Molecular and Clinical Data of Antimicrobial Resistance in Microorganisms Producing Bacteremia in a Multicentric Cohort of Patients with Cancer in a Latin American Country
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting
2.2. Study Design
2.3. Study Size and Sample
2.4. Definitions
2.5. Microbiological Procedures
2.6. Ethical Considerations
2.7. Statistical Analysis
3. Results
3.1. Characteristics of the Population
3.2. Microbiological Results
3.3. Mortality and Risk Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Freifeld, A.G.; Bow, E.J.; Sepkowitz, K.A.; Boeckh, M.J.; Ito, J.I.; Mullen, C.A.; Raad, I.I.; Rolston, K.V.; Young, J.A.; Wingard, J.R.; et al. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2011, 52, 427–431. [Google Scholar] [CrossRef] [Green Version]
- Cortes, J.A.; Cuervo, S.; Gomez, C.A.; Bermudez, D.; Martinez, T.; Arroyo, P. Febrile neutropenia in the tropics: A description of clinical and microbiological findings and their impact on inappropriate therapy currently used at an oncological reference center in Colombia. Biomedica 2013, 33, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Viscoli, C.; Castagnola, E. Factors predisposing cancer patients to infection. Cancer Treat Res. 1995, 79, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Barca, E.; Fernandez-Sevilla, A.; Carratala, J.; Salar, A.; Peris, J.; Granena, A.; Gudiol, F. Prognostic factors influencing mortality in cancer patients with neutropenia and bacteremia. Eur. J. Clin. Microbiol. Infect. Dis. 1999, 18, 539–544. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Action Plan on Antimicrobial Resistance; WHO: Geneva, Switzerland, 2015; pp. 1–28. [Google Scholar]
- Nouer, S.A.; Nucci, M.; Anaissie, E. Tackling antibiotic resistance in febrile neutropenia: Current challenges with and recommendations for managing infections with resistant Gram-negative organisms. Expert Rev. Hematol. 2015, 8, 647–658. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, L.; Cortes, J.A. Systematic review of antimicrobial resistance in Enterobacteriaceae isolates from Colombian hospitals. Biomedica 2014, 34, 180–197. [Google Scholar] [CrossRef]
- Huerta, L.E.; Rice, T.W. Pathologic Difference between Sepsis and Bloodstream Infections. J. Appl. Lab. Med. 2019, 3, 654–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klastersky, J.; de Naurois, J.; Rolston, K.; Rapoport, B.; Maschmeyer, G.; Aapro, M.; Herrstedt, J.; Committee, E.G. Management of febrile neutropaenia: ESMO Clinical Practice Guidelines. Ann. Oncol. 2016, 27, v111–v118. [Google Scholar] [CrossRef]
- Berezne, A.; Bono, W.; Guillevin, L.; Mouthon, L. Diagnosis of lymphocytopenia. Presse Med. 2006, 35, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Monstein, H.J.; Ostholm-Balkhed, A.; Nilsson, M.V.; Nilsson, M.; Dornbusch, K.; Nilsson, L.E. Multiplex PCR amplification assay for the detection of blaSHV, blaTEM and blaCTX-M genes in Enterobacteriaceae. APMIS 2007, 115, 1400–1408. [Google Scholar] [CrossRef]
- Monteiro, J.; Widen, R.H.; Pignatari, A.C.; Kubasek, C.; Silbert, S. Rapid detection of carbapenemase genes by multiplex real-time PCR. J. Antimicrob. Chemother. 2012, 67, 906–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnin, R.A.; Naas, T.; Poirel, L.; Nordmann, P. Phenotypic, biochemical, and molecular techniques for detection of metallo-beta-lactamase NDM in Acinetobacter baumannii. J. Clin. Microbiol. 2012, 50, 1419–1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garza-Ramos, U.; Morfin-Otero, R.; Sader, H.S.; Jones, R.N.; Hernandez, E.; Rodriguez-Noriega, E.; Sanchez, A.; Carrillo, B.; Esparza-Ahumada, S.; Silva-Sanchez, J. Metallo-beta-lactamase gene bla(IMP-15) in a class 1 integron, In95, from Pseudomonas aeruginosa clinical isolates from a hospital in Mexico. Antimicrob. Agents Chemother. 2008, 52, 2943–2946. [Google Scholar] [CrossRef] [Green Version]
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef]
- Montazeri, E.A.; Khosravi, A.D.; Jolodar, A.; Ghaderpanah, M.; Azarpira, S. Identification of methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from burn patients by multiplex PCR. Burns 2015, 41, 590–594. [Google Scholar] [CrossRef]
- Clark, N.C.; Cooksey, R.C.; Hill, B.C.; Swenson, J.M.; Tenover, F.C. Characterization of glycopeptide-resistant enterococci from U.S. hospitals. Antimicrob. Agents Chemother. 1993, 37, 2311–2317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velasco, E.; Byington, R.; Martins, C.A.; Schirmer, M.; Dias, L.M.; Goncalves, V.M. Comparative study of clinical characteristics of neutropenic and non-neutropenic adult cancer patients with bloodstream infections. Eur. J. Clin. Microbiol. Infect. Dis. 2006, 25, 1–7. [Google Scholar] [CrossRef]
- Marin, M.; Gudiol, C.; Ardanuy, C.; Garcia-Vidal, C.; Calvo, M.; Arnan, M.; Carratala, J. Bloodstream infections in neutropenic patients with cancer: Differences between patients with haematological malignancies and solid tumours. J. Infect. 2014, 69, 417–423. [Google Scholar] [CrossRef]
- Trecarichi, E.M.; Pagano, L.; Candoni, A.; Pastore, D.; Cattaneo, C.; Fanci, R.; Nosari, A.; Caira, M.; Spadea, A.; Busca, A.; et al. Current epidemiology and antimicrobial resistance data for bacterial bloodstream infections in patients with hematologic malignancies: An Italian multicentre prospective survey. Clin. Microbiol. Infect. 2015, 21, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Wisplinghoff, H.; Seifert, H.; Wenzel, R.P.; Edmond, M.B. Current trends in the epidemiology of nosocomial bloodstream infections in patients with hematological malignancies and solid neoplasms in hospitals in the United States. Clin. Infect. Dis. 2003, 36, 1103–1110. [Google Scholar] [CrossRef]
- Montassier, E.; Batard, E.; Gastinne, T.; Potel, G.; de La Cochetiere, M.F. Recent changes in bacteremia in patients with cancer: A systematic review of epidemiology and antibiotic resistance. Eur. J. Clin. Microbiol. Infect. Dis. 2013, 32, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Al Battashi, A.; Al Harrassi, B.; Al Maskari, N.; Al Hashami, H.; Al Awaidy, S. Alarming Antibiotic Resistance in Pediatric Oncology Patients: A Three-Year Prospective Cohort Study from Oman. Infect. Drug. Resist. 2022, 15, 3939–3947. [Google Scholar] [CrossRef] [PubMed]
- Belloni, S.; Caruso, R.; Cattani, D.; Mandelli, G.; Donizetti, D.; Mazzoleni, B.; Tedeschi, M. Occurrence rate and risk factors for long-term central line-associated bloodstream infections in patients with cancer: A systematic review. Worldviews Evid. Based Nurs. 2022, 19, 100–111. [Google Scholar] [CrossRef] [PubMed]
- De la Court, J.R.; Woudt, S.H.S.; Schoffelen, A.F.; Heijmans, J.; de Jonge, N.A.; van der Bruggen, T.; Bomers, M.K.; Lambregts, M.M.C.; Schade, R.P.; Sigaloff, K.C.E.; et al. Third-generation cephalosporin resistant gram-negative bacteraemia in patients with haematological malignancy; an 11-year multi-centre retrospective study. Ann. Clin. Microbiol. Antimicrob. 2022, 21, 54. [Google Scholar] [CrossRef] [PubMed]
- Montoya-Urrego, D.; Tellez-Carrasquilla, S.; Vanegas, J.M.; Quiceno, J.N.J. High frequency of colonization by extended-spectrum beta-lactamase-producing Gram-negative bacilli in hemodialysis patients and their household contacts in Colombia: Dissemination between the community and the hospital. Epidemiol. Health 2022, 44, e2022069. [Google Scholar] [CrossRef]
- Arnan, M.; Gudiol, C.; Calatayud, L.; Linares, J.; Dominguez, M.A.; Batlle, M.; Ribera, J.M.; Carratala, J.; Gudiol, F. Risk factors for, and clinical relevance of, faecal extended-spectrum beta-lactamase producing Escherichia coli (ESBL-EC) carriage in neutropenic patients with haematological malignancies. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 355–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trecarichi, E.M.; Tumbarello, M.; Spanu, T.; Caira, M.; Fianchi, L.; Chiusolo, P.; Fadda, G.; Leone, G.; Cauda, R.; Pagano, L. Incidence and clinical impact of extended-spectrum-beta-lactamase (ESBL) production and fluoroquinolone resistance in bloodstream infections caused by Escherichia coli in patients with hematological malignancies. J. Infect. 2009, 58, 299–307. [Google Scholar] [CrossRef]
- Satlin, M.J.; Cohen, N.; Ma, K.C.; Gedrimaite, Z.; Soave, R.; Askin, G.; Chen, L.; Kreiswirth, B.N.; Walsh, T.J.; Seo, S.K. Bacteremia due to carbapenem-resistant Enterobacteriaceae in neutropenic patients with hematologic malignancies. J. Infect. 2016, 73, 336–345. [Google Scholar] [CrossRef] [Green Version]
- Remolina, G.S.; Conde, M.C.; Escobar, C.J.; Leal, C.A.; Bravo, O.J.; Saavedra, R.S.; Rosa, N.Z.; Sanchez, F.N.; Santana, G.A.; Cortes, C.S.; et al. Carbapenemases produced in Klebsiella spp., and Pseudomonas aeruginosa in six hospitals in Bogota—Colombia. Rev. Chilena Infectol. 2021, 38, 720–723. [Google Scholar] [CrossRef]
- Boolchandani, M.; D’Souza, A.W.; Dantas, G. Sequencing-based methods and resources to study antimicrobial resistance. Nat. Rev. Genet. 2019, 20, 356–370. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.I.; Song, J.H.; Chung, D.R.; Peck, K.R.; Yeom, J.S.; Son, J.S.; Wi, Y.M.; Korean Network for Study on Infectious, D. Bloodstream infections in adult patients with cancer: Clinical features and pathogenic significance of Staphylococcus aureus bacteremia. Support Care Cancer 2012, 20, 2371–2378. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhuang, H.; Wang, G.; Wang, H.; Dong, Y. Prevalence, predictors, and mortality of bloodstream infections due to methicillin-resistant Staphylococcus aureus in patients with malignancy: Systemic review and meta-analysis. BMC Infect. Dis. 2021, 21, 74. [Google Scholar] [CrossRef] [PubMed]
- Paterson, G.K.; Harrison, E.M.; Holmes, M.A. The emergence of mecC methicillin-resistant Staphylococcus aureus. Trends Microbiol. 2014, 22, 42–47. [Google Scholar] [CrossRef] [Green Version]
- Rafey, A.; Nizamuddin, S.; Qureshi, W.; Anjum, A.; Parveen, A. Trends of Vancomycin-Resistant Enterococcus Infections in Cancer Patients. Cureus 2022, 14, e31335. [Google Scholar] [CrossRef]
- Cabiltes, I.; Coghill, S.; Bowe, S.J.; Athan, E. Enterococcal bacteraemia ‘silent but deadly’: A population-based cohort study. Intern. Med. J. 2020, 50, 434–440. [Google Scholar] [CrossRef] [Green Version]
- Bender, J.K.; Hermes, J.; Zabel, L.T.; Haller, S.; Murter, N.; Blank, H.P.; Werner, G.; Huttner, I.; Eckmanns, T. Controlling an Unprecedented Outbreak with Vancomycin-Resistant Enterococcus faecium in Germany, October 2015 to November 2019. Microorganisms 2022, 10, 1603. [Google Scholar] [CrossRef]
- Tumbarello, M.; Spanu, T.; Caira, M.; Trecarichi, E.M.; Laurenti, L.; Montuori, E.; Fianchi, L.; Leone, F.; Fadda, G.; Cauda, R.; et al. Factors associated with mortality in bacteremic patients with hematologic malignancies. Diagn. Microbiol. Infect. Dis. 2009, 64, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Cuervo, S.I.; Cortes, J.A.; Sanchez, R.; Rodriguez, J.Y.; Silva, E.; Tibavizco, D.; Arroyo, P. Risk factors for mortality caused by Staphylococcus aureus bacteremia in cancer patients. Enferm. Infecc. Microbiol. Clin. 2010, 28, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, C.; Antoniazzi, F.; Casari, S.; Ravizzola, G.; Gelmi, M.; Pagani, C.; D’Adda, M.; Morello, E.; Re, A.; Borlenghi, E.; et al. P. aeruginosa bloodstream infections among hematological patients: An old or new question? Ann. Hematol. 2012, 91, 1299–1304. [Google Scholar] [CrossRef]
- Kleinhendler, E.; Cohen, M.J.; Moses, A.E.; Paltiel, O.; Strahilevitz, J.; Cahan, A. Empiric antibiotic protocols for cancer patients with neutropenia: A single-center study of treatment efficacy and mortality in patients with bacteremia. Int. J. Antimicrob. Agents 2018, 51, 71–76. [Google Scholar] [CrossRef]
- Martinez-Nadal, G.; Puerta-Alcalde, P.; Gudiol, C.; Cardozo, C.; Albasanz-Puig, A.; Marco, F.; Laporte-Amargos, J.; Moreno-Garcia, E.; Domingo-Domenech, E.; Chumbita, M.; et al. Inappropriate Empirical Antibiotic Treatment in High-risk Neutropenic Patients With Bacteremia in the Era of Multidrug Resistance. Clin. Infect. Dis. 2020, 70, 1068–1074. [Google Scholar] [CrossRef] [PubMed]
- Kwon, K.T. Implementation of Antimicrobial Stewardship Programs in End-of-Life Care. Infect. Chemother. 2019, 51, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Horino, T.; Chiba, A.; Kawano, S.; Kato, T.; Sato, F.; Maruyama, Y.; Nakazawa, Y.; Yoshikawa, K.; Yoshida, M.; Hori, S. Clinical characteristics and risk factors for mortality in patients with bacteremia caused by Pseudomonas aeruginosa. Intern. Med. 2012, 51, 59–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barlam, T.F.; Cosgrove, S.E.; Abbo, L.M.; MacDougall, C.; Schuetz, A.N.; Septimus, E.J.; Srinivasan, A.; Dellit, T.H.; Falck-Ytter, Y.T.; Fishman, N.O.; et al. Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin. Infect. Dis. 2016, 62, e51–e77. [Google Scholar] [CrossRef] [PubMed]
Initial Clinical Variables and History | n = 195 n (%) |
---|---|
Age (years, average) | 52 (SD 17.2) |
Female | 109 (55.8) |
Type of tumor | |
Solid tumor | 91 (46.7) |
Hematological tumor | 104 (53.3) |
Tumor status | |
Active tumor | 83 (42.5) |
Tumor in palliative care | 13 (6.6) |
De novo tumor | 41 (21) |
Relapsed tumor | 43 (22) |
Tumor in remission | 15 (7.7) |
Treatment received | |
Chemotherapy (%) | 105 (53.8) |
Radiation therapy (%) | 23 (11.8) |
Surgery (%) | 49 (25.1) |
Hematopoietic progenitor transplantation (%) | 6 (5.7) |
Previous bacterial infection (%) | 52 (26.6) |
Antibiotic during the previous month (%) | 70 (35.8) |
Non-carbapenem beta-lactams | 43 (22) |
Carbapenems | 18 (9.2) |
Glycopeptides | 14 (7.1) |
Quinolones | 4 (2.0) |
Aminoglycosides | 2 (1) |
Other | 9 (4.6) |
≥2 antibiotics | 30 (15.3) |
Steroid use | 10 (5.1) |
Patient service | |
Hospitalization | 131 (67.1) |
Emergency room | 56 (28.7) |
Intensive care unit | 8 (4.1) |
Implantable catheter | 24 (12.2%) |
Device usage | 112 (57.4) |
Central venous catheter | 69 (35.3) |
Bladder catheter | 18 (9.2) |
Nasogastric tube | 14 (7.1) |
Drain | 10 (5.1) |
Hemodialysis catheter | 3 (1.5) |
Other | 32 (16.4) |
Comorbidities | |
Diabetes mellitus | 17 (8.7) |
Diabetes complications | 1 (0.5) |
Chronic kidney disease | 16 (8.2) |
Charlson index (median, IQR) | 3 (2–3) |
Systolic blood pressure mm Hg (mean, SD) | 110 (21) |
Diastolic blood pressure mm Hg (mean, SD) | 65 (13) |
Heart rate (mean, SD) | 102 (20) |
Temperature °C (mean, SD) | 37.5 (1.2) |
Respiratory rate (mean, SD) | 20 (2) |
Neutropenia | 63 (32.3) |
Febrile neutropenia | 59 (30.2) |
Systemic inflammatory response and sepsis | 119 (61) |
Fever | 78 (40) |
Microbiological Results | n = 206 (%) |
---|---|
Gram-negative | 142 (68.9) |
Escherichia coli | 67 (32.5) |
Klebsiella pneumoniae | 36 (17.4) |
Pseudomonas aeruginosa | 21 (10.1) |
Other Enterobacteriaceae | 15 (7.2) |
Acinetobacter | 2 (1) |
Stenotrophomonas maltophilia | 1 (0.5) |
Gram-positive | 64 (31) |
Staphylococcus aureus | 25 (12.4) |
Coagulase-negative Staphylococci | 26 (12.6) |
Enterococcus faecium | 4 (1.9) |
Enterococcus faecalis | 4 (1.9) |
Other Gram-positive | 5 (2.4) |
Natural profile (%) | 76 (36.9) |
Acquired profile (%) | 130 (63.1) |
Antibiotic | E. coli n = 67 | K. pneumoniae n = 36 | P. aeruginosa n = 21 |
---|---|---|---|
Ampicillin R/n (%R) | 42/57 (73) | ||
Ampicillin/sulbactam R/n (%R) | 11/65 (16.4) | 18/35 (51.4) | |
Cefazolin R/n (%R) | 8/52 (15.3) | 6/21 (28.5) | |
Piperacillin/tazobactam R/n (%R) | 2/65 (3.1) | 14/35 (40) | 1/17 (5,8) |
Ceftazidime R/n (%R) | 13/66 (19.7) | 15/35 (42.8) | 5/17 (29.4) |
Ceftriaxone R/n (%R) | 13/66 (19.7) | 15/35 (42.8) | |
Cefepime R/n (%R) | 13/66 (19.7) | 15/35 (42.8) | 5/21 (23.8) |
Ertapenem R/n (%R) | 0 | 12/35 (34.2) | |
Meropenem R/n (%R) | 0 | 12/35 (34.2) | 4/21 (19) |
Amikacin R/n (%R) | 0 | 1/36 (2.7) | 3/21 (14.2) |
Gentamicin R/n (%R) | 10/64 (15.6) | 5/34 (14.7) | 3/21 (14.2) |
Ciprofloxacin R/n (%R) | 24/67 (35.8) | 6/35 (17.1) | 2/21 (9.5) |
Trimethoprim–ulfamethoxazole R/n (%R) | 38/59 (64.4) | 11/23 (47.8) | |
Colistin R/n (%R) | 0 |
Bacterium | Gene Identified | Total |
---|---|---|
E. coli | blaCTX-M | 4 |
blaCTX-M, blaTEM | 7 | |
blaCTX-M, blaTEM, blaSHV | 1 | |
K. pneumoniae | blaTEM | 1 |
blaSHV | 1 | |
blaCTX-M, blaTEM | 1 | |
blaCTX-M, blaTEM, blaSHV | 1 | |
blaKPC | 11 | |
blaVIM | 1 | |
P. aeruginosa | blaSHV | 1 |
blaKPC | 2 | |
blaVIM | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz-Vargas, S.A.; García-Muñoz, L.; Cuervo-Maldonado, S.I.; Álvarez-Moreno, C.A.; Saavedra-Trujillo, C.H.; Álvarez-Rodríguez, J.C.; Arango-Gutiérrez, A.; Gómez-Rincón, J.C.; García-Guzman, K.; Leal, A.L.; et al. Molecular and Clinical Data of Antimicrobial Resistance in Microorganisms Producing Bacteremia in a Multicentric Cohort of Patients with Cancer in a Latin American Country. Microorganisms 2023, 11, 359. https://doi.org/10.3390/microorganisms11020359
Cruz-Vargas SA, García-Muñoz L, Cuervo-Maldonado SI, Álvarez-Moreno CA, Saavedra-Trujillo CH, Álvarez-Rodríguez JC, Arango-Gutiérrez A, Gómez-Rincón JC, García-Guzman K, Leal AL, et al. Molecular and Clinical Data of Antimicrobial Resistance in Microorganisms Producing Bacteremia in a Multicentric Cohort of Patients with Cancer in a Latin American Country. Microorganisms. 2023; 11(2):359. https://doi.org/10.3390/microorganisms11020359
Chicago/Turabian StyleCruz-Vargas, Sergio Andrés, Laura García-Muñoz, Sonia Isabel Cuervo-Maldonado, Carlos Arturo Álvarez-Moreno, Carlos Humberto Saavedra-Trujillo, José Camilo Álvarez-Rodríguez, Angélica Arango-Gutiérrez, Julio César Gómez-Rincón, Katherine García-Guzman, Aura Lucía Leal, and et al. 2023. "Molecular and Clinical Data of Antimicrobial Resistance in Microorganisms Producing Bacteremia in a Multicentric Cohort of Patients with Cancer in a Latin American Country" Microorganisms 11, no. 2: 359. https://doi.org/10.3390/microorganisms11020359
APA StyleCruz-Vargas, S. A., García-Muñoz, L., Cuervo-Maldonado, S. I., Álvarez-Moreno, C. A., Saavedra-Trujillo, C. H., Álvarez-Rodríguez, J. C., Arango-Gutiérrez, A., Gómez-Rincón, J. C., García-Guzman, K., Leal, A. L., Garzón-Herazo, J., Martínez-Vernaza, S., Guevara, F. O., Jiménez-Cetina, L. P., Mora, L. M., Saavedra, S. Y., & Cortés, J. A. (2023). Molecular and Clinical Data of Antimicrobial Resistance in Microorganisms Producing Bacteremia in a Multicentric Cohort of Patients with Cancer in a Latin American Country. Microorganisms, 11(2), 359. https://doi.org/10.3390/microorganisms11020359