Clinical Potential of Microbial Strains, Used in Fermentation for Probiotic Food, Beverages and in Synbiotic Supplements, as Psychobiotics for Cognitive Treatment through Gut–Brain Signaling
Abstract
:1. Introduction
1.1. Eligibility of Microbial Strains as Probiotic Cultures
1.2. Clinical Potential of Probiotics
2. Probiotic Microorganisms Used in Products for Health and Nutrition
Probiotic Food and Beverage Products
3. Microbial Probiotic Strains in Synbiotic Supplements
4. Studies on the Clinical Potential of Probiotic Strains as Psychobiotics
4.1. The Microbiome-Gut-Brain Axis
4.2. Psychophysiological Effects of Psychobiotics
4.3. Human Intervention Studies with Psychobiotic Supplements
4.4. Performance of Specific Probiotic Strains in Psychobiotic Studies
4.5. Benefits and Limitations of Clinical Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dahiya, D.; Nigam, P.S. The Gut Microbiota Influenced by the Intake of Probiotics and Functional Foods with Prebiotics Can Sustain Wellness and Alleviate Certain Ailments like Gut-Inflammation and Colon-Cancer. Microorganisms 2022, 10, 665. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, D.; Nigam, P.S. Probiotics, Prebiotics, Synbiotics, and Fermented Foods as potential biotics in Nutrition Improving Health via Microbiome-Gut-Brain Axis. Fermentation 2022, 8, 303. [Google Scholar] [CrossRef]
- Plaza-Diaz, J.; Ruiz-Ojeda, F.; Gil-Campos, M.; Gil, A. Mechanisms of Action of Probiotics. Adv. Nutr. 2019, 10, S49–S66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín, R.; Langella, P. Emerging Health Concepts in the Probiotics Field: Streamlining the Definitions. Front. Microbiol. 2019, 10, 1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holscher, H.D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 2017, 8, 172–184. [Google Scholar] [CrossRef]
- Oniszczuk, A.; Oniszczuk, T.; Gancarz, M.; Szymańska, J. Role of Gut Microbiota, Probiotics and Prebiotics in the Cardiovas-cular Diseases. Molecules 2021, 26, 1172. [Google Scholar] [CrossRef]
- Food and Agriculture Organization; World Health Organization (FAO). Probiotics in Food: Health and Nutritional Properties and Guidelines for Evaluation; This definition Was Adopted by the International Scientific Association for Probiotics and Prebiotics (ISAPP) in 2013; FAO: Rome, Italy, 2006. [Google Scholar]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [Green Version]
- Feord, J. Lactic acid bacteria in a changing legislative environment. Antonie Leeuwenhoek 2012, 82, 353–360. [Google Scholar] [CrossRef]
- Binda, S.; Hill, C.; Johansen, E.; Obis, D.; Pot, B.; Sanders, M.E.; Tremblay, A.; Ouwehand, A.C. Criteria to qualify microorganisms as “Probiotic” in foods and dietary supplements. Front. Microbiol. 2020, 11, 1662. [Google Scholar] [CrossRef]
- Reinoso Webb, C.; Koboziev, I.; Furr, K.; Grisham, M. Protective and pro-inflammatory roles of intestinal bacteria. Pathophysiology 2016, 23, 67–80. [Google Scholar] [CrossRef] [Green Version]
- Quigley, E.M. Gut bacteria in health and disease. Gastroenterol. Hepatol. 2013, 9, 560–569. [Google Scholar]
- Boulangé, C.; Neves, A.; Chilloux, J.; Nicholson, J.; Dumas, M. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 2016, 8, 42. [Google Scholar] [CrossRef] [Green Version]
- Million, M.; Diallo, A.; Raoult, D. Gut microbiota and malnutrition. Microb. Pathog. 2017, 106, 127–138. [Google Scholar] [CrossRef]
- Blandino, G.; Inturri, R.; Lazzara, F.; Di Rosa, M.; Malaguarnera, L. Impact of gut microbiota on diabetes mellitus. Diabetes Metab. 2016, 42, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Schneiderhan, J.; Master-Hunter, T.; Locke, A. Targeting gut flora to treat and prevent disease. J. Family Pract. 2016, 65, 34–38. [Google Scholar]
- Syngai, G.G.; Gopi, R.; Bharali, R.; Dey, S.; Lakshmanan, G.M.A.; Ahmed, G. Probiotics-yesthe versatile functional food ingredients. J. Food Sci. Technol. 2016, 53, 921–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balmeh, N.; Mahmoudi, S.; Fard, N.A. Manipulated bio antimicrobial peptides from probiotic bacteria as proposed drugs for COVID-19 disease. Inform. Med. Unlocked 2021, 23, e100515. [Google Scholar] [CrossRef]
- Bhushan, I.; Sharma, M.; Mehta, M.; Badyal, S.; Sharma, V.; Sharma, I.; Singh, H.; Sistla, S. Bioactive compounds and probiotics-a ray of hope in COVID-19 management. Food Sci. Hum. Wellness 2021, 10, 131–140. [Google Scholar] [CrossRef]
- Taghinezhad-S, S.; Mohseni, A.H.; Bermúdez-Humarán, L.G.; Casolaro, V.; Cortes-Perez, N.G.; Keyvani, H.; Simal-Gandara, J. Probiotic-based vaccines may provide effective protection against COVID-19 acute respiratory disease. Vaccine 2021, 9, 466. [Google Scholar] [CrossRef]
- Ganatsios, V.; Nigam, P.; Plessas, S.; Terpou, A. Kefir as a Functional Beverage Gaining Momentum towards Its Health Promoting Attributes. Beverages 2021, 7, 48. [Google Scholar] [CrossRef]
- Terpou, A.; Nigam, P.; Bosnea, L.; Kanellaki, M. Evaluation of Chios mastic gum as antimicrobial agent and matrix-forming material targeting probiotic cell encapsulation for functional fermented milk production. LWT 2018, 97, 109–116. [Google Scholar] [CrossRef]
- Amara, A.A.; Shibl, A. Role of Probiotics in Health Improvement, Infection Control and Disease Treatment and Management. Saudi Pharm. J. 2015, 23, 107–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez, B.; Delgado, S.; Blanco-Míguez, A.; Lourenço, A.; Gueimonde, M.; Margolles, A. Probiotics, Gut Microbiota, and Their Influence on Host Health and Disease. Mol. Nutr. Food Res. 2017, 61, 1600240. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Huang, J.; Zhou, R. Genomics of Lactic Acid Bacteria: Current Status and Potential Applications. Crit. Rev. Microbiol. 2017, 43, 393–404. [Google Scholar] [CrossRef]
- Magnusson, J.; Schnürer, J. Lactobacillus Coryniformis Subsp. Coryniformis Strain Si3 Produces a Broad-Spectrum Proteinaceous Antifungal Compound. Appl. Environ. Microbiol. 2001, 67, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Contente, D.; Igrejas, G.; Câmara, S.P.A.; de Lurdes Enes Dapkevicius, M.; Poeta, P. Role of Exposure to Lactic Acid Bacteria from Foods of Animal Origin in Human Health. Foods 2021, 10, 2092. [Google Scholar]
- Neffe-Skocińska, K.; Rzepkowska, A.; Szydłowska, A.; Kołozyn-Krajewska, D. Trends and Possibilities of the Use of Probiotics in Food Production. Altern. Replace. Foods 2018, 17, 65–94. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Niro, C.M.; Bresolin, J.S.; Soares, V.F.; Ferreira, M.D.; Sivieri, K.; Azeredo, H.M.C. Dehydrated strawberries for probiotic delivery: Influence of dehydration and probiotic incorporation methods. LWT 2021, 144, 111105. [Google Scholar] [CrossRef]
- Sarwar, A.; Al-Dalali, S.; Aziz, T.; Yang, Z.; Ud Din, J.; Khan, A.A.; Daudzai, Z.; Syed, Q.; Nelofer, R.; Qazi, N.U.; et al. Effect of Chilled Storage on Antioxidant Capacities and Volatile Flavors of Synbiotic Yogurt Made with Probiotic Yeast Saccharomyces boulardii CNCM I-745 in Combination with Inulin. J. Fungi 2022, 8, 713. [Google Scholar] [CrossRef]
- Adolfsson, O.; Meydani, S.N.; Russell, R.M. Yogurt and gut function. Am. J. Clin. Nutr. 2004, 80, 245–256. [Google Scholar] [CrossRef] [Green Version]
- Gad, A.S.; Kholif, A.M.; Sayad, A.F. Evaluation of the Nutritional Value of Functional Yogurt Resulting from Combination of Date Palm Syrup and Skin Milk. Am. J. Food Technol. 2010, 5, 250–259. [Google Scholar] [CrossRef] [Green Version]
- Guerra, N.P.; Rua, M.; Pastrana, L. Nutritional factors affecting the production of two bacteriocins from lactic acid bacteria on whey. Int. J. Food Microbiol. 2001, 70, 267–281. [Google Scholar] [CrossRef]
- Sarwar, A.; Aziz, T.; Din, J.; Khalid, A.; Rahman, T.; Daudzai, Z. Pros of Lactic Acid Bacteria in Microbiology: A Review. Biomed. Lett. 2018, 4, 59–66. [Google Scholar]
- Allgeyer, L.C.; Miller, M.J.; Lee, S.Y. Drivers of liking for yogurt drinks with prebiotics and probiotics. J. Food Sci. 2010, 75, S212–S219. [Google Scholar] [CrossRef]
- Zajác, P.; Kúšová, L.; Benešová, L.; ˇCapla, J.; ˇCurlej, J.; Golian, J. Effect of commercial yogurt starter cultures on fermentation process, texture and sensoric parameters of white yogurt. Potravin. Slovak J. Food Sci. 2020, 14, 300–306. [Google Scholar] [CrossRef]
- Gemechu, T. Review on lactic acid bacteria function in milk fermentation and preservation. Afr. J. Food Sci. 2015, 9, 170–175. [Google Scholar] [CrossRef] [Green Version]
- Savaiano, D.A.; Hutkins, R.W. Yogurt, cultured fermented milk, and health: A systematic review. Nutr. Rev. 2021, 79, 599–614. [Google Scholar] [CrossRef]
- Messer, J.S.; Chang, E.B. Physiology of the Gastrointestinal Tract, 6th ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 795–810. [Google Scholar]
- Tuohy, K.M.; Probert, H.M.; Smejkal, C.W.; Gibson, G.R. Using probiotics and prebiotics to improve gut health. Drug Discov. 2003, 8, 692–700. [Google Scholar] [CrossRef]
- Zbar, N.S.; Nashi, L.F.; Saleh, S.M. Saccharomyces boulardii as effective probiotic against Shigella flexneri in mice. Int. J. Mater. Methods Technol. 2013, 1, 17–21. [Google Scholar]
- Lynne, V. Evidence-based review of probiotic for antibiotic-associated diarrhea and Clostridium difficile infections. Anaerobe 2009, 15, 274–280. [Google Scholar]
- Zamora-Vega, R.; Montañez-Soto, J.L.; Martínez-Flores, H.E.; Flores-Magallón, R.; Muñoz-Ruiz, C.V.; Venegas-González, J.; Ariza, O.T.D.J. Effect of incorporating prebiotics in coating materials for the microencapsulation of Saccharomyces boulardii. Int. J. Food Sci. Nutr. 2012, 63, 930–935. [Google Scholar] [CrossRef] [PubMed]
- Gary, W. Probiotics: Living drugs. Am. J. Health Syst. Pharm. 2002, 58, 111–1109. [Google Scholar]
- Rezaei, R.; Khomeiri, M.; Aalami, M.; Kashaninejad, M. Effect of inulin on the physicochemical properties, flow behavior and probiotic survival of frozen yogurt. J. Food Sci. Technol. 2014, 51, 2809–2814. [Google Scholar] [CrossRef] [Green Version]
- Sarwar, A.; Aziz, T.; Al-Dalali, S.; Zhao, X.; Zhang, J.; Din, J.U.; Chen, C.; Cao, Y.; Yang, Z. Physicochemical and Microbiological Properties of Synbiotic Yogurt Made with Probiotic Yeast Saccharomyces boulardii in Combination with Inulin. Foods 2019, 8, 468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.S.; Corredig, M.; Morales-Rayas, R.; Hassan, A.; Griffiths, M.W.; LaPointe, G. Effect of fermented milk from Lactococcus lactis ssp. cremoris strain JFR1 on Salmonella invasion of intestinal epithelial cells. J. Dairy Sci. 2019, 102, 6802–6819. [Google Scholar] [CrossRef] [PubMed]
- Products Information. Available online: www.Danoneactivia.co.uk (accessed on 14 June 2022).
- How, Y.H.; Teo, M.Y.M.; In, L.L.A.; Yeo, S.K.; Pui, L.P. Development of fermented milk using food-grade recombinant Lactococcus lactis NZ3900. NFS J. 2022, 28, 114. [Google Scholar] [CrossRef]
- Papaioannou, G.M.; Kosma, I.S.; Dimitreli, G.; Badeka, A.V.; Kontominas, M.G. Effect of starter culture, probiotics, and flavor additives on Physico-chemical, rheological, and sensory properties of cow and goat dessert yogurts. Eur. Food Res. Technol. 2022, 248, 1191–1202. [Google Scholar] [CrossRef]
- De Santis, D.; Giacinti, G.; Chemello, G.; Frangipane, M.T. Improvement of the Sensory Characteristics of Goat Milk Yogurt. J. Food Sci. 2019, 84, 2289–2296. [Google Scholar] [CrossRef] [Green Version]
- Aryana, K.J.; Olson, D.W. A 100-year review: Yogurt and other cultured dairy products. J. Dairy Sci. 2017, 100, 9987–10013. [Google Scholar] [CrossRef] [Green Version]
- Mituniewicz-Malek, A.; Zielińska, D.; Ziarno, M. Probiotic monocultures in fermented goat milk beverages-sensory quality of final product. Int. J. Dairy Technol. 2019, 72, 1–8. [Google Scholar] [CrossRef]
- Demirbaş, F.; Dertli, E.; Arici, M. Prevalence of Clostridium spp., in Kashar cheese and efficiency of Lactiplantibacillus plantarum and Lactococcus lactis subsp. lactismix as a biocontrol agents for Clostridium spp. Food Biosci. 2022, 46, 101581. [Google Scholar]
- Bermúdez, J.; González, M.J.; Olivera, J.A.; Burgueño, J.A.; Juliano, P.; Fox, E.M.; Reginensi, S.M. Seasonal occurrence and molecular diversity of clostridia species spores along cheesemaking streams of 5 commercial dairy plants. J. Dairy Sci. 2016, 99, 3358–3369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, S.L.A.; da Silva, G.M.; Medeiros, J.M.S.; de Queiroga, A.P.R.; de Queiroz, B.B.; de Farias, D.R.B.; Correia, J.O.; Florentino, E.R.; Alonso Buriti, F.C. Influence of Co-Cultures of Streptococcus thermophilus and Probiotic Lactobacilli on Quality and Antioxidant Capacity Parameters of Lactose-Free Fermented Dairy Beverages Containing Syzygium cumini (L.) Skeels Pulp. RSC Adv. 2020, 10, 10297–10308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masoumi, S.J.; Mehrabani, D.; Saberifiroozi, M.; Fattahi, M.R.; Moradi, F.; Najafi, M. The Effect of Yogurt Fortified with Lactobacillus acidophilus and Bifidobacterium sp. Probiotic in Patients with Lactose Intolerance. Food Sci. Nutr. 2021, 9, 1704–1711. [Google Scholar] [CrossRef] [PubMed]
- Elezi, O.; Kourkoutas, Y.; Koutinas, A.A.; Kanellaki, M.; Bezirtzoglou, E.; Barnett, Y.A.; Nigam, P. Food additive lactic acid production by immobilized cells of Lactobacillus brevis on delignified cellulosic material. J. Agric. Food Chem. 2003, 51, 5285–5289. [Google Scholar] [CrossRef]
- Kourkoutas, Y.; Kandylis, P.; Panas, P.; Dooley, J.; Nigam, P.; Koutinas, A.A. Evaluation of freeze-dried kefir coculture as starter in feta-type cheese production. Appl. Environ. Microbiol. 2006, 72, 6124–6135. [Google Scholar] [CrossRef] [Green Version]
- Vasiliki, S.; Terpou, A.; Bosnea, L.; Kanellaki, M.; Nigam, P. Entrapment of Lactobacillus casei ATCC393 in the viscus matrix of Pistacia terebinthus resin for functional Mizithra cheese manufacture. LWT-Food Sci. Technol. 2018, 89, 441–448. [Google Scholar]
- Terpou, A.; Bekatorou, A.; Kanellaki, M.; Koutinas, A.A.; Nigam, P. Enhanced probiotic viability and aromatic profile of yogurts produced using wheat bran (Triticum aestivum) as cell immobilization carrier. Proc. Biochem. 2017, 55, 1–10. [Google Scholar] [CrossRef]
- Bosnea, L.; Moschakis, T.; Nigam, P.; Biliaderis, C.G. Growth adaptation of probiotics in biopolymer-based coacervate structures to enhance cell viability. LWT 2017, 77, 282–289. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Li, X.; Yin, P.; Wang, T.; Li, Y.; Zhang, K.; Sheng, H.; Lu, S.; Ji, H.; et al. The Effect of the Ratio of Gamma-Aminobutyric Acid-Producing Saccharomyces cerevisiae DL6-20 and Kluyveromyces marxianus B13-5 Addition on Cheese Quality. Front. Microbiol. 2022, 13, 900394. [Google Scholar] [CrossRef]
- Product. Available online: www.hollanandbarrett.com (accessed on 14 July 2022).
- Product. Available online: http://www.bio-kult.co.uk/mind/ (accessed on 14 July 2022).
- Product. Available online: www.boots.com (accessed on 14 July 2022).
- Product. Available online: https://probio7.com (accessed on 14 July 2022).
- Product. Available online: www.neocorenutrition.co.uk (accessed on 14 July 2022).
- Product. Available online: https://newleafonline.ie (accessed on 14 July 2022).
- Product. Available online: www.toniiq.com/products/probiotic-99 (accessed on 14 July 2022).
- Product. Available online: www.nutrizing.co.uk/products/multibiotic-16-strain-probiotics (accessed on 14 July 2022).
- Product. Available online: https://nuunutrition.com/products/bio-cultures-complex-probiotic-strains-180-vegetarian-capsules-10-billions-cfus-source-powder (accessed on 14 July 2022).
- Gibson, G.R.; Scott, K.P.; Rastall, R.A.; Tuohy, K.M.; Hotchkiss, A.; Dubert-Ferrandon, A.; Gareau, M.; Murphy, E.F.; Saulnier, D.; Loh, G.; et al. Dietary prebiotics: Current status and new definition. Food Sci. Technol. Bull. Funct. Foods. 2010, 7, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Salminen, S. Handbook of Probiotics and Prebiotics, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar] [CrossRef]
- Sarkar, A.; Lehto, S.M.; Harty, S.; Dinan, T.G.; Cryan, J.F.; Burnet, P.W.J. Psychobiotics and the Manipulation of Bacteria-Gut-Brain Signals. Trends Neurosci. 2016, 39, 763–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinan, T.G.; Butler, M.I.; Cryan, J.F. Psychobiotics: Evolution of Novel Antidepressants. In Microbes and the Mind. The Impact of the Microbiome on Mental Health. Mod Trends Psychiatry; Cowan, C.S.M., Leonard, B.E., Eds.; Karger: Basel, Switzerland, 2021; Volume 32, pp. 134–143. [Google Scholar] [CrossRef]
- Mayer, E.A.; Knight, R.; Mazmanian, S.K.; Cryan, J.F.; Tillisch, K. Gut microbes and the brain: Paradigm shift in neuroscience. J Neurosci. 2014, 34, 15490–15496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, M.K.; Kumari, I.; Singh, B.; Sharma, K.K.; Tiwari, S.K. Probiotics, prebiotics and synbiotics: Safe options for next-generation therapeutics. Appl. Microbiol. Biotechnol. 2022, 106, 505–521. [Google Scholar] [CrossRef] [PubMed]
- Derrien, M.; van Hylckama Vlieg, J.E.T. Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol. 2015, 23, 354–366. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.F.; Palukuri, M.V.; Shivakumar, S.; Rengaswamy, R.; Sahoo, S. A Computational Framework for Studying Gut-Brain Axis in Autism Spectrum Disorder. Front. Physiol. 2022, 13, 122. [Google Scholar] [CrossRef]
- Breit, S.; Kupferberg, A.; Rogler, G.; Hasler, G. Vagus Nerve as Modulator of the Brain-Gut Axis in Psychiatric and Inflammatory Disorders. Front. Psychiatry 2018, 9, 44. [Google Scholar] [CrossRef] [Green Version]
- Bravo, J.A.; Forsythe, P.; Chew, M.V.; Escaravage, E.; Savignac, H.M.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA 2011, 108, 16050–16055. [Google Scholar] [CrossRef] [Green Version]
- Dahiya, D.; Manuel, V.; Nigam, P.S. An Overview of Bioprocesses Employing Specifically Selected Microbial Catalysts for γ-Aminobutyric Acid Production. Microorganisms 2021, 9, 2457. [Google Scholar] [CrossRef]
- Lalitsuradej, E.; Sirilunm, S.; Sittiprapaporn, P.; Sivamaruthi, B.S.; Pintha, K.; Tantipaiboonwong, P.; Khongtan, S.; Fukngoen, P.; Peerajan, S.; Chaiyasut, C. The effects of synbiotics administration on stress-related parameters in Thai Subjects-A preliminary study. Foods 2022, 11, 759. [Google Scholar] [CrossRef]
- Sudo, N.; Chida, Y.; Aiba, Y.; Sonoda, J.; Oyama, N.; Yu, X.N.; Kubo, C.; Koga, Y. Postnatal microbial colonization programs the hypothalamic—Pituitary adrenal system for stress response in mice. J. Physiol. 2004, 558, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Foster, J.A.; Neufeld, K.A.M. Gut–Brain axis: How the microbiome influences anxiety and depression. Trends Neurosci. 2013, 36, 305–312. [Google Scholar] [CrossRef]
- Hooper, L.V.; Littman, D.R.; Macpherson, A.J. Interactions between the microbiota and the immune system. Science 2012, 336, 1268–1273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kau, A.L.; Ahern, P.P.; Griffin, N.W.; Goodman, A.L.; Gordon, J.I. Human nutrition, the gut microbiome and the immune system. Nature 2011, 474, 327–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Chatelier, E.; Nielsen, T.; Qin, J.; Prifti, E.; Hildebrand, F.; Falony, G.; Almeida, M.; Arumugam, M.; Batto, J.-M.; Kennedy, S.; et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013, 500, 541–546. [Google Scholar] [CrossRef]
- Dowlati, Y.; Herrmann, N.; Swardfager, W.; Liu, H.; Sham, L.; Reim, E.K.; Lanctôt, K.L. A meta-analysis of cytokines in major depression. Biol. Psychiatry 2010, 67, 446–457. [Google Scholar] [CrossRef]
- Udina, M.; Castellví, P.; Moreno-España, J.; Navinés, R.; Valdés, M.; Forns, X.; Langohr, K.; Solí, R.; Vieta, E.; Martín-Santos, R. Interferon-induced depression in chronic hepatitis C: A systematic review and meta-analysis. J. Clin. Psychiatry. 2012, 73, 1128–1138. [Google Scholar] [CrossRef]
- McNutt, M.D.; Liu, S.; Manatunga, A.; Royster, E.B.; Raison, C.L.; Woolwine, B.J.; Demetrashvili, M.F.; Miller, A.H.; Musselman, D.L. Neurobehavioral effects of interferon-α in patients with hepatitis-C: Symptom dimensions and responsiveness to paroxetine. Neuropsychopharmacology 2012, 37, 1444–1454. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Christian, K.; Lu, B. BDNF: A key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol. Learn. Mem. 2008, 89, 312–323. [Google Scholar] [CrossRef] [Green Version]
- Heldt, S.A.; Stanek, L.; Chhatwal, J.P.; Ressler, K.J. Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories. Mol. Psychiatry 2007, 12, 656–670. [Google Scholar] [CrossRef] [Green Version]
- Martinowich, K.; Lu, B. Interaction between BDNF and serotonin: Role in mood disorders. Neuropsychopharmacology 2008, 33, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Gareau, M.G.; Sherman, P.M.; Walker, W.A. Probiotics and the gut microbiota in intestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 503–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janik, R.; Thomason, L.A.M.; Stanisz, A.M.; Forsythe, P.; Bienenstock, J.; Stanisz, G.J. Magnetic resonance spectroscopy reveals oral Lactobacillus promotion of increases in brain GABA, N-acetyl aspartate and glutamate. Neuroimage 2016, 125, 988–995. [Google Scholar] [CrossRef] [PubMed]
- Alander, M.; Satokari, R.; Korpela, R.; Saxelin, M.; Vilpponen-Salmela, T.; Mattila-Sandholm, T.; von Wright, A. Persistence of colonization of human colonic mucosa by a probiotic strain, Lactobacillus rhamnosus GG, after oral consumption. Appl. Environ. Microbiol. 1999, 65, 351–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benton, D.; Williams, C.; Brown, A. Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur. J. Clin. Nutr. 2007, 61, 355–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messaoudi, M.; Lalonde, R.; Violle, N.; Javelot, H.; Desor, D.; Nejdi, A.; Bisson, J.F.; Rougeot, C.; Pichelin, M.; Cazaubiel, M.; et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br. J. Nutr. 2011, 105, 755–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messaoudi, M.; Violle, N.; Bisson, J.F.; Desor, D.; Javelot, H.; Rougeot, C. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes 2011, 2, 256–261. [Google Scholar] [CrossRef] [Green Version]
- Steenbergen, L.; Sellaro, R.; van Hemert, S.; Bosch, J.A.; Colzato, L.S. A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav. Immun. 2015, 48, 258–264. [Google Scholar] [CrossRef] [Green Version]
- Kato-Kataoka, A.; Nishida, K.; Takada, M.; Kawai, M.; Kikuchi-Hayakawa, H.; Suda, K.; Ishikawa, H.; Gondo, Y.; Shimizu, K.; Matsuki, T.; et al. Fermented milk containing Lactobacillus casei strain Shirota preserves the diversity of the gut microbiota and relieves abdominal dysfunction in healthy medical students exposed to academic stress. Appl. Environ. Microbiol. 2016, 82, 3649–3658. [Google Scholar] [CrossRef] [Green Version]
- Sashihara, T.; Nagata, M.; Mori, T.; Ikegami, S.; Gotoh, M.; Okubo, K.; Uchida, M.; Itoh, H. Effects of Lactobacillus gasseri OLL2809 and α-lactalbumin on university-student athletes: A randomized, double-blind, placebo-controlled clinical trial. Appl. Physiol. Nutr. Metab. 2013, 38, 1228–1235. [Google Scholar] [CrossRef]
- Savignac, H.M.; Corona, G.; Mills, H.; Chen, L.; Spencer, J.P.; Tzortzis, G.; Burnet, P.W. Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-D-aspartate receptor subunits and D-serine. Neurochem. Int. 2013, 63, 756–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, K.; Cowen, P.J.; Harmer, C.J.; Tzortzis, G.; Errington, S.; Burnet, P.W. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology 2015, 232, 1793–1801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Mahony, L.; McCarthy, J.; Kelly, P.; Hurley, G.; Luo, F.; Chen, K.; O’Sullivan, G.C.; Kiely, B.; Collins, J.K.; Shanahan, F.; et al. Lactobacillus and bifidobacterium in irritable bowel syndrome: Symptom responses and relationship to cytokine profiles. Gastroenterology 2005, 128, 541–551. [Google Scholar] [CrossRef]
- Savignac, H.M.; Kiely, B.; Dinan, T.G.; Cryan, J.F. Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice. Neurogastroenterol. Motil. Off. J. Eur. Gastrointest. Motil. Soc. 2014, 26, 1615–1627. [Google Scholar] [CrossRef] [PubMed]
- Savignac, H.M.; Tramullas, M.; Kiely, B.; Dinan, T.G.; Cryan, J.F. Bifidobacteria modulate cognitive processes in an anxious mouse strain. Behav. Brain Res. 2015, 287, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Tillisch, K.; Labus, J.; Kilpatrick, L.; Jiang, Z.; Stains, J.; Ebrat, B.; Guyonnet, D.; Legrain-Raspaud, S.; Trotin, B.; Naliboff, B.; et al. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 2013, 144, 1394–1401. [Google Scholar] [CrossRef] [Green Version]
- Lahtinen, S.J.; Forssten, S.; Aakko, J.; Granlund, L.; Rautonen, N.; Salminen, S.; Viitanen, M.; Ouwehand, A.C. Probiotic cheese containing Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus NCFM® modifies subpopulations of fecal lactobacilli and Clostridium difficile in the elderly. Age 2012, 34, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Ohland, C.L.; Kish, L.; Bell, H.; Thiesen, A.; Hotte, N.; Pankiv, E.; Madsen, K.L. Effects of Lactobacillus helveticus on murine behavior are dependent on diet and genotype and correlate with alterations in the gut microbiome. Psychoneuroendocrinology 2013, 38, 1738–1747. [Google Scholar] [CrossRef]
- Claesson, M.J.; Cusack, S.; O’Sullivan, O.; Greene-Diniz, R.; De Weerd, H.; Flannery, E.; Marchesi, J.R.; Falush, D.; Dinan, T.G.; Fitzgerald, G.F.; et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc. Natl. Acad. Sci. USA 2011, 108, 4586–4591. [Google Scholar] [CrossRef] [Green Version]
- Claesson, M.J.; Jeffery, I.B.; Conde, S.; Power, S.E.; O’Connor, E.M.; Cusack, S.; Harris, H.M.B.; Coakley, M.; Lakshminarayanan, B.; O’Sullivan, O.; et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 2012, 488, 178–184. [Google Scholar] [CrossRef]
- Distrutti, E.; O’Reilly, J.A.; McDonald, C.; Cipriani, S.; Renga, B.; Lynch, M.A.; Fiorucci, S. Modulation of intestinal microbiota by the probiotic VSL# 3 resets brain gene expression and ameliorates the age-related deficit in LTP. PLoS ONE 2014, 9, e106503. [Google Scholar] [CrossRef]
- Rampelli, S.; Candela, M.; Severgnini, M.; Biagi, E.; Turroni, S.; Roselli, M.; Carnevali, P.; Donini, L.; Brigidi, P. A probiotics-containing biscuit modulates the intestinal microbiota in the elderly. J. Nutr. Health Aging 2013, 17, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Diaz Heijtz, R.; Wang, S.; Anuar, F.; Qian, Y.; Bjorkholm, B.; Samuelsson, A.; Hibberd, M.L.; Forssberg, H.; Pettersson, S. Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. USA 2011, 108, 3047–3052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinstein, N.; Garten, B.; Vainer, J.; Minaya, D.; Czaja, K. Managing the Microbiome: How the Gut Influences Development and Disease. Nutrients 2020, 13, 74. [Google Scholar] [CrossRef]
- Heiss, C.N.; Olofsson, L.E. The role of the gut microbiota in development, function and disorders of the central nervous system and the enteric nervous system. J. Neuroendocrinol. 2019, 31, e12684. [Google Scholar] [CrossRef]
- Minaya, D.M.; Weinstein, N.L.; Czaja, K. Development of a 3D-Printed High Temperature Resin Cecal Fistula Implant for Long-Term and Minimally Invasive Access to the Gut Microbiome. Nutrients 2021, 13, 4515. [Google Scholar] [CrossRef]
No. | Strains of GRAS Microorganism | Probiotic Products | References |
---|---|---|---|
1. | Lactobacillus casei, L. acidophilus, L. bulgaricus, Lactococcus lactis Bifidobacterium bifidum, and B. lactis (Bifidus actiregularis R) | Probiotic commercial yogurts current information (accessed during April–July 2022) | [48] |
2. | Food-grade Lactococcus lactis NZ3900 | Fermented dairy product, a potential functional drink for oral vaccine delivery | [49] |
3. | Streptococcus thermophilus and Lactobacillus delbrueckii spp. bulgaricus with cultures of Leuconostoc lactis | Fermented goat milk yogurt with enhanced sensory characteristics | [50,51] |
4. | Lactococcus lactis ssp. cremoris strain JFR1 | Fermented milk, effective in the Salmonella invasion of intestinal epithelial cells | [47] |
5. | Lactobacillus delbrueckii spp. Bulgaricus and Streptococcus thermophilus | Yogurt with sensory characteristics, obtained in proto-synbiotic milk fermentation | [52] |
6. | Monocultures of Lactobacillus (Lb. acidophilus La-5, Lb. rhamnosus K3, Lb. plantarum O20) and Bifidobacterium (Bif. animalis subsp. Lactis BB-12) | Fermented goat milk beverages with enhanced sensory characteristics | [53] |
7. | Kefir grains of LAB with yeast cultures | Functional beverage Kefir | [21] |
8. | Lactiplantibacillus plantarum and Lactococcus lactis subsp. lactis | For anti-clostridial activity during the cheese ripening process in the dairy industry | [54,55] |
9. | Lactobacillus casei ATCC 393 | Functional fermented milk | [22] |
10. | Co-cultures of Probiotic Lactobacilli + Streptococcus thermophilus | Lactose-free fermented dairy beverages | [56] |
11. | Lactobacillus acidophilus and Bifidobacterium sp. | Probiotic fortified yogurt for patients with lactose intolerance | [57] |
12. | Lactobacillus brevis | Food additive lactic acid | [58] |
13. | Kefir coculture lactococcus and lactobacillus | Feta-type cheese product | [59] |
14. | Lactobacillus casei ATCC393 | Functional Mizithra cheese | [60] |
15. | Lactobacillus casei ATCC393 and Lactobacillus bulgaricus DSM20081 immobilized cells | Yogurts with enhanced probiotic viability and improved aromatic profile | [61] |
16. | L. paracasei subsp. paracasei E6 and L. paraplantarum B1 and isolates from mature Melichloro cheese | Microencapsulated in biopolymer-based coacervate with enhanced cell viability for food products | [62] |
17. | Saccharomyces boulardii CNCM I-745 (Probiotic yeast) | Probiotic and synbiotic yogurt with inulin with antioxidant and volatile capacities | [46] |
18. | Saccharomyces cerevisiae DL6–20 and Kluyveromyces marxianus B13-5 | Cheese with enhanced flavour and gamma-aminobutyric acid (GABA) | [63] |
No. | Strains of Probiotic Microorganism | Products | Reference |
---|---|---|---|
1. | Clinically studied bacteria, including Lactobacillus acidophilus co-culture, L. plantarum, Bacillus coagulans, and Bifidobacterium co-culture (B. animalis subsp. lactis, B. bifidum) | Tribiotics for mind balance | [64] |
2. | Bacillus subtilis PXN® 21® | Supplement for the mind targeting cognitive function | [65] |
3. | Lactobacillus acidophillus, Bifidobacterium animalis subsp. Lactis, L. bulgaris, and L. salivarius | Mega potency product acidophilus with pectin for gut health | [64] |
4. | Lactobacillus acidophilus, Lactobacillus gasseri, Bifidobacterium animalis subsp. lactis, and Bifidobacterium bifidum | Good-gut live friendly bacteria with support for women’s health | [66] |
5. | Lactobacillus acidophilus, Bifidobacterium animalis subsp. lactis, and B. bifidum | Good-gut live friendly bacteria with skin and hair support | [66] |
6. | Lactobacillus casei, L. acidophilus, L. bulgaricus, Lactococcus lactis, Streptococcus thermophilus, Bifidobacterium bifidum, and B. longum | Supporting gut healthand gut microbiome | [67] |
7. | Lactobacillus paracasei, Lactobacillus reuteri, and Lactobacillus rhamnosus | Optibac intimate flora for women, scientifically proven to reach the intimate area. | [66] |
8. | Bacillus subtilis, Bifidobacterium bifidum, B. breve, B. infantis, B. longum, Lactobacillus acidophilus, L. delbrueckii ssp. bulgaricus, L. casei, L. plantarum, L. rhamnosus, L. helveticus, L. salivarius, Lactococcus lactis ssp. lactis, and Streptococcus thermophilus | Multi-strain advanced formulation for the digestive system | [65] |
9. | Fourteen strains of live bacteria | Bio-Kult Migréa for head discomfort. Advanced multi-action formulation | [65] |
10. | Six live strains with a prebiotic | Bloating relief and gut health support | [68] |
11. | Five strains including L. acidophilus NCFM® | A premium probiotic support for digestion, immunity, and energy | [69] |
12. | Thirty clinically studied broad-spectrum strains | Steady-state and targeted controlled release of probiotic cells in gut | [70] |
13. | Sixteen strains of friendly bacteria: including Bifidobacterium, Lactobacillus, and Streptococcus | Active cultures for gut flora | [71] |
14. | Proprietary bacterial blend (Lactobacillus acidophilus, Streptococcus thermophilus, L. rhamnosus, L. Salivarious, and Bifidobacterium bifidum) | Balance gut health with good bacteria to balance out the bad bacteria | [72] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahiya, D.; Nigam, P.S. Clinical Potential of Microbial Strains, Used in Fermentation for Probiotic Food, Beverages and in Synbiotic Supplements, as Psychobiotics for Cognitive Treatment through Gut–Brain Signaling. Microorganisms 2022, 10, 1687. https://doi.org/10.3390/microorganisms10091687
Dahiya D, Nigam PS. Clinical Potential of Microbial Strains, Used in Fermentation for Probiotic Food, Beverages and in Synbiotic Supplements, as Psychobiotics for Cognitive Treatment through Gut–Brain Signaling. Microorganisms. 2022; 10(9):1687. https://doi.org/10.3390/microorganisms10091687
Chicago/Turabian StyleDahiya, Divakar, and Poonam Singh Nigam. 2022. "Clinical Potential of Microbial Strains, Used in Fermentation for Probiotic Food, Beverages and in Synbiotic Supplements, as Psychobiotics for Cognitive Treatment through Gut–Brain Signaling" Microorganisms 10, no. 9: 1687. https://doi.org/10.3390/microorganisms10091687
APA StyleDahiya, D., & Nigam, P. S. (2022). Clinical Potential of Microbial Strains, Used in Fermentation for Probiotic Food, Beverages and in Synbiotic Supplements, as Psychobiotics for Cognitive Treatment through Gut–Brain Signaling. Microorganisms, 10(9), 1687. https://doi.org/10.3390/microorganisms10091687