Novel Functional Grape Juices Fortified with Free or Immobilized Lacticaseibacillus rhamnosus OLXAL-1
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbial Cultures
2.2. Cell Immobilization and Production of Freeze-Dried Cultures
2.3. Novel Juice Products
2.4. Susceptibility to Spoilage
2.5. Microbiological Analyses
2.5.1. L. rhamnosus OLXAL-1 Cell Counts
2.5.2. Populations of Food-Spoilage Microorganisms
- S. cerevisiae counts were determined on YPD Agar (yeast extract 10 g/L, peptone 20 g/L, dextrose 20 g/L, agar 20 g/L) after incubation at 28 °C for 72 h.
- A. niger spores were determined after enumeration on Neubauer plate (spores/g). A. niger counts (log cfu/mL) were determined on Malt Agar after incubation for 72 h at 37 °C [34].
2.5.3. Microbial Contaminants
- Total mesophilic counts on Plate Count Agar (PCA) (Condalab, Madrid, Spain) after incubation at 30 °C for 72 h.
- Yeasts/molds counts on Malt Agar (Condalab) after incubation 30 °C for 72 h.
- Clostridia on TSC Agar (Condalab) after anaerobic incubation at 37 °C for 24 h.
- Enterobacteriacae on Violet Red Bile Glucose Agar (V.R.B.G.A.) (Condalab) after incubation at 37 °C for 24 h.
- Coliforms on Violet Red Bile Agar (V.R.B.A.) (Condalab) after incubation at 30 °C for 24 h.
- Staphylococci on Baird-Parker Agar (BP) (Condalab) after incubation at 37 °C for 24 h.
- Salmonella spp. In X.L.D. agar (LabM, UK) at 37 °C.
- Escherichia coli on HarlequinTM Chromogenic Media (Condalab) after incubation at 37 °C for 24 h.
- Pseudomonas aeruginosa on Pseudomonas agar base—Pseudomonas CN Agar (VWR International GmbH, USA) after incubation at 37 °C for 40–48 h.
- Listeria monocytogenes on L-Palcam agar (LabM) fortified with X144 supplement (VWR) after incubation at 37 °C for 48 h.
2.6. Physicochemical Analysis
2.7. Minor Volatiles
2.8. Preliminary Sensory Evaluation
2.9. Statistical Analysis
3. Results and Discussions
3.1. Storage of Freeze-Dried L. rhamnosus OLXAL-1 Cultures
3.2. Viability of L. rhamnosus OLXAL-1 Cells in Novel Functional Grape Juice Products
3.3. Resistance of Fortified Juices to Microbial Contamination
3.4. Minor Volatiles Determination and Chemometrics
3.5. Preliminary Sensory Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nguyen, B.T.; Bujna, E.; Fekete, N.; Tran, A.T.M.; Rezessy-Szabo, J.M.; Prasad, R.; Nguyen, Q.D. Probiotic Beverage from Pineapple Juice Fermented with Lactobacillus and Bifidobacterium Strains. Front. Nutr. 2019, 6, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khezri, S.; Moghaddaskia, E.; Mehdi Seyedsaleh, M.; Abedinzadeh, S.; Dastras, M. Application of nanotechnology in food industry and related health concern challenges. Int. J. Adv. Biotechnol. Res. 2016, 7, 1370–1382. [Google Scholar]
- Arihara, K. Functional foods. In Encyclopedia of Meat Sciences, 2nd ed.; Devine, C., Dikeman, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 32–36. [Google Scholar]
- Roberfroid, M. 1-Defining functional foods and associated claims. In Woodhead Publishing Series in Food Science, Technology and Nutrition, Functional Foods, 2nd ed.; Saarela, M., Ed.; Woodhead Publishing: Cambridge, UK, 2011; pp. 3–24. [Google Scholar] [CrossRef]
- Perricone, M.; Bevilacqua, A.; Altieri, C.; Sinigaglia, M.; Corbo, M.R. Challenges for the production of probiotic fruit juices. Beverages 2015, 1, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Amorim, J.C.; Piccoli, R.H.; Duarte, W.F. Probiotic potential of yeasts isolated from pineapple and their use in the elaboration of potentially functional fermented beverages. Food Res. Int. 2018, 107, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Food and Agricultural Organization of the United Nations; World Health Organization. Probiotics in food: Health and nutritional properties and guidelines for evaluation. FAO Food Nutr. Paper 2006, 85. Available online: https://www.fao.org/3/a0512e/a0512e.pdf (accessed on 29 January 2023).
- Nelios, G.; Santarmaki, V.; Pavlatou, C.; Dimitrellou, D.; Kourkoutas, Y. NewWild-Type Lacticaseibacillus rhamnosus Strains as Candidates to Manage Type 1 Diabetes. Microorganisms 2022, 10, 272. [Google Scholar] [CrossRef]
- Ribeiro, A.P.D.O.; Gomes, F.D.S.; dos Santos, K.M.O.; da Matta, V.M.; de Sá, D.D.G.C.F.; Santiago, M.C.P.D.A.; Conte, C.; Costa, S.D.D.O.; Ribero, L.D.O.; Godoy, R.L.D.O.; et al. Development of a probiotic non-fermented blend beverage with juçara fruit: Effect of the matrix on probiotic viability and survival to the gastrointestinal tract. LWT 2020, 118, 108756. [Google Scholar] [CrossRef]
- Martínez Vázquez, S.E.; Nogueira de Rojas, J.R.; Remes Troche, J.M.; Coss Adame, E.; Rivas Ruíz, R.; Uscanga Domínguez, L.F. The importance of lactose intolerance in individuals with gastrointestinal symptoms. Rev. Gastroenterol. Mex. 2020, 85, 321–331. [Google Scholar] [CrossRef]
- Lu, Y.; Tan, C.W.; Chen, D.; Liu, S.Q. Potential of three probiotic lactobacilli in transforming star fruit juice into functional beverages. Food Sci. Nutr. 2018, 6, 2141–2150. [Google Scholar] [CrossRef]
- Roberts, D.; Reyes, V.; Bonilla, F.; Dzandu, B.; Liu, C.; Chouljenko, A.; Sathivel, S. Viability of Lactobacillus plantarum NCIMB 8826 in fermented apple juice under simulated gastric and intestinal conditions. LWT 2018, 97, 144–150. [Google Scholar] [CrossRef]
- Vasudha, S.; Mishra, H.N. Non dairy probiotic beverages. Int. Food Res. J. 2013, 20, 7–15. [Google Scholar]
- Ros-Chumillas, M.; Belissario, Y.; Iguaz, A.; López, A. Quality and shelf life of orange juice aseptically packaged in PET bottles. J. Food Eng. 2007, 79, 234–242. [Google Scholar] [CrossRef]
- Bhardway, R.L.; Nandal, U.; Pal, A.; Jain, S. Bioactive Compounds and Medical Properties of Fruit Juices. Fruits 2014, 69, 391–412. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, M.K.; Giri, S.K. Probiotic Functional Foods: Survival of Probiotics during Processing and Storage. J. Funct. Foods 2014, 9, 225–241. [Google Scholar] [CrossRef]
- Mantzourani, I.; Nouska, C.; Terpou, A.; Alexopoulos, A.; Bezirtzoglou, E.; Panayiotidis, M.I.; Galanis, A.; Plessas, S. Production of a Novel Functional Fruit Beverage Consisting of Cornelian Cherry Juice and Probiotic Bacteria. Antioxidants 2018, 7, 163. [Google Scholar] [CrossRef] [Green Version]
- Costa, A.G.V.; Garcia-Diaz, D.F.; Jimenez, P.; Silva, P.I. Bioactive compounds and health benefits of exotic tropical red–black berries. J. Funct. Foods 2013, 5, 539–549. [Google Scholar] [CrossRef]
- Kokkinomagoulos, E.; Nikolaou, A.; Kourkoutas, Y.; Kandylis, P. Evaluation of Yeast Strains for Pomegranate Alcoholic Beverage Production: Effect on Physicochemical Characteristics, Antioxidant Activity, and Aroma Compounds. Microorganisms 2020, 8, 1583. [Google Scholar] [CrossRef]
- Bontsidis, C.; Mallouchos, A.; Terpou, A.; Nikolaou, A.; Batra, G.; Mantzourani, I.; Alexopoulos, A.; Plessas, S. Microbiological and Chemical Properties of Chokeberry Juice Fermented by Novel Lactic Acid Bacteria with Potential Probiotic Properties during Fermentation at 4 C for 4Weeks. Foods 2021, 10, 768. [Google Scholar] [CrossRef]
- Daneshi, M.; Ehsani, M.R.; Razavi, S.H.; Labbafi, M. Effect of refrigerated storage on the probiotic survival and sensory properties of milk/carrot juice mix drink. Elec. J. Biotechnol. 2013, 16, 5. [Google Scholar] [CrossRef]
- Okina, V.S.; Porto, M.R.A.; Pimentel, T.C.; Prudencio, S.H. White grape juice added with Lactobacillus paracasei ssp. probiotic culture. Nutr. Food Sci. 2018, 48, 634–641. [Google Scholar] [CrossRef]
- Mokhtari, S.; Jafari, S.M.; Khomeiri, M. Survival of encapsulated probiotics in pasteurized grape juice and evaluation of their properties during storage. Food Sci. Technol. Int. 2019, 25, 120–129. [Google Scholar] [CrossRef]
- Gumus, S.; Demirci, A.S. Survivability of probiotic strains, Lactobacillus fermentum CECT 5716 and Lactobacillus acidophilus DSM 20079 in grape juice and physico-chemical properties of the juice during refrigerated storage. Food Sci. Technol. 2022, 42. [Google Scholar] [CrossRef]
- Arici, M.; Coskun, F. Hardaliye: Fermented Grape Juice as a Traditional Turkish Beverage. Food Microbiol. 2001, 18, 417–421. [Google Scholar] [CrossRef]
- Giovinazzo, G.; Grieco, F. Functional Properties of Grape and Wine Polyphenols. Plant Foods Hum. Nutr. 2015, 70, 454–462. [Google Scholar] [CrossRef]
- Khymenets, O.; Andres-Lacueva, C.; Urpi-Sarda, M.; Vazquez-Fresno, R.; Mart, M.M.; Reglero, G.; Torres, M.; Llorach, R. Metabolic Fingerprint after Acute and under Sustained Consumption of a Functional Beverage Based on Grape Skin Extract in Healthy Human Subjects. Food Funct. 2015, 6, 1288–1298. [Google Scholar] [CrossRef] [Green Version]
- Mitropoulou, G.; Nedovic, V.; Goyal, A.; Kourkoutas, Y. Immobilization Technologies in Probiotic Food Production. J. Nutr. Metab. 2013, 2013, 716861. [Google Scholar] [CrossRef]
- Ouwehand, A.C.; Salminen, S. In Vitro adhesion Assays for Probiotics and Their in Vivo relevance: A Review. Microb. Ecol. Health Dis. 2003, 15, 175–184. [Google Scholar] [CrossRef]
- Deepika, G.; Charalampopoulos, D. Surface and Adhesion Properties of Lactobacilli. Adv. Appl. Microbiol. 2010, 70, 127–152. [Google Scholar] [CrossRef]
- Swanson, K.S.; Gibson, G.R.; Hutkins, R.; Reimer, R.A.; Reid, G.; Verbeke, K.; Scott, K.P.; Holscher, H.D.; Azad, M.B.; Delzenne, N.M.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Synbiotics. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 687–701. [Google Scholar] [CrossRef]
- Nikolaou, A.; Sgouros, G.; Mitropoulou, G.; Santarmaki, V.; Kourkoutas, Y. Freeze-Dried Immobilized Kefir Culture in Low Alcohol Winemaking. Foods 2020, 9, 115. [Google Scholar] [CrossRef] [Green Version]
- Keller, S.A.; Miller, A.J. Microbiological Safety of Fresh Citrus and Apple Juices. In Microbiology of Foods and Vegetables; Sapers, G.M., Gorny, J.R., Yousef, A.E., Eds.; CRC Press: Boca Raton, FL, USA, 2006; pp. 211–230. [Google Scholar]
- Mitropoulou, G.; Bardouki, H.; Vamvakias, M.; Panas, P.; Paraskevas, P.; Kourkoutas, Y. Assessment of Antimicrobial Efficiency of Pistacia lentiscus and Fortunella margarita Essential Oils against Spoilage and Pathogenic Microbes in Ice Cream and Fruit Juices. Microbiol. Res. 2022, 13, 667–680. [Google Scholar] [CrossRef]
- Inetianbor, J.E.; Yakubu, J.M.; Ezeonu, S.C. Effects of food additives and preservatives on a man-a review. AJST 2015, 6, 1118–1135. [Google Scholar]
- Ofosu, F.K.; Daliri, E.B.-M.; Elahi, F.; Chelliah, R.; Lee, B.-H.; Oh, D.-H. New Insights on the Use of Polyphenols as Natural Preservatives and Their Emerging Safety Concerns. Front. Sustain. Food Syst. 2020, 4, 525810. [Google Scholar] [CrossRef]
- Šušković, J.; Kos, B.; Beganović, J.; Leboš Pavunc, A.; Habjanič, K.; Matošić, S. Antimicrobial activity–the most important property of probiotic and starter lactic acid bacteria. Food Technol. Biotechnol. 2010, 48, 296–307. [Google Scholar]
- Tan, P.; Peh, K.; Gan, C.; Liong, M.T. Bioactive dairy ingredients for food and non-food applications. Acta Aliment. 2014, 43, 113–123. [Google Scholar] [CrossRef] [Green Version]
- Yost, C.K. Biopreservation. In Encyclopedia of Meat Sciences, 2nd ed.; Devine, C., Dikeman, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 76–82. [Google Scholar]
- Nikolaou, A.; Nelios, G.; Kanellaki, M.; Kourkoutas, Y. Freeze-dried immobilized kefir culture in cider-making. J. Sci. Food Agric. 2020, 100, 3319–3327. [Google Scholar] [CrossRef] [PubMed]
- Prapa, I.; Nikolaou, A.; Panas, P.; Tassou, C.; Kourkoutas, Y. Developing Stable Freeze-Dried Functional Ingredients Containing Wild-Type Presumptive Probiotic Strains for Food Systems. Appl. Sci. 2023, 13, 630. [Google Scholar] [CrossRef]
- Nikolaou, A.; Tsakiris, A.; Kanellaki, M.; Bezirtzoglou, E.; Akrida-Demertzi, K.; Kourkoutas, Y. Wine production using free and immobilized kefir culture on natural supports. Food Chem. 2019, 272, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Nikolaou, A.; Kourkoutas, Y. High-Temperature Semi-Dry and Sweet Low AlcoholWine-Making Using Immobilized Kefir Culture. Fermentation 2021, 7, 45. [Google Scholar] [CrossRef]
- Mani-López, E.; Palou, E.; López-Malo, A. Probiotic Viability and Storage Stability of Yogurts and Fermented Milks Prepared with Several Mixtures of Lactic Acid Bacteria. J. Dairy Sci. 2014, 97, 2578–2590. [Google Scholar] [CrossRef] [Green Version]
- Jofré, A.; Aymerich, T.; Garriga, M. Impact of Different Cryoprotectants on the Survival of Freeze-Dried Lactobacillus Rhamnosus and Lactobacillus Casei/Paracasei during Long-Term Storage. Benef. Microbes 2015, 6, 381–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lasta, E.L.; da Silva Pereira Ronning, E.; Dekker, R.F.H.; da Cunha, M.A.A. Encapsulation and Dispersion of Lactobacillus Acidophilus in a Chocolate Coating as a Strategy for Maintaining Cell Viability in Cereal Bars. Sci. Rep. 2021, 11, 20550. [Google Scholar] [CrossRef]
- Huang, S.; Méjean, S.; Rabah, H.; Dolivet, A.; Le Loir, Y.; Chen, X.D.; Jan, G.; Jeantet, R.; Schuck, P. Double Use of Concentrated Sweet Whey for Growth and Spray Drying of Probiotics: Towards Maximal Viability in Pilot Scale Spray Dryer. J. Food Eng. 2017, 196, 11–17. [Google Scholar] [CrossRef]
- Albadran, H.A.; Chatzifragkou, A.; Khutoryanskiy, V.V.; Charalampopoulos, D. Stability of probiotic Lactobacillus plantarum in dry microcapsules under accelerated storage conditions. Food Res. Int. 2015, 74, 208–216. [Google Scholar] [CrossRef]
- Ozbekova, Z.; Kulmyrzaev, A. Study of moisture content and water activity of rice using fluorescence spectroscopy and multivariate analysis. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 223, 117357. [Google Scholar] [CrossRef]
- Dianawati, D.; Mishra, V.; Shah, N.P. Survival of Microencapsulated Probiotic Bacteria after Processing and during Storage: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1685–1716. [Google Scholar] [CrossRef]
- Dimitrellou, D.; Tsaousi, K.; Kourkoutas, Y.; Panas, P.; Kanellaki, M.; Koutinas, A.A. Fermentation efficiency of thermally dried immobilized kefir on casein as starter culture. Process Biochem. 2008, 43, 1323–1329. [Google Scholar] [CrossRef]
- Tsaousi, K.; Koutinas, A.A.; Bekatorou, A.; Loukatos, P. Fermentation Efficiency of Cells Immobilized on Delignified Brewers’ Spent Grains after Low- and High-Temperature Thin Layer Thermal Drying. Appl. Biochem. Biotechnol. 2010, 162, 594–606. [Google Scholar] [CrossRef]
- Nikolaou, A.; Sgouros, G.; Santarmaki, V.; Mitropoulou, G.; Kourkoutas, Y. Preliminary Evaluation of the Use of Thermally-Dried Immobilized Kefir Cells in Low AlcoholWinemaking. Appl. Sci. 2022, 12, 6176. [Google Scholar] [CrossRef]
- Pimentel, T.C.; Madrona, G.S.; Garcia, S.; Prudencio, S.H. Probiotic viability, physicochemical characteristics and acceptability during refrigerated storage of clarified apple juice supplemented with Lactobacillus paracasei ssp. paracasei and oligofructose in different package type. LWT 2015, 63, 415–422. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document: The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [Green Version]
- Enache, E.; Chen, Y.; Awuah, G.; Economides, A.; Scott, V.N. Thermal resistance parameters for pathogens in white grape juice concentrate. J. Food. Prot. 2006, 69, 564–569. [Google Scholar] [CrossRef]
- Nualkaekul, S.; Charalampopoulos, D. Survival of Lactobacillus plantarum in model solutions and fruit juices. Int. J. Food Microbiol. 2011, 146, 111–117. [Google Scholar] [CrossRef]
- Leneveu-Jenvrin, C.; Quentin, B.; Messaaf, F.-E.; Hoarau, M.; Lebrun, M.; Remize, F. Selection of Microbial Targets for Treatments to Preserve Fresh Carrot Juice. Beverages 2022, 8, 17. [Google Scholar] [CrossRef]
- Bevilacqua, A.; Campaniello, D.; Corbo, M.R.; Maddalena, L.; Sinigaglia, M. Suitability of Bifidobacterium spp. and Lactobacillus plantarum as Probiotics Intended for Fruit Juices Containing Citrus Extracts. J. Food Sci. 2013, 78, 1764–1771. [Google Scholar] [CrossRef]
- Abouloifa, H.; Gaamouche, S.; Rokni, Y.; Hasnaoui, I.; Bellaouchi, R.; Ghabbour, N.; Karboune, S.; Brasca, M.; D’Hallewin, G.; Ben Salah, R.; et al. Antifungal activity of probiotic Lactobacillus strains isolated from natural fermented green olives and their application as food biopreservative. Biol. Control 2021, 152, 104450. [Google Scholar] [CrossRef]
- Sidira, M.; Galanis, A.; Nikolaou, A.; Kanellaki, M.; Kourkoutas, Y. Evaluation of Lactobacillus casei ATCC 393 protective effect against spoilage of probiotic dry-fermented sausages. Food Control 2014, 42, 315–320. [Google Scholar] [CrossRef]
- Ferrari, G.; Lablanquie, O.; Cantagrel, R.; Ledauphin, J.; Payot, T.; Fournier, N.; Guichard, E. Determination of key odorant compounds in freshly distilled cognac using GC-O, GC-MS, and sensory evaluation. J. Agric. Food Chem. 2004, 52, 5670–5676. [Google Scholar] [CrossRef]
- Knoll, C.; Fritsch, S.; Schnell, S.; Grossmann, M.; Rauhut, D.; Du Toit, M. Influence of pH and ethanol on malolactic fermentation and volatile aroma compound composition in white wines. LWT 2011, 44, 2077–2086. [Google Scholar] [CrossRef]
- Pena-Alvarez, A.; Capella, S.; Juarez, R.; Labastida, C. Determination of terpenes in tequila by solid phase microextraction-gas chromatography-mass spectrometry. J. Chromatogr. A 2006, 1134, 291–297. [Google Scholar] [CrossRef]
- Vilanova, M.; Sieiro, C. Determination of free and bound terpene compounds in Albarino wine. J. Food Compos. Anal. 2006, 19, 694–697. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.S. Analysis of volatile compounds in the root peel, stem peel, and fruit peel of pomegranate (Punica granatum) by TD GC/MS. Int. J. Biosci. Biotechnol. 2014, 6, 169–181. [Google Scholar] [CrossRef]
- Jackson, R.S. Wine Science: Principles and Applications, 4th ed.; Academic Press Inc.: San Diego, CA, USA, 2014. [Google Scholar]
- Slegers, A.; Angers, P.; Ouellet, É.; Truchon, T.; Pedneault, K. Volatile Compounds from Grape Skin, Juice and Wine from Five Interspecific Hybrid Grape Cultivars Grown in Québec (Canada) for Wine Production. Molecules 2015, 20, 10980–11016. [Google Scholar] [CrossRef] [Green Version]
- Dixon, J.; Hewett, E.W. Factors affecting apple aroma/flavour volatile concentration: A review. N. Z. J. Crop Hortic. Sci. 2000, 28, 155–173. [Google Scholar] [CrossRef] [Green Version]
- Dimitrellou, D.; Kandylis, P.; Kourkoutas, Y. Assessment of Freeze-Dried Immobilized Lactobacillus casei as Probiotic Adjunct Culture in Yogurts. Food 2019, 8, 374. [Google Scholar] [CrossRef] [Green Version]
- Lim, L.-T. Gases and Vapors Used in Food. In Encyclopedia of Food Chemistry; Melton, L., Shahidi, F., Varelis, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 1, pp. 114–120. [Google Scholar]
- He, Z.; Zhang, H.; Wang, T.; Wang, R.; Luo, X. Effects of Five Different Lactic Acid Bacteria on Bioactive Components and Volatile Compounds of Oat. Foods 2022, 11, 3230. [Google Scholar] [CrossRef]
- Belletti, N.; Kamdem, S.S.; Patrignani, F.; Lanciotti, R.; Covelli, A.; Gardini, F. Antimicrobial activity of aroma compounds against Saccharomyces cerevisiae and improvement of microbiological stability of soft drinks as assessed by logistic regression. Appl. Environ. Microbiol. 2007, 73, 5580–5586. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Zhao, L.; Zhao, W.; Xie, Y. (E)-2-hexenal, as a potential natural antifungal compound, inhibits Aspergillus flavus spore germination by disrupting mitochondrial energy metabolism. J. Agric. Food Chem. 2019, 67, 1138–1145. [Google Scholar] [CrossRef]
- Terpou, A.; Nigam, P.S.; Bosnea, L.; Kanellaki, M. Evaluation of Chios mastic gum as antimicrobial agent and matrix forming material targeting probiotic cell encapsulation for functional fermented milk production. LWT 2018, 97, 109–116. [Google Scholar] [CrossRef]
- Schoina, V.; Terpou, A.; Papadaki, A.; Bosnea, L.; Kopsahelis, N.; Kanellaki, M. Enhanced Aromatic Profile and Functionality of Cheese Whey Beverages by Incorporation of Probiotic Cells Immobilized on Pistacia terebinthus Resin. Foods 2020, 9, 13. [Google Scholar] [CrossRef] [Green Version]
- Gismondi, A.; Di Marco, G.; Canini, A. Helichrysum italicum (Roth) G. Don essential oil: Composition and potential antineoplastic effect. S. Afr. J. Bot. 2020, 133, 222–226. [Google Scholar] [CrossRef]
- Memariani, Z.; Sharifzadeh, M.; Bozorgi, M.; Hajimahmoodi, M.; Farzaei, M.H.; Gholami, M.; Siavoshi, F.; Saniee, P. Protective effect of essential oil of Pistacia atlantica Desf. on peptic ulcer: Role of α-pinene. J. Tradit. Chin. Med. 2017, 37, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Lado, J.; Gurrea, A.; Zacarías, L.; Rodrigo, M.J. Influence of the storage temperature on volatile emission, carotenoid content and chilling injury development in Star Ruby red grapefruit. Food Chem. 2019, 295, 72–81. [Google Scholar] [CrossRef]
- Porretta, S. Food Development: The Sensory & Consumer Approach. In Consumer-Based New Product Development for the Food Industry; Porretta, A., Moskowitz, H., Attila, G., Eds.; The Royal Society of Chemistry: Croydon, UK, 2021; pp. 1–2. [Google Scholar] [CrossRef]
- Sharif, M.; Butt, M.; Sharif, H.; Nasir, M. Sensory Evaluation and Consumer Acceptability. In Handbook of Food Science and Technology; Wiley: Hoboken, NJ, USA, 2017; pp. 362–386. [Google Scholar]
- Krishna, A. An integrative review of sensory marketing: Engaging the senses to affect perception, judgment and behavior. J. Consum. Psychol. 2012, 22, 332–351. [Google Scholar] [CrossRef] [Green Version]
Storage Time (Days) | Wet Immobilized Cells on Apple pieces | Wet Free Cells | Freeze-Dried Immobilized Cells on Apple Pieces | Freeze-Dried Free Cells | ||||
---|---|---|---|---|---|---|---|---|
20 °C | 4 °C | 20 °C | 4 °C | 20 °C | 4 °C | 20 °C | 4 °C | |
Survival rate (%) | ||||||||
15 | 88.73 ± 0.40 | 96.65 ± 0.34 | 55.33 ± 1.11 | 85.66 ± 0.91 | 79.84 ± 0.02 | 95.13 ± 0.90 | 90.46 ± 0.29 | 99.03 ± 0.45 |
30 | 0 * | 0 * | 0 | 27.54 ± 0.67 | 78.84 ± 0.89 | 88.45 ± 0.75 | 70.50 ± 1.41 | 98.07 ± 0.15 |
Water activity (aw) | ||||||||
0 | 0.911 ± 0.011 | 0.919 ± 0.004 | 0.202 ± 0.005 | 0.076 ± 0.006 | ||||
15 | 0.900 ± 0.001 | 0.905 ± 0.03 | 0.900 ± 0.002 | 0.901 ± 0.001 | 0.299 ± 0.003 | 0.277 ± 0.001 | 0.140 ± 0.001 | 0.087 ± 0.002 |
30 | - * | - * | 0.898 ± 0.003 | 0.886 ± 0.001 | 0.338 ± 0.001 | 0.313 ± 0.001 | 0.147 ± 0.002 | 0.090 ± 0.001 |
Moisture content (%) | ||||||||
0 | 85.75 ± 0.75 | 53.09 ± 0.11 | 10.99 ± 1.27 | 2.90 ± 0.02 | ||||
15 | 86.62 ± 0.25 | 87.07 ± 0.91 | 40.94 ± 0.12 | 53.71 ± 1.26 | 16.76 ± 1.80 | 14.41 ± 0.18 | 4.09 ± 0.02 | 5.32 ± 0.28 |
30 | - * | - * | 30.13 ± 0.66 | 54.55 ± 0.23 | 19.42 ± 0.96 | 17.72 ± 0.35 | 6.47 ± 0.21 | 5.64 ± 0.33 |
Sensory Evaluation Attribute | JI | JF |
---|---|---|
Aroma | 3.4 ± 0.5 | 3.2 ± 0.4 |
Taste | 3.8 ± 0.4 | 3.8 ± 0.8 |
Product novelty (appearance, juice color, serving, etc.) | 4.8 ± 0.3 | 2.9 ± 0.4 |
Overall evaluation | 3.8 ± 0.7 | 3.1 ± 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolaou, A.; Mitropoulou, G.; Nelios, G.; Kourkoutas, Y. Novel Functional Grape Juices Fortified with Free or Immobilized Lacticaseibacillus rhamnosus OLXAL-1. Microorganisms 2023, 11, 646. https://doi.org/10.3390/microorganisms11030646
Nikolaou A, Mitropoulou G, Nelios G, Kourkoutas Y. Novel Functional Grape Juices Fortified with Free or Immobilized Lacticaseibacillus rhamnosus OLXAL-1. Microorganisms. 2023; 11(3):646. https://doi.org/10.3390/microorganisms11030646
Chicago/Turabian StyleNikolaou, Anastasios, Gregoria Mitropoulou, Grigorios Nelios, and Yiannis Kourkoutas. 2023. "Novel Functional Grape Juices Fortified with Free or Immobilized Lacticaseibacillus rhamnosus OLXAL-1" Microorganisms 11, no. 3: 646. https://doi.org/10.3390/microorganisms11030646
APA StyleNikolaou, A., Mitropoulou, G., Nelios, G., & Kourkoutas, Y. (2023). Novel Functional Grape Juices Fortified with Free or Immobilized Lacticaseibacillus rhamnosus OLXAL-1. Microorganisms, 11(3), 646. https://doi.org/10.3390/microorganisms11030646