes | 1–10 aerosolized virus particles | 1.23–1.33 | Ribavirin | 30 |
Arenaviridae | South American Hemorrhagic Fevers | Rodent | Moderate | Supportive | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avril, A.; Guillier, S.; Rasetti-Escargueil, C. Development of Effective Medical Countermeasures Against the Main Biowarfare Agents: The Importance of Antibodies. Microorganisms 2024, 12, 2622. https://doi.org/10.3390/microorganisms12122622
Avril A, Guillier S, Rasetti-Escargueil C. Development of Effective Medical Countermeasures Against the Main Biowarfare Agents: The Importance of Antibodies. Microorganisms. 2024; 12(12):2622. https://doi.org/10.3390/microorganisms12122622
Chicago/Turabian StyleAvril, Arnaud, Sophie Guillier, and Christine Rasetti-Escargueil. 2024. "Development of Effective Medical Countermeasures Against the Main Biowarfare Agents: The Importance of Antibodies" Microorganisms 12, no. 12: 2622. https://doi.org/10.3390/microorganisms12122622
APA StyleAvril, A., Guillier, S., & Rasetti-Escargueil, C. (2024). Development of Effective Medical Countermeasures Against the Main Biowarfare Agents: The Importance of Antibodies. Microorganisms, 12(12), 2622. https://doi.org/10.3390/microorganisms12122622