Host Immune Responses to Surface S-Layer Proteins (SLPs) of Clostridioides difficile
Abstract
:1. Introduction
2. Host Innate Immune Responses against CDI
3. S-Layer Proteins (SLPs) in C. difficile
4. Expression and Strain Variation of Cell Wall Proteins
5. Functions of S-Layer Proteins
6. Immune Response to SLPs
7. SLPs Mediate C. difficile Adhesion
8. Induction of Inflammatory Responses
9. Antibody Responses against CDI
10. SLPs-Based Anti-C. difficile Therapeutics
11. Concluding Remarks and Critical Unanswered Questions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chandra, H.; Sharma, K.K.; Tuovinen, O.H.; Sun, X.; Shukla, P. Pathobionts: Mechanisms of survival, expansion, and interaction with host with a focus on Clostridioides difficile. Gut Microbes 2021, 13, 1979882. [Google Scholar] [CrossRef] [PubMed]
- Lawson, P.A.; Citron, D.M.; Tyrrell, K.L.; Finegold, S.M. Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O’Toole 1935) Prévot 1938. Anaerobe 2016, 40, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Oren, A.; Garrity, G.M. Notification of changes in taxonomic opinion previously published outside the IJSEM. Int. J. Syst. Evol. Microbiol. 2018, 68, 2137–2138. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States, 2019. 2019. Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf (accessed on 8 September 2022).
- Shields, K.; Araujo-Castillo, R.V.; Theethira, T.G.; Alonso, C.D.; Kelly, C.P. Recurrent Clostridium difficile infection: From colonization to cure. Anaerobe 2015, 34, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Chandra, H.; Sorg, J.A.; Hassett, D.J.; Sun, X. Regulatory transcription factors of Clostridioides difficile pathogenesis with a focus on toxin regulation. Crit. Rev. Microbiol. 2022. [Google Scholar] [CrossRef]
- Lanzoni-Mangutchi, P.; Banerji, O.; Wilson, J.; Barwinska-Sendra, A.; Kirk, J.A.; Vaz, F.; O’Beirne, S.; Baslé, A.; El Omari, K.; Wagner, A.; et al. Structure and assembly of the S-layer in C. difficile. Nat. Commun. 2022, 13, 970. [Google Scholar] [CrossRef]
- Mori, N.; Takahashi, T. Characteristics and Immunological Roles of Surface Layer Proteins in Clostridium difficile. Ann. Lab. Med. 2018, 38, 189–195. [Google Scholar] [CrossRef]
- Noori, M.; Azimirad, M.; Eslami, G.; Looha, M.A.; Yadegar, A.; Ghalavand, Z.; Zali, M.R. Surface layer protein A from hypervirulent Clostridioides difficile ribotypes induce significant changes in the gene expression of tight junctions and inflammatory response in human intestinal epithelial cells. BMC Microbiol. 2022, 22, 259. [Google Scholar] [CrossRef]
- Wilson, K.H.; Sheagren, J.N. Antagonism of toxigenic Clostridium difficile by nontoxigenic C. difficile. J. Infect. Dis. 1983, 147, 733–736. [Google Scholar] [CrossRef]
- Borriello, S.P.; Barclay, F.E. Protection of hamsters against Clostridium difficile ileocaecitis by prior colonisation with non-pathogenic strains. J. Med. Microbiol. 1985, 19, 339–350. [Google Scholar] [CrossRef]
- Seal, D.; Borriello, S.P.; Barclay, F.; Welch, A.; Piper, M.; Bonnycastle, M. Treatment of relapsing Clostridium difficile diarrhoea by administration of a non-toxigenic strain. Eur. J. Clin. Microbiol. 1987, 6, 51–53. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.; Lavergne, V.; Skinner, A.M.; Gonzales-Luna, A.J.; Garey, K.W.; Kelly, C.P.; Wilcox, M.H. Clinical Practice Guideline by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA): 2021 Focused Update Guidelines on Management of Clostridioides difficile Infection in Adults. Clin. Infect. Dis. 2021, 73, e1029–e1044. [Google Scholar] [CrossRef] [PubMed]
- van Prehn, J.; Reigadas, E.; Vogelzang, E.H.; Bouza, E.; Hristea, A.; Guery, B.; Krutova, M.; Norén, T.; Allerberger, F.; Coia, J.E.; et al. European Society of Clinical Microbiology and Infectious Diseases: 2021 update on the treatment guidance document for Clostridioides difficile infection in adults. Clin. Microbiol. Infect. 2021, 27 (Suppl. 2), S1–S21. [Google Scholar] [CrossRef] [PubMed]
- Vardakas, K.Z.; Polyzos, K.A.; Patouni, K.; Rafailidis, P.I.; Samonis, G.; Falagas, M.E. Treatment failure and recurrence of Clostridium difficile infection following treatment with vancomycin or metronidazole: A systematic review of the evidence. Int. J. Antimicrob. Agents 2012, 40, 1–8. [Google Scholar] [CrossRef]
- Navalkele, B.D.; Chopra, T. Bezlotoxumab: An emerging monoclonal antibody therapy for prevention of recurrent Clostridium difficile infection. Biologics 2018, 12, 11–21. [Google Scholar] [CrossRef]
- Li, Y.T.; Cai, H.F.; Wang, Z.H.; Xu, J.; Fang, J.Y. Systematic review with meta-analysis: Long-term outcomes of faecal microbiota transplantation for Clostridium difficile infection. Aliment. Pharmacol. Ther. 2016, 43, 445–457. [Google Scholar] [CrossRef]
- Quraishi, M.N.; Widlak, M.; Bhala, N.; Moore, D.; Price, M.; Sharma, N.; Iqbal, T.H. Systematic review with meta-analysis: The efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile infection. Aliment. Pharmacol. Ther. 2017, 46, 479–493. [Google Scholar] [CrossRef]
- Ryan, A.; Lynch, M.; Smith, S.M.; Amu, S.; Nel, H.J.; McCoy, C.E.; Dowling, J.K.; Draper, E.; O’Reilly, V.; McCarthy, C.; et al. A role for TLR4 in Clostridium difficile infection and the recognition of surface layer proteins. PLoS Pathog. 2011, 7, e1002076. [Google Scholar] [CrossRef]
- Batah, J.; Denève-Larrazet, C.; Jolivot, P.A.; Kuehne, S.; Collignon, A.; Marvaud, J.C.; Kansau, I. Clostridium difficile flagella predominantly activate TLR5-linked NF-κB pathway in epithelial cells. Anaerobe 2016, 38, 116–124. [Google Scholar] [CrossRef]
- Kawata, T.; Takeoka, A.; Takumi, K.; Masuda, K. Demonstration and preliminary characterization of a regular array in the cell wall of Clostridium difficile. FEMS Microbiol. Lett. 1984, 24, 323–328. [Google Scholar] [CrossRef]
- Sára, M.; Sleytr, U.B. S-Layer proteins. J. Bacteriol. 2000, 182, 859–868. [Google Scholar] [CrossRef] [PubMed]
- Fagan, R.P.; Janoir, C.; Collignon, A.; Mastrantonio, P.; Poxton, I.R.; Fairweather, N.F. A proposed nomenclature for cell wall proteins of Clostridium difficile. J. Med. Microbiol. 2011, 60, 1225–1228. [Google Scholar] [CrossRef]
- Monot, M.; Boursaux-Eude, C.; Thibonnier, M.; Vallenet, D.; Moszer, I.; Medigue, C.; Martin-Verstraete, I.; Dupuy, B. Reannotation of the genome sequence of Clostridium difficile strain 630. J. Med. Microbiol. 2011, 60, 1193–1199. [Google Scholar] [CrossRef] [PubMed]
- Calabi, E.; Ward, S.; Wren, B.; Paxton, T.; Panico, M.; Morris, H.; Dell, A.; Dougan, G.; Fairweather, N. Molecular characterization of the surface layer proteins from Clostridium difficile. Mol. Microbiol. 2001, 40, 1187–1199. [Google Scholar] [CrossRef]
- Karjalainen, T.; Waligora-Dupriet, A.J.; Cerquetti, M.; Spigaglia, P.; Maggioni, A.; Mauri, P.; Mastrantonio, P. Molecular and genomic analysis of genes encoding surface-anchored proteins from Clostridium difficile. Infect. Immun. 2001, 69, 3442–3446. [Google Scholar] [CrossRef]
- Willing, S.E.; Candela, T.; Shaw, H.A.; Seager, Z.; Mesnage, S.; Fagan, R.P.; Fairweather, N.F. Clostridium difficile surface proteins are anchored to the cell wall using CWB2 motifs that recognise the anionic polymer PSII. Mol. Microbiol. 2015, 96, 596–608. [Google Scholar] [CrossRef]
- Bradshaw, W.J.; Kirby, J.M.; Roberts, A.K.; Shone, C.C.; Acharya, K.R. Cwp2 from Clostridium difficile exhibits an extended three domain fold and cell adhesion in vitro. FEBS J. 2017, 284, 2886–2898. [Google Scholar] [CrossRef]
- Waligora, A.J.; Hennequin, C.; Mullany, P.; Bourlioux, P.; Collignon, A.; Karjalainen, T. Characterization of a cell surface protein of Clostridium difficile with adhesive properties. Infect. Immun. 2001, 69, 2144–2153. [Google Scholar] [CrossRef]
- Zhou, Q.; Rao, F.; Chen, Z.; Cheng, Y.; Zhang, Q.; Zhang, J.; Guan, Z.; He, Y.; Yu, W.; Cui, G.; et al. The cwp66 Gene Affects Cell Adhesion, Stress Tolerance, and Antibiotic Resistance in Clostridioides difficile. Microbiol. Spectr. 2022, 10, e0270421. [Google Scholar] [CrossRef] [PubMed]
- Dang, T.H.; de la Riva, L.; Fagan, R.P.; Storck, E.M.; Heal, W.P.; Janoir, C.; Fairweather, N.F.; Tate, E.W. Chemical probes of surface layer biogenesis in Clostridium difficile. ACS Chem. Biol. 2010, 5, 279–285. [Google Scholar] [CrossRef] [Green Version]
- Kirby, J.M.; Ahern, H.; Roberts, A.K.; Kumar, V.; Freeman, Z.; Acharya, K.R.; Shone, C.C. Cwp84, a surface-associated cysteine protease, plays a role in the maturation of the surface layer of Clostridium difficile. J. Biol. Chem. 2009, 284, 34666–34673. [Google Scholar] [CrossRef] [PubMed]
- Janoir, C.; Péchiné, S.; Grosdidier, C.; Collignon, A. Cwp84, a surface-associated protein of Clostridium difficile, is a cysteine protease with degrading activity on extracellular matrix proteins. J. Bacteriol. 2007, 189, 7174–7180. [Google Scholar] [CrossRef] [PubMed]
- Usenik, A.; Renko, M.; Mihelič, M.; Lindič, N.; Borišek, J.; Perdih, A.; Pretnar, G.; Müller, U.; Turk, D. The CWB2 Cell Wall-Anchoring Module Is Revealed by the Crystal Structures of the Clostridium difficile Cell Wall Proteins Cwp8 and Cwp6. Structure 2017, 25, 514–521. [Google Scholar] [CrossRef]
- Eddy, S.R. A probabilistic model of local sequence alignment that simplifies statistical significance estimation. PLoS Comput. Biol. 2008, 4, e1000069. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Frey, E.A.; Pfuetzner, R.A.; Creagh, A.L.; Knoechel, D.G.; Haynes, C.A.; Finlay, B.B.; Strynadka, N.C. Crystal structure of enteropathogenic Escherichia coli intimin-receptor complex. Nature 2000, 405, 1073–1077. [Google Scholar] [CrossRef] [PubMed]
- de la Riva, L.; Willing, S.E.; Tate, E.W.; Fairweather, N.F. Roles of cysteine proteases Cwp84 and Cwp13 in biogenesis of the cell wall of Clostridium difficile. J. Bacteriol. 2011, 193, 3276–3285. [Google Scholar] [CrossRef]
- Mayer, B.J. SH3 domains: Complexity in moderation. J. Cell Sci. 2001, 114, 1253–1263. [Google Scholar] [CrossRef]
- Sipeki, S.; Koprivanacz, K.; Takács, T.; Kurilla, A.; László, L.; Vas, V.; Buday, L. Novel Roles of SH2 and SH3 Domains in Lipid Binding. Cells 2021, 10, 1191. [Google Scholar] [CrossRef]
- Reynolds, C.B.; Emerson, J.E.; de la Riva, L.; Fagan, R.P.; Fairweather, N.F. The Clostridium difficile cell wall protein CwpV is antigenically variable between strains, but exhibits conserved aggregation-promoting function. PLoS Pathog. 2011, 7, e1002024. [Google Scholar] [CrossRef]
- Bradshaw, W.J.; Kirby, J.M.; Roberts, A.K.; Shone, C.C.; Acharya, K.R. The molecular structure of the glycoside hydrolase domain of Cwp19 from Clostridium difficile. FEBS J. 2017, 284, 4343–4357. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.; Bullock, J.; He, Y.; Sun, X. Cwp22, a novel peptidoglycan cross-linking enzyme, plays pleiotropic roles in Clostridioides difficile. Environ. Microbiol. 2019, 21, 3076–3090. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.D.; Coggill, P.; Eberhardt, R.Y.; Eddy, S.R.; Mistry, J.; Mitchell, A.L.; Potter, S.C.; Punta, M.; Qureshi, M.; Sangrador-Vegas, A.; et al. The Pfam protein families database: Towards a more sustainable future. Nucleic Acids Res. 2016, 44, D279–D285. [Google Scholar] [CrossRef] [PubMed]
- Wright, A.; Wait, R.; Begum, S.; Crossett, B.; Nagy, J.; Brown, K.; Fairweather, N. Proteomic analysis of cell surface proteins from Clostridium difficile. Proteomics 2005, 5, 2443–2452. [Google Scholar] [CrossRef] [PubMed]
- Biazzo, M.; Cioncada, R.; Fiaschi, L.; Tedde, V.; Spigaglia, P.; Mastrantonio, P.; Pizza, M.; Barocchi, M.A.; Scarselli, M.; Galeotti, C.L. Diversity of cwp loci in clinical isolates of Clostridium difficile. J. Med. Microbiol. 2013, 62, 1444–1452. [Google Scholar] [CrossRef]
- Dingle, K.E.; Didelot, X.; Ansari, M.A.; Eyre, D.W.; Vaughan, A.; Griffiths, D.; Ip, C.L.; Batty, E.M.; Golubchik, T.; Bowden, R.; et al. Recombinational switching of the Clostridium difficile S-layer and a novel glycosylation gene cluster revealed by large-scale whole-genome sequencing. J. Infect. Dis. 2013, 207, 675–686. [Google Scholar] [CrossRef]
- Fagan, R.P.; Albesa-Jové, D.; Qazi, O.; Svergun, D.I.; Brown, K.A.; Fairweather, N.F. Structural insights into the molecular organization of the S-layer from Clostridium difficile. Mol. Microbiol. 2009, 71, 1308–1322. [Google Scholar] [CrossRef]
- Fagan, R.P.; Fairweather, N.F. Clostridium difficile has two parallel and essential Sec secretion systems. J. Biol. Chem. 2011, 286, 27483–27493. [Google Scholar] [CrossRef]
- Péchiné, S.; Gleizes, A.; Janoir, C.; Gorges-Kergot, R.; Barc, M.C.; Delmée, M.; Collignon, A. Immunological properties of surface proteins of Clostridium difficile. J. Med. Microbiol. 2005, 54, 193–196. [Google Scholar] [CrossRef]
- Wright, A.; Drudy, D.; Kyne, L.; Brown, K.; Fairweather, N.F. Immunoreactive cell wall proteins of Clostridium difficile identified by human sera. J. Med. Microbiol. 2008, 57, 750–756. [Google Scholar] [CrossRef]
- Kirk, J.A.; Gebhart, D.; Buckley, A.M.; Lok, S.; Scholl, D.; Douce, G.R.; Govoni, G.R.; Fagan, R.P. New class of precision antimicrobials redefines role of Clostridium difficile S-layer in virulence and viability. Sci. Transl. Med. 2017, 9, eaah6813. [Google Scholar] [CrossRef] [Green Version]
- Bruxelle, J.F.; Mizrahi, A.; Hoys, S.; Collignon, A.; Janoir, C.; Péchiné, S. Immunogenic properties of the surface layer precursor of Clostridium difficile and vaccination assays in animal models. Anaerobe 2016, 37, 78–84. [Google Scholar] [CrossRef]
- Negm, O.H.; Hamed, M.R.; Dilnot, E.M.; Shone, C.C.; Marszalowska, I.; Lynch, M.; Loscher, C.E.; Edwards, L.J.; Tighe, P.J.; Wilcox, M.H.; et al. Profiling Humoral Immune Responses to Clostridium difficile-Specific Antigens by Protein Microarray Analysis. Clin. Vaccine Immunol. 2015, 22, 1033–1039. [Google Scholar] [CrossRef] [PubMed]
- Péchiné, S.; Janoir, C.; Collignon, A. Variability of Clostridium difficile surface proteins and specific serum antibody response in patients with Clostridium difficile-associated disease. J. Clin. Microbiol. 2005, 43, 5018–5025. [Google Scholar] [CrossRef] [PubMed]
- Merrigan, M.M.; Venugopal, A.; Roxas, J.L.; Anwar, F.; Mallozzi, M.J.; Roxas, B.A.; Gerding, D.N.; Viswanathan, V.K.; Vedantam, G. Surface-layer protein A (SlpA) is a major contributor to host-cell adherence of Clostridium difficile. PLoS ONE 2013, 8, e78404. [Google Scholar] [CrossRef]
- Bianco, M.; Fedele, G.; Quattrini, A.; Spigaglia, P.; Barbanti, F.; Mastrantonio, P.; Ausiello, C.M. Immunomodulatory activities of surface-layer proteins obtained from epidemic and hypervirulent Clostridium difficile strains. J. Med. Microbiol. 2011, 60, 1162–1167. [Google Scholar] [CrossRef]
- Ausiello, C.M.; Cerquetti, M.; Fedele, G.; Spensieri, F.; Palazzo, R.; Nasso, M.; Frezza, S.; Mastrantonio, P. Surface layer proteins from Clostridium difficile induce inflammatory and regulatory cytokines in human monocytes and dendritic cells. Microbes Infect. 2006, 8, 2640–2646. [Google Scholar] [CrossRef]
- Collins, L.E.; Lynch, M.; Marszalowska, I.; Kristek, M.; Rochfort, K.; O’Connell, M.; Windle, H.; Kelleher, D.; Loscher, C.E. Surface layer proteins isolated from Clostridium difficile induce clearance responses in macrophages. Microbes Infect. 2014, 16, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Huang, K.; Chen, L.K.; Wu, H.Y.; Hsu, C.Y.; Tsai, Y.S.; Ko, W.C.; Tsai, P.J. Membrane Cholesterol Is Crucial for Clostridium difficile Surface Layer Protein Binding and Triggering Inflammasome Activation. Front. Immunol. 2020, 11, 1675. [Google Scholar] [CrossRef] [PubMed]
- Kelly, C.P. Can we identify patients at high risk of recurrent Clostridium difficile infection? Clin. Microbiol. Infect. 2012, 18 (Suppl. 6), 21–27. [Google Scholar] [CrossRef]
- Wullt, M.; Norén, T.; Ljungh, A.; Åkerlund, T. IgG antibody response to toxins A and B in patients with Clostridium difficile infection. Clin. Vaccine Immunol. 2012, 19, 1552–1554. [Google Scholar] [CrossRef] [Green Version]
- Leav, B.A.; Blair, B.; Leney, M.; Knauber, M.; Reilly, C.; Lowy, I.; Gerding, D.N.; Kelly, C.P.; Katchar, K.; Baxter, R.; et al. Serum anti-toxin B antibody correlates with protection from recurrent Clostridium difficile infection (CDI). Vaccine 2010, 28, 965–969. [Google Scholar] [CrossRef] [PubMed]
- Pantosti, A.; Cerquetti, M.; Viti, F.; Ortisi, G.; Mastrantonio, P. Immunoblot analysis of serum immunoglobulin G response to surface proteins of Clostridium difficile in patients with antibiotic-associated diarrhea. J. Clin. Microbiol. 1989, 27, 2594–2597. [Google Scholar] [CrossRef] [PubMed]
- Drudy, D.; Calabi, E.; Kyne, L.; Sougioultzis, S.; Kelly, E.; Fairweather, N.; Kelly, C.P. Human antibody response to surface layer proteins in Clostridium difficile infection. FEMS Immunol. Med. Microbiol. 2004, 41, 237–242. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.B.; McCabe, M.S.; Athié-Morales, V.; McDonald, G.S.; DB, N.E.; Kelleher, D.P. Passive immunisation of hamsters against Clostridium difficile infection using antibodies to surface layer proteins. FEMS Microbiol. Lett. 2005, 246, 199–205. [Google Scholar] [CrossRef]
- DB, N.E.; O’Brien, J.B.; McCabe, M.S.; Athié-Morales, V.; Kelleher, D.P. Active immunization of hamsters against Clostridium difficile infection using surface-layer protein. FEMS Immunol. Med. Microbiol. 2008, 52, 207–218. [Google Scholar] [CrossRef]
- Brun, P.; Scarpa, M.; Grillo, A.; Palù, G.; Mengoli, C.; Zecconi, A.; Spigaglia, P.; Mastrantonio, P.; Castagliuolo, I. Clostridium difficile TxAC314 and SLP-36kDa enhance the immune response toward a co-administered antigen. J. Med. Microbiol. 2008, 57, 725–731. [Google Scholar] [CrossRef]
- Shirvan, A.N.; Aitken, R. Isolation of recombinant antibodies directed against surface proteins of Clostridium difficile. Braz. J. Microbiol. 2016, 47, 394–402. [Google Scholar] [CrossRef]
- Péchiné, S.; Denève, C.; Le Monnier, A.; Hoys, S.; Janoir, C.; Collignon, A. Immunization of hamsters against Clostridium difficile infection using the Cwp84 protease as an antigen. FEMS Immunol. Med. Microbiol. 2011, 63, 73–81. [Google Scholar] [CrossRef]
- Kandalaft, H.; Hussack, G.; Aubry, A.; van Faassen, H.; Guan, Y.; Arbabi-Ghahroudi, M.; MacKenzie, R.; Logan, S.M.; Tanha, J. Targeting surface-layer proteins with single-domain antibodies: A potential therapeutic approach against Clostridium difficile-associated disease. Appl. Microbiol. Biotechnol. 2015, 99, 8549–8562. [Google Scholar] [CrossRef]
Protein | Locus Tag | Molecular Functions | References |
---|---|---|---|
SlpA | CD630_27930 | Mediate attachment to the cell surface through an interaction with PSII ‘PILL’ motif. | [27] |
Cwp2 | CD630_27910 | Host cell adhesion. | [28] |
Cwp66 | CD630_27890 | Adhesive properties. Stress tolerance and antibiotic resistance. | [29,30] |
Cwp84 | CD630_27870 | Cleavage of SlpA to form HMW SLP and LMW SLP. Breaks down gelatine and the extracellular matrix proteins fibronectin, laminin, and vitronectin but not type IV collagen. | [31,32,33] |
Cwp6 Cwp16 Cwp17 | CD630_27840 CD630_10350 CD630_10360 | Structurally similar to the RUNX family of eukaryotic transcription factors. Putative N-acetylmuramoyl-L-alanine amidase, autolysin | [34] [34] [34] |
Cwp8 | CD630_27990 | Similar to Cwp2 with adhesive properties. | [28] |
Cwp9 | CD630_27980 | Function not characterized. Similar to Cwp12 but shorter, lacks Big domain. | [35] |
Cwp11 | CD630_27950 | Function not characterized. Similar to Cwp12, lacks Big domain. | [35] |
Cwp12 | CD630_27940 | Presence of Bacterial immunoglobulin-like domains (Big domains) and CAP domains. Big domains are involved in host cell adhesion and invasion while CAP domains may have a role in signaling. | [35,36] |
Cwp13 | CD630_17510 | Cleaves misfolded protein, ensuring a fully functional S-layer. Removes the pro-peptide from Cwp84. | [37] |
Cwp14 | CD630_27350 | Presence of SH3 (Src Homology 3) domains with a hydrophobic ligand binding pocket, can bind with a PXXP motif. | [38,39] |
CwpV | CD630_05140 | Putative hemagglutinin/adhesion. Mediate cell aggregation and phage resistance, and act as a flagellar switch. | [40] |
Cwp19 | CD630_27670 | Unknown function but may cleave peptidoglycan. | [41] |
Cwp20 | CD630_14690 | Presence of lactamase domain. β-lactam antibiotics resistance, putative penicillin-binding protein. | [24] |
Cwp21 | CD630_31920 | Has three PepSY domains. May be involved in protease inhibitors. Putative cell surface peptidase. | [35] |
Cwp22 | CD630_27130 | Presence of YkuD domain, may be involved in peptidoglycan crosslinking. Cell wall biogenesis; peptidoglycan biosynthesis. | [42] |
Cwp24 | CD630_2193 | Contain a C-terminal endo-β-N-acetylglucosaminidase domain, which may cleave peptidoglycan | [35,43] |
Cwp26 | CD630_12330 | Contains one C-terminal PepSY domain that may be involved in protease inhibition. | [35] |
Cwp5 Cwp7 Cwp10 Cwp18 Cwp23 Cwp25 Cwp27 Cwp28 Cwp29 | CD630_27860 CD630_27820 CD630_27960 CD630_10470 CD630_18030 CD630_08440 CD630_04400 CD630_19870 CD630_25180 | Cwps with unknown functions. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chandra, H.; Kovall, R.A.; Yadav, J.S.; Sun, X. Host Immune Responses to Surface S-Layer Proteins (SLPs) of Clostridioides difficile. Microorganisms 2023, 11, 380. https://doi.org/10.3390/microorganisms11020380
Chandra H, Kovall RA, Yadav JS, Sun X. Host Immune Responses to Surface S-Layer Proteins (SLPs) of Clostridioides difficile. Microorganisms. 2023; 11(2):380. https://doi.org/10.3390/microorganisms11020380
Chicago/Turabian StyleChandra, Harish, Rhett A. Kovall, Jagjit S. Yadav, and Xingmin Sun. 2023. "Host Immune Responses to Surface S-Layer Proteins (SLPs) of Clostridioides difficile" Microorganisms 11, no. 2: 380. https://doi.org/10.3390/microorganisms11020380
APA StyleChandra, H., Kovall, R. A., Yadav, J. S., & Sun, X. (2023). Host Immune Responses to Surface S-Layer Proteins (SLPs) of Clostridioides difficile. Microorganisms, 11(2), 380. https://doi.org/10.3390/microorganisms11020380