Brewing a Craft Belgian-Style Pale Ale Using Pichia kudriavzevii 4A as a Starter Culture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Barley and Germination
2.2. Malting
2.3. Elaboration of the Sweet Beer Wort
2.4. Formulation of the Supplemented Wort
2.5. Isolation of the Yeast and Preparation of the Inoculum
2.6. Elaboration of the Beer
2.7. Physicochemical Analysis of the Barley
2.8. Evaluation of the Wort: Glucose, Total Sugars, Biomass, and Ethanol
2.9. Inspection of the Beer for Quality
2.10. Analysis of Toxins
2.11. Sensory Analysis of the Beer
2.12. Statistical Analysis
3. Results and Discussion
3.1. Evaluation of the Physicochemical Characteristics of the Barley
3.2. Evaluation of Glucose in the Grain
3.3. Evaluation of Biomass, Sugars, and Alcohol Content before and after 7 Days of Fermentation
3.4. Evaluation of Physicochemical and Microbiological Parameters of the Beer
3.5. Analysis of Mycotoxins in the Beer
3.6. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pérez-Armendáriz, B.; Cardoso-Ugarte, G.A. Traditional Fermented Beverages in Mexico: Biotechnological, Nutritional, and Functional Approaches. Food Res. Int. 2020, 136, 109307. [Google Scholar] [CrossRef] [PubMed]
- Hornsey, I.S. A History of Beer and Brewing; Royal Society of Chemistry: London, UK, 2003; ISBN 978-0-85404-630-0. [Google Scholar]
- Bamforth, C.W. Progress in Brewing Science and Beer Production. Annu. Rev. Chem. Biomol. Eng. 2017, 8, 161–176. [Google Scholar] [CrossRef]
- Wunderlich, S.; Back, W. 1–Overview of Manufacturing Beer: Ingredients, Processes, and Quality Criteria. In Beer in Health and Disease Prevention; Preedy, V.R., Ed.; Academic Press: San Diego, CA, USA, 2009; pp. 3–16. ISBN 978-0-12-373891-2. [Google Scholar]
- Zhuang, S.; Shetty, R.; Hansen, M.; Fromberg, A.; Hansen, P.B.; Hobley, T.J. Brewing with 100% Unmalted Grains: Barley, Wheat, Oat and Rye. Eur. Food Res. Technol. 2017, 243, 447–454. [Google Scholar] [CrossRef]
- Ceccaroni, D.; Sileoni, V.; Marconi, O.; De Francesco, G.; Lee, E.G.; Perretti, G. Specialty Rice Malt Optimization and Improvement of Rice Malt Beer Aspect and Aroma. LWT 2019, 99, 299–305. [Google Scholar] [CrossRef]
- Baiano, A. Craft Beer: An Overview. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1829–1856. [Google Scholar] [CrossRef] [PubMed]
- Loviso, C.L.; Libkind, D. Síntesis y regulación de los compuestos del aroma y sabor derivados de la levadura en la cerveza: Alcoholes superiores. Rev. Argent. Microbiol. 2019, 51, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Varela, C. The Impact of Non-Saccharomyces Yeasts in the Production of Alcoholic Beverages. Appl. Microbiol. Biotechnol. 2016, 100, 9861–9874. [Google Scholar] [CrossRef] [PubMed]
- Steensels, J.; Daenen, L.; Malcorps, P.; Derdelinckx, G.; Verachtert, H.; Verstrepen, K.J. Brettanomyces Yeasts—From Spoilage Organisms to Valuable Contributors to Industrial Fermentations. Int. J. Food Microbiol. 2015, 206, 24–38. [Google Scholar] [CrossRef] [Green Version]
- Holt, S.; Mukherjee, V.; Lievens, B.; Verstrepen, K.J.; Thevelein, J.M. Bioflavoring by Non-Conventional Yeasts in Sequential Beer Fermentations. Food Microbiol. 2018, 72, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Bokulich, N.A.; Bamforth, C.W.; Mills, D.A. Brewhouse-Resident Microbiota are Responsible for Multi-Stage Fermentation of American Coolship Ale. PLoS ONE 2012, 7, e35507. [Google Scholar] [CrossRef]
- Conway, J. World Beer Production. Available online: https://www.statista.com/statistics/270275/worldwide-beer-production/ (accessed on 17 July 2022).
- Research and Markets Beer Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2021–2026. Available online: https://www.researchandmarkets.com/reports/5311876/beer-market-global-industry-trends-share-size (accessed on 18 July 2022).
- Salanță, L.C.; Coldea, T.E.; Ignat, M.V.; Pop, C.R.; Tofană, M.; Mudura, E.; Borșa, A.; Pasqualone, A.; Zhao, H. Non-Alcoholic and Craft Beer Production and Challenges. Processes 2020, 8, 1382. [Google Scholar] [CrossRef]
- De la Rosa, E. Producción de Cerveza Artesanal Creció Más Que Industrial En 2020. Available online: https://www.milenio.com/negocios/produccion-cerveza-artesanal-crecio-industrial-2020 (accessed on 22 July 2021).
- Larroque, M.N.; Carrau, F.; Fariña, L.; Boido, E.; Dellacassa, E.; Medina, K. Effect of Saccharomyces and Non-Saccharomyces Native Yeasts on Beer Aroma Compounds. Int. J. Food Microbiol. 2021, 337, 108953. [Google Scholar] [CrossRef] [PubMed]
- Ballinas-Cesatti, C.B. Producción de Lípidos Microbianos Empleando Melaza de Caña de Azúcar Como Fuente de Carbono. Master’s Thesis, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México, 2018. [Google Scholar]
- Nieto-Sarabia, V.L.; Ballinas-Cesatti, C.B.; Melgar-Lalanne, G.; Cristiani-Urbina, E.; Morales-Barrera, L. Isolation, Identification, and Kinetic and Thermodynamic Characterization of a Pichia kudriavzevii Yeast Strain Capable of Fermentation. Food Bioprod. Process. 2022, 131, 109–124. [Google Scholar] [CrossRef]
- Ghosh, S.; Mandal, S.D.; Nath, N.; Kaipeng, D.L.; Rahaman, L.; Nachimuthu, S.K.; Sharma, B.K. Isolation and Partial Evaluation of a Potential Indigenous Yeast Strain Pichia kudriavzevii from a Traditional Rice Beer—“Gora” Prepared by the Koloi Tribes of Tripura. Adv. Microbiol. 2019, 9, 824–841. [Google Scholar] [CrossRef] [Green Version]
- Carciochi, R.A.; Galván-D’Alessandro, L.; Vandendriessche, P.; Chollet, S. Effect of Germination and Fermentation Process on the Antioxidant Compounds of Quinoa Seeds. Plant Foods Hum. Nutr. 2016, 71, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Mastanjević, K.; Šarkanj, B.; Krska, R.; Sulyok, M.; Warth, B.; Mastanjević, K.; Šantek, B.; Krstanović, V. From Malt to Wheat Beer: A Comprehensive Multi-Toxin Screening, Transfer Assessment and Its Influence on Basic Fermentation Parameters. Food Chem. 2018, 254, 115–121. [Google Scholar] [CrossRef]
- Nieto-Sarabia, V.L. Caracterización de Levaduras Productoras de Etanol Aisladas a Partir de Fuentes Naturales. Master’s Thesis, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México, 2020. [Google Scholar]
- López, P.; Guzmán, F.A.; Santos, E.M.; Prieto, F.; Román, A.D. Evaluation of Physical Quality from Different Barley Varieties (Hordeum sativum Jess) Produced in the States of Hidalgo and Tlaxcala from Mexico. Rev. Chil. Nutr. 2005, 32, 247–253. [Google Scholar] [CrossRef]
- Norma Mexicana-NMX-FF-043-SCFI-2003; Non-Industrialized Food Productos for Human Consuption- Malt Barley Cereal (Hordeum vulgare L. and Hordeum distichum L.)–Specifications and Test Methods. Dirección General de Normas: Ciudad de México, México, 2003.
- Latimer, G.W., Jr. Official Methods of Analysis of AOAC International, 20th ed.; AOAC International: Rockville, MD, USA, 2016. [Google Scholar]
- Worthington Worthington Enzyme Handbook: Enzymes, Enzymes Reagents and Related Biochemicals.; Biochemical Corporation: Lakewood, NJ, USA, 1972.
- Albalasmeh, A.A.; Berhe, A.A.; Ghezzehei, T.A. A New Method for Rapid Determination of Carbohydrate and Total Carbon Concentrations Using UV Spectrophotometry. Carbohydr. Polym. 2013, 97, 253–261. [Google Scholar] [CrossRef]
- Norma Oficial Mexicana NOM-210-SSA1-2014; Productos y Servicios. Métodos de Prueba Microbiológicos. Determinación de Microorganismos Indicadores. Determinación de Microorganismos Patógenos. Secretaría de Salud: Ciudad de México, México, 2014.
- NORMEX NMX-V-015-NORMEX-2014; Bebidas Alcohólicas-Determinación de Acidez Total, Acidez Fija y Acidez Volátil-Métodos de Prueba. Dirección General de Normas: Ciudad de México, Mexico, 2015.
- NORMEX NMX-V-013-NORMEX-2013; Bebidas Alcohólicas-Determinación del Contenido Alcohólico (Por Ciento de Alcohol en Volumen a 20 °C (% Alc. Vol.)-Métodos de Ensayo (Prueba). Dirección General de Normas: Ciudad de México, México, 2014.
- NORMEX NMX-V-005-NORMEX-2013; Bebidas Alcohólicas-Determinación de Aldehídos, Ésteres, Metanol y Alcoholes Superiores-Métodos de Ensayo (Prueba). Dirección General de Normas: Ciudad de México, Mexico, 2014.
- NORMEX NMX-V-050-NORMEX-2010; Bebidas Alcohólicas-Determinación de Metales Como Cobre (Cu), Plomo (Pb), Arsénico (As), Zinc (Zn), Hierro (Fe), Calcio (Ca), Mercurio (Hg), Cadmio (Cd), Por Absorción Atómica-Métodos de Ensayo (Prueba). Dirección General de Normas: Ciudad de México, Mexico, 2011.
- Pascari, X.; Ramos, A.J.; Marín, S.; Sanchís, V. Mycotoxins and Beer. Impact of Beer Production Process on Mycotoxin Contamination. A Review. Food Res. Int. 2018, 103, 121–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, H.; Takino, M.; Sugita-Konishi, Y.; Tanaka, T. Development of a Liquid Chromatography/Time-of-Flight Mass Spectrometric Method for the Simultaneous Determination of Trichothecenes, Zearalenone and Aflatoxins in Foodstuffs. Rapid Commun. Mass Spectrom. 2006, 20, 1422–1428. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.M. Citrin: Analysis and Occurrence. In Biodeterioration Research 4: Mycotoxins, Wood Decay, Plant Stress, Biocorrosion and General Biodeterioration; Proceedings of the Fourth Meeting of the Pan American Biodeterioration Society, Held 20–25 August 1991, as an Electronic Symposium; Dashek, W.V., Llewellyn, G.C., O’Rear, C.E., Eds.; Plenum Press: New York, NY, USA, 1994; ISBN 978-0-306-44638-2. [Google Scholar]
- Thammawong, M.; Okabe, M.; Kawasaki, T.; Nakagawa, H.; Nagawhima, H.; Okadome, H.; Nakajima, T.; Kushiro, M. Distribution of Deoxynivalenol and Nivalenol in Milling Fractions from Fusarium-Infected Japanese Wheat Cultivars. J. Food Prot. 2010, 73, 1817–1823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brookman, B.; Mann, I. Eurachem Guide: Selection, Use and Interpretation of Proficiency Testing (PT) Schemes, 3rd ed. 2021. Available online: www.eurachem.org (accessed on 31 March 2023).
- Veljovic, M.; Djordjevic, R.; Leskosek-Cukalovic, I.; Lakic, N.; Despotovic, S.; Pecic, S.; Nedovic, V. The Possibility of Producing a Special Type of Beer Made from Wort with the Addition of Grape Must. J. Inst. Brew. 2010, 116, 440–444. [Google Scholar] [CrossRef]
- Bellut, K.; Michel, M.; Zarnkow, M.; Hutzler, M.; Jacob, F.; Atzler, J.J.; Hoehnel, A.; Lynch, K.M.; Arendt, E.K. Screening and Application of Cyberlindnera Yeasts to Produce a Fruity, Non-Alcoholic Beer. Fermentation 2019, 5, 103. [Google Scholar] [CrossRef] [Green Version]
- Dysvik, A.; La Rosa, S.L.; Buffetto, F.; Liland, K.H.; Myhrer, K.S.; Rukke, E.-O.; Wicklund, T.; Westereng, B. Secondary Lactic Acid Bacteria Fermentation with Wood-Derived Xylooligosaccharides as a Tool To Expedite Sour Beer Production. J. Agric. Food Chem. 2020, 68, 301–314. [Google Scholar] [CrossRef]
- Tozetto, L.M.; Nascimento, R.F.D.; Oliveira, M.H.D.; Van Beik, J.; Canteri, M.H.G. Production and Physicochemical Characterization of Craft Beer with Ginger (Zingiber officinale). Food Sci. Technol. 2019, 39, 962–970. [Google Scholar] [CrossRef] [Green Version]
- Guglielmotti, M.; Passaghe, P.; Buiatti, S. Use of Olive (Olea europaea L.) Leaves as Beer Ingredient, and Their Influence on Beer Chemical Composition and Antioxidant Activity. J. Food Sci. 2020, 85, 2278–2285. [Google Scholar] [CrossRef] [PubMed]
- Nikulin, J.; Vidgren, V.; Krogerus, K.; Magalhães, F.; Valkeemäki, S.; Kangas-Heiska, T.; Gibson, B. Brewing Potential of the Wild Yeast Species Saccharomyces paradoxus. Eur. Food Res. Technol. 2020, 246, 2283–2297. [Google Scholar] [CrossRef]
- López, P.; Prieto, G.F.; Gaytán, M.M.; Román, G.A.D. Caracterización Fisicoquímica de Diferentes Variedades de Cebada Cultivadas En La Región Centro de México. Rev. Chil. Nutr. 2007, 34, 71–77. [Google Scholar] [CrossRef]
- Prieto Méndez, J.; Prieto García, F.; Hernández Cervantes, N.; Domínguez Soto, J.M.; Román Gutiérrez, A.D. Métodos Comparativos del Poder Germinativo en Hordeum distichon L. Calidad Maltera. Multiciencias 2011, 11, 121–128. [Google Scholar]
- Hayes, P.M.; Castro, A.; Marquez-Cedillo, L.; Corey, A.; Henson, C.; Jones, B.L.; Kling, J.; Mather, D.; Matus, I.; Rossi, C.; et al. Chapter 10–Genetic Diversity for Quantitatively Inherited Agronomic and Malting Quality Traits. In Developments in Plant Genetics and Breeding; von Bothmer, R., van Hintum, T., Knüpffer, H., Sato, K., Eds.; Diversity in Barley; Elsevier: Amsterdam, The Netherlands, 2003; Volume 7, pp. 201–226. [Google Scholar]
- Harrison, M.A. Beer/Brewing. In Encyclopedia of Microbiology, 3rd ed.; Schaechter, M., Ed.; Academic Press: Oxford, UK, 2009; pp. 23–33. ISBN 978-0-12-373944-5. [Google Scholar]
- Sieuwerts, S.; Bron, P.A.; Smid, E.J. Mutually Stimulating Interactions between Lactic Acid Bacteria and Saccharomyces cerevisiae in Sourdough Fermentation. LWT 2018, 90, 201–206. [Google Scholar] [CrossRef]
- Mengesha, Y.; Tebeje, A.; Tilahun, B. A Review on Factors Influencing the Fermentation Process of Teff (Eragrostis Teff) and Other Cereal-Based Ethiopian Injera. Int. J. Food Sci. 2022, 2022, e4419955. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Nava, L.E.; Montes-Garcia, N.; Domínguez, J.M.; Aguilar-Uscanga, M.G. Effect of Carbon Sources on the Growth and Ethanol Production of Native Yeast Pichia kudriavzevii ITV-S42 Isolated from Sweet Sorghum Juice. Bioprocess Biosyst. Eng. 2017, 40, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, V.; Radecka, D.; Aerts, G.; Verstrepen, K.J.; Lievens, B.; Thevelein, J.M. Phenotypic Landscape of Non-Conventional Yeast Species for Different Stress Tolerance Traits Desirable in Bioethanol Fermentation. Biotechnol. Biofuels 2017, 10, 216. [Google Scholar] [CrossRef] [PubMed]
- Norma Oficial Mexicana-NOM-199-SCFI-2017; Bebidas Alcohólicas-Denominación, Especificaciones Fisicoquímicas, Información Comercial y Métodos de Prueba. Dirección General de Normas: Ciudad de México, Mexico, 2017.
- Proyecto de Norma Oficial Mexicana NOM-201-SSA1-2013; Productos y Servicios. Agua y Hielo Para Consumo Humano. Comisión Nacional Regulatoria: Ciudad de México, México, 2014.
- Bamforth, C.W. PH in Brewing: An Overview. Tech. Q.-Master Brew. Assoc. Am. 2001, 38, 1–9. [Google Scholar]
- Beer 9. PH (Hydrogen Ion Concentration). Available online: https://www.asbcnet.org/Methods/BeerMethods/Pages/Beer-9-MasterMethod.aspx (accessed on 22 July 2022).
- Holt, S.; Miks, M.H.; de Carvalho, B.T.; Foulquié-Moreno, M.R.; Thevelein, J.M. The Molecular Biology of Fruity and Floral Aromas in Beer and Other Alcoholic Beverages. FEMS Microbiol. Rev. 2019, 43, 193–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanderhaegen, B.; Neven, H.; Verachtert, H.; Derdelinckx, G. The Chemistry of Beer Aging–a Critical Review. Food Chem. 2006, 95, 357–381. [Google Scholar] [CrossRef]
- Steensels, J.; Verstrepen, K.J. Taming Wild Yeast: Potential of Conventional and Nonconventional Yeasts in Industrial Fermentations. Annu. Rev. Microbiol. 2014, 68, 61–80. [Google Scholar] [CrossRef] [PubMed]
- Langenaeken, N.A.; Ieven, P.; Hedlund, E.G.; Kyomugasho, C.; Walle, D.V.D.; Dewettinck, K.; Loey, A.M.V.; Roeffaers, M.B.J.; Courtin, C.M. Arabinoxylan, β-Glucan and Pectin in Barley and Malt Endosperm Cell Walls: A Microstructure Study Using CLSM and Cryo-SEM. Plant J. 2020, 103, 1477–1489. [Google Scholar] [CrossRef]
- Wang, M.-L.; Wang, J.-T.; Choong, Y.-M. A Rapid and Accurate Method for Determination of Methanol in Alcoholic Beverage by Direct Injection Capillary Gas Chromatography. J. Food Compos. Anal. 2004, 17, 187–196. [Google Scholar] [CrossRef]
- Redan, B.W.; Jablonski, J.E.; Halverson, C.; Jaganathan, J.; Mabud, M.A.; Jackson, L.S. Factors Affecting Transfer of the Heavy Metals Arsenic, Lead, and Cadmium from Diatomaceous-Earth Filter Aids to Alcoholic Beverages during Laboratory-Scale Filtration. J. Agric. Food Chem. 2019, 67, 2670–2678. [Google Scholar] [CrossRef]
- Nešić, K.; Habschied, K.; Mastanjević, K. Possibilities for the Biological Control of Mycotoxins in Food and Feed. Toxins 2021, 13, 198. [Google Scholar] [CrossRef] [PubMed]
- FAO. Worldwide Regulations for Mycotoxins in Food and Feed in 2003; Food and Agriculture Organization of the United Nations: Rome, Italy, 2004; pp. 1–165. [Google Scholar]
- Schabo, D.C.; Freire, L.; Sant’Ana, A.S.; Schaffner, D.W.; Magnani, M. Mycotoxins in Artisanal Beers: An Overview of Relevant Aspects of the Raw Material, Manufacturing Steps and Regulatory Issues Involved. Int. Food Res. J. 2021, 141, 110114. [Google Scholar] [CrossRef] [PubMed]
- Simpson, W.J. Chapter 13–Sensory Analysis in the Brewery. In Brewing Materials and Processes; Bamforth, C.W., Ed.; Academic Press: San Diego, CA, USA, 2016; pp. 257–289. ISBN 978-0-12-799954-8. [Google Scholar]
- Spedding, G.; Aiken, T. 18–Sensory Analysis as a Tool for Beer Quality Assessment with an Emphasis on Its Use for Microbial Control in the Brewery. In Brewing Microbiology; Hill, A.E., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Oxford, UK, 2015; pp. 375–404. ISBN 978-1-78242-331-7. [Google Scholar]
- Liu, C.; Dong, J.; Wang, J.; Yin, X.; Li, Q. A Comprehensive Sensory Evaluation of Beers from the Chinese Market. J. Inst. Brew. 2012, 118, 325–333. [Google Scholar] [CrossRef]
- Ocvirk, M.; Mlinarič, N.K.; Košir, I.J. Comparison of Sensory and Chemical Evaluation of Lager Beer Aroma by Gas Chromatography and Gas Chromatography/Mass Spectrometry. J. Sci. Food Agric. 2018, 98, 3627–3635. [Google Scholar] [CrossRef] [PubMed]
Physical Parameters | Results | Acceptable Limit | Reference |
---|---|---|---|
Aroma | Good aroma | Good aroma | [25] |
Aspect | Good aspect | Good aspect | |
Impurities (%) | 6.512 ± 0.9 | Maximum 10 | |
Viability (%) | 87.33 ± 0.1 | Minimum 85 | |
Weight (kg) per hectoliter | 57.17 ± 3.33 | Minimum 56 | |
Chemical parameters | Results | Interval of the reported values | Reference |
Humidity (%) | 8.22 ± 0.04 | <12 | [34] |
Ashes (%) | 2.82 ± 0.04 * | 2–3.1 * | [45] |
Lipids (%) | 3.11 ± 0.08 * | 1.1–3.1 * | [45] |
Crude fiber (%) | 6.29 ± 0.01 * | Approx. 6 * | [4] |
Crude protein (%) | 11.72 ± 0.03 * | 8–13.5 * | [4] |
Carbohydrates (%) | 76.10 ± 0.2 * | 72.8–82.8 * | [45] |
Germination Time (days) | Glucose Content (mg g−1) |
---|---|
0 | 1.48 ± 0.05 |
3 | 19.50 ± 0.07 |
4 | 25.53 ± 0.35 |
5 | 25.5 ± 0.20 |
Before Fermentation | After Fermentation | |
---|---|---|
Total sugars (g L−1) | 125 ± 1.37 | 12.9 ± 0.14 |
Glucose (g L−1) | 12 ± 0.11 | 0.0 ± 0.0 |
Ethanol (g L−1) | 0.0 ± 0.0 | 109.18 ± 1.3 |
Biomass (g L−1) | 0.1 ± 0.02 | 44.91 ± 0.60 |
pH | 6.0 ± 0.1 | 4.5 ± 0.1 |
Parameter | Result | Min/Max Limit | Reference |
---|---|---|---|
pH (at 20 °C) | 4.23 ± 0.1 | 2.5–5 | [53] |
Total acidity (mg lactic acid/100 mL anhydrous ethanol) | 2.44 ± 0.12 | Max. 10 | |
Ethanol (% v/v) | 5.2 ± 0.2 | 2–20 | |
Higher alcohols (mg/100 mL anhydrous ethanol) | 140.95 ± 2.2 | Not applicable | |
Esters (mg/100 mL anhydrous ethanol) | 71.72 ± 1.3 | Not applicable | |
Aldehydes (mg/100 mL anhydrous ethanol) | <LOD 1 | Not applicable | |
Methanol (mg/100 mL anhydrous ethanol) | <LOD 2 | Max. 300 | |
Lead (mg L−1) | <LOD 3 | Max. 0.5 | |
Arsenic (mg l−1) | <LOD 4 | Max. 0.5 | |
Total coliform bacteria (MPN/100 mL) | <1.1 | <1.1 | [54] |
Mycotoxin | LOD (μg/Kg) | Barley | Malted Barley | Beer | Maximum Allowable Level (μg/kg) | Reference |
---|---|---|---|---|---|---|
Aflatoxins (AFs) | [64] | |||||
Aflatoxin B1 (AFB1) | 1.5 | <LOD | <LOD | <LOD | 4 (for all AFs) | |
Aflatoxin B2 (AFB2) | 1.5 | <LOD | <LOD | <LOD | ||
Aflatoxin G1 (AFG1) | 1.5 | <LOD | <LOD | <LOD | ||
Aflatoxin G2 (AFG2) | 1.5 | <LOD | <LOD | <LOD | ||
Trichothecenes | ||||||
HT-2 | 4.71 | <LOD | <LOD | <LOD | HT-2 + T-2 ≤ 200 | |
T-2 | 2.24 | <LOD | <LOD | <LOD | ||
Neosolaniol (NEO) | 1.61 | <LOD | <LOD | <LOD | NR | |
Diacetoxyscirpenol (DAS) | 2.27 | <LOD | <LOD | <LOD | NR | |
Deoxynivalenol * (DON) | 30.0 | <LOD | <LOD | <LOD | 750 | |
Others | ||||||
Ochratoxin A (OTA) | 3.0 | <LOD | <LOD | <LOD | 5 (in cereals); 3 (in cereal products) | |
Zearalenone (ZEN) | 1.08 | <LOD | <LOD | <LOD | 1000 | |
Fumonisin B1 (FUMB1) | 100 | <LOD | <LOD | <LOD | 4000 (FUMB1 + FUMB2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nieto-Sarabia, V.L.; Melgar-Lalanne, G.; Ballinas-Cesatti, C.B.; García-García, F.A.; Jose-Salazar, J.A.; Flores-Ortiz, C.M.; Cristiani-Urbina, E.; Morales-Barrera, L. Brewing a Craft Belgian-Style Pale Ale Using Pichia kudriavzevii 4A as a Starter Culture. Microorganisms 2023, 11, 977. https://doi.org/10.3390/microorganisms11040977
Nieto-Sarabia VL, Melgar-Lalanne G, Ballinas-Cesatti CB, García-García FA, Jose-Salazar JA, Flores-Ortiz CM, Cristiani-Urbina E, Morales-Barrera L. Brewing a Craft Belgian-Style Pale Ale Using Pichia kudriavzevii 4A as a Starter Culture. Microorganisms. 2023; 11(4):977. https://doi.org/10.3390/microorganisms11040977
Chicago/Turabian StyleNieto-Sarabia, Vogar Leonel, Guiomar Melgar-Lalanne, Christian Bryan Ballinas-Cesatti, Fernando Abiram García-García, Jorge Alberto Jose-Salazar, César Mateo Flores-Ortiz, Eliseo Cristiani-Urbina, and Liliana Morales-Barrera. 2023. "Brewing a Craft Belgian-Style Pale Ale Using Pichia kudriavzevii 4A as a Starter Culture" Microorganisms 11, no. 4: 977. https://doi.org/10.3390/microorganisms11040977
APA StyleNieto-Sarabia, V. L., Melgar-Lalanne, G., Ballinas-Cesatti, C. B., García-García, F. A., Jose-Salazar, J. A., Flores-Ortiz, C. M., Cristiani-Urbina, E., & Morales-Barrera, L. (2023). Brewing a Craft Belgian-Style Pale Ale Using Pichia kudriavzevii 4A as a Starter Culture. Microorganisms, 11(4), 977. https://doi.org/10.3390/microorganisms11040977