Ubiquitin-Conjugating Enzymes Ubc1 and Ubc4 Mediate the Turnover of Hap4, a Master Regulator of Mitochondrial Biogenesis in Saccharomyces cerevisiae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains, Plasmids, and Growth Media and Growth Conditions
2.2. Creation of ρ0 Petites
2.3. Yeast Transformations and β-Galactosidase Activity Assays
2.4. Cellular Extract Preparation and Immunoblotting
2.5. Cycloheximide Chase Assay
3. Results
3.1. HAP4 Expression Is Affected by the Functional State of Mitochondria and the Quality of Carbon Sources
3.2. Transcriptional Regulation of KGD1, a Target of the Hap2/3/4/5 Complex, Correlates with Protein Levels of Hap4
3.3. Hap4 Has a Shorter Half-Life in ρ0 Cells than in ρ+ Cells
3.4. Hap4 Turnover Requires the 26S Proteasome
3.5. Hap4-HA Is Stabilized in a ubc1Δ ubc4Δ Double Mutant
3.6. Hap4 Stabilization Due to ubc1Δ ubc4Δ Increases Expression of Hap2/3/4/5-Target Genes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tzagoloff, A.; Myers, A.M. Genetics of mitochondrial biogenesis. Annu. Rev. Biochem. 1986, 55, 249–285. [Google Scholar] [CrossRef] [PubMed]
- Hock, M.B.; Kralli, A. Transcriptional control of mitochondrial biogenesis and function. Annu. Rev. Physiol. 2009, 71, 177–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, D.K.; Phang, T.L.; Trawick, J.D.; Poyton, R.O. Multiple pathways of mitochondrial-nuclear communication in yeast: Intergenomic signaling involves ABF1 and affects a different set of genes than retrograde regulation. Biochim. Biophys. Acta 2009, 1789, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Butow, R.A.; Avadhani, N.G. Mitochondrial signaling: The retrograde response. Mol. Cell 2004, 14, 1–15. [Google Scholar] [CrossRef]
- Liu, Z.; Butow, R.A. Mitochondrial retrograde signaling. Annu. Rev. Genet. 2006, 40, 159–185. [Google Scholar] [CrossRef]
- Moye-Rowley, W.S. Retrograde regulation of multidrug resistance in Saccharomyces cerevisiae. Gene 2005, 354, 15–21. [Google Scholar] [CrossRef]
- Paul, S.; Moye-Rowley, W.S. Multidrug resistance in fungi: Regulation of transporter-encoding gene expression. Front. Physiol. 2014, 5, 143. [Google Scholar] [CrossRef] [Green Version]
- Miceli, M.V.; Jiang, J.C.; Tiwari, A.; Rodriguez-Quinones, J.F.; Jazwinski, S.M. Loss of mitochondrial membrane potential triggers the retrograde response extending yeast replicative lifespan. Front. Genet. 2011, 2, 102. [Google Scholar] [CrossRef] [Green Version]
- McNabb, D.S.; Xing, Y.; Guarente, L. Cloning of yeast HAP5: A novel subunit of a heterotrimeric complex required for CCAAT binding. Genes Dev. 1995, 9, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Rosenkrantz, M.; Kell, C.S.; Pennell, E.A.; Devenish, L.J. The HAP2,3,4 transcriptional activator is required for derepression of the yeast citrate synthase gene, CIT1. Mol. Microbiol. 1994, 13, 119–131. [Google Scholar] [CrossRef]
- Olesen, J.T.; Guarente, L. The HAP2 subunit of yeast CCAAT transcriptional activator contains adjacent domains for subunit association and DNA recognition: Model for the HAP2/3/4 complex. Genes Dev. 1990, 4, 1714–1729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forsburg, S.L.; Guarente, L. Identification and characterization of HAP4: A third component of the CCAAT-bound HAP2/HAP3 heteromer. Genes Dev. 1989, 3, 1166–1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buschlen, S.; Amillet, J.M.; Guiard, B.; Fournier, A.; Marcireau, C.; Bolotin-Fukuhara, M. The S. cerevisiae HAP complex, a key regulator of mitochondrial function, coordinates nuclear and mitochondrial gene expression. Comp. Funct. Genom. 2003, 4, 37–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNabb, D.S.; Pinto, I. Assembly of the Hap2p/Hap3p/Hap4p/Hap5p-DNA complex in Saccharomyces cerevisiae. Eukaryot. Cell 2005, 4, 1829–1839. [Google Scholar] [CrossRef] [Green Version]
- DeRisi, J.L.; Iyer, V.R.; Brown, P.O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 1997, 278, 680–686. [Google Scholar] [CrossRef] [Green Version]
- Blom, J.; De Mattos, M.J.; Grivell, L.A. Redirection of the respiro-fermentative flux distribution in Saccharomyces cerevisiae by overexpression of the transcription factor Hap4p. Appl. Environ. Microbiol. 2000, 66, 1970–1973. [Google Scholar] [CrossRef] [Green Version]
- Lascaris, R.; Bussemaker, H.J.; Boorsma, A.; Piper, M.; van der Spek, H.; Grivell, L.; Blom, J. Hap4p overexpression in glucose-grown Saccharomyces cerevisiae induces cells to enter a novel metabolic state. Genome Biol. 2003, 4, R3. [Google Scholar] [CrossRef] [Green Version]
- Kundaje, A.; Xin, X.; Lan, C.; Lianoglou, S.; Zhou, M.; Zhang, L.; Leslie, C. A predictive model of the oxygen and heme regulatory network in yeast. PLoS Comput. Biol. 2008, 4, e1000224. [Google Scholar] [CrossRef] [Green Version]
- Brons, J.F.; De Jong, M.; Valens, M.; Grivell, L.A.; Bolotin-Fukuhara, M.; Blom, J. Dissection of the promoter of the HAP4 gene in S. cerevisiae unveils a complex regulatory framework of transcriptional regulation. Yeast 2002, 19, 923–932. [Google Scholar] [CrossRef]
- Zhang, T.; Bu, P.; Zeng, J.; Vancura, A. Increased heme synthesis in yeast induces a metabolic switch from fermentation to respiration even under conditions of glucose repression. J. Biol. Chem. 2017, 292, 16942–16954. [Google Scholar] [CrossRef]
- Deckert, J.; Rodriguez Torres, A.M.; Simon, J.T.; Zitomer, R.S. Mutational analysis of Rox1, a DNA-bending repressor of hypoxic genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 1995, 15, 6109–6117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, P.P.; Liu, Z. Identification and Characterization of Rapidly Accumulating sch9Δ Suppressor Mutations in Saccharomyces cerevisiae. G3 (Bethesda) 2021, 11, jkab134. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Butow, R.A. A transcriptional switch in the expression of yeast tricarboxylic acid cycle genes in response to a reduction or loss of respiratory function. Mol. Cell. Biol. 1999, 19, 6720–6728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourges, I.; Mucchielli, M.H.; Herbert, C.J.; Guiard, B.; Dujardin, G.; Meunier, B. Multiple defects in the respiratory chain lead to the repression of genes encoding components of the respiratory chain and TCA cycle enzymes. J. Mol. Biol. 2009, 387, 1081–1091. [Google Scholar] [CrossRef]
- Chevtzoff, C.; Yoboue, E.D.; Galinier, A.; Casteilla, L.; Daignan-Fornier, B.; Rigoulet, M.; Devin, A. Reactive oxygen species-mediated regulation of mitochondrial biogenesis in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 2010, 285, 1733–1742. [Google Scholar] [CrossRef] [Green Version]
- Bouchez, C.L.; Yoboue, E.D.; de la Rosa Vargas, L.E.; Salin, B.; Cuvellier, S.; Rigoulet, M.; Duvezin-Caubet, S.; Devin, A. “Labile” heme critically regulates mitochondrial biogenesis through the transcriptional co-activator Hap4p in Saccharomyces cerevisiae. J. Biol. Chem. 2020, 295, 5095–5109. [Google Scholar] [CrossRef] [Green Version]
- Yoboue, E.D.; Augier, E.; Galinier, A.; Blancard, C.; Pinson, B.; Casteilla, L.; Rigoulet, M.; Devin, A. cAMP-induced mitochondrial compartment biogenesis: Role of glutathione redox state. J. Biol. Chem. 2012, 287, 14569–14578. [Google Scholar] [CrossRef] [Green Version]
- Amberg, D.C.; Burke, D.J.; Strathern, J.N. Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual; Cold Spring Harbor Laboratory: New York, NY, USA, 2005. [Google Scholar]
- Morris, M.C.; Kaiser, P.; Rudyak, S.; Baskerville, C.; Watson, M.H.; Reed, S.I. Cks1-dependent proteasome recruitment and activation of CDC20 transcription in budding yeast. Nature 2003, 423, 1009–1013. [Google Scholar] [CrossRef]
- Kaiser, P.; Sia, R.A.; Bardes, E.G.; Lew, D.J.; Reed, S.I. Cdc34 and the F-box protein Met30 are required for degradation of the Cdk-inhibitory kinase Swe1. Genes Dev. 1998, 12, 2587–2597. [Google Scholar] [CrossRef] [Green Version]
- Lipford, J.R.; Smith, G.T.; Chi, Y.; Deshaies, R.J. A putative stimulatory role for activator turnover in gene expression. Nature 2005, 438, 113–116. [Google Scholar] [CrossRef]
- Seufert, W.; McGrath, J.P.; Jentsch, S. UBC1 encodes a novel member of an essential subfamily of yeast ubiquitin-conjugating enzymes involved in protein degradation. EMBO J. 1990, 9, 4535–4541. [Google Scholar] [CrossRef] [PubMed]
- Yaffe, M.P.; Schatz, G. Two nuclear mutations that block mitochondrial protein import in yeast. Proc. Natl. Acad. Sci. USA 1984, 81, 4819–4823. [Google Scholar] [CrossRef] [Green Version]
- Chelstowska, A.; Liu, Z.; Jia, Y.; Amberg, D.; Butow, R.A. Signalling between mitochondria and the nucleus regulates the expression of a new D-lactate dehydrogenase activity in yeast. Yeast 1999, 15, 1377–1391. [Google Scholar] [CrossRef]
- Liao, X.S.; Small, W.C.; Srere, P.A.; Butow, R.A. Intramitochondrial functions regulate nonmitochondrial citrate synthase (CIT2) expression in Saccharomyces cerevisiae. Mol. Cell. Biol. 1991, 11, 38–46. [Google Scholar] [PubMed] [Green Version]
- Repetto, B.; Tzagoloff, A. Structure and regulation of KGD1, the structural gene for yeast alpha-ketoglutarate dehydrogenase. Mol. Cell. Biol. 1989, 9, 2695–2705. [Google Scholar] [PubMed] [Green Version]
- Fontanesi, F.; Jin, C.; Tzagoloff, A.; Barrientos, A. Transcriptional activators HAP/NF-Y rescue a cytochrome c oxidase defect in yeast and human cells. Hum. Mol. Genet. 2008, 17, 775–788. [Google Scholar] [CrossRef] [Green Version]
- Mumberg, D.; Muller, R.; Funk, M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 1995, 156, 119–122. [Google Scholar] [CrossRef]
- Epstein, C.B.; Waddle, J.A.; Hale, W.t.; Dave, V.; Thornton, J.; Macatee, T.L.; Garner, H.R.; Butow, R.A. Genome-wide responses to mitochondrial dysfunction. Mol. Biol. Cell 2001, 12, 297–308. [Google Scholar] [CrossRef]
- Mayor, T.; Graumann, J.; Bryan, J.; MacCoss, M.J.; Deshaies, R.J. Quantitative profiling of ubiquitylated proteins reveals proteasome substrates and the substrate repertoire influenced by the Rpn10 receptor pathway. Mol. Cell. Proteom. 2007, 6, 1885–1895. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.H.; Goldberg, A.L. Selective inhibitors of the proteasome-dependent and vacuolar pathways of protein degradation in Saccharomyces cerevisiae. J. Biol. Chem. 1996, 271, 27280–27284. [Google Scholar] [CrossRef]
- Hochstrasser, M. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 1996, 30, 405–439. [Google Scholar] [CrossRef] [PubMed]
- Devaux, F.; Carvajal, E.; Moye-Rowley, S.; Jacq, C. Genome-wide studies on the nuclear PDR3-controlled response to mitochondrial dysfunction in yeast. FEBS Lett. 2002, 515, 25–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleming, J.A.; Lightcap, E.S.; Sadis, S.; Thoroddsen, V.; Bulawa, C.E.; Blackman, R.K. Complementary whole-genome technologies reveal the cellular response to proteasome inhibition by PS-341. Proc. Natl. Acad. Sci. USA 2002, 99, 1461–1466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hershko, A.; Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 1998, 67, 425–479. [Google Scholar] [CrossRef]
- Varshavsky, A. The ubiquitin system. Trends Biochem. Sci 1997, 22, 383–387. [Google Scholar] [CrossRef]
- Johnson, E.S.; Blobel, G. Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J. Biol. Chem. 1997, 272, 26799–26802. [Google Scholar] [CrossRef] [Green Version]
- Seufert, W.; Jentsch, S. Yeast ubiquitin-conjugating enzymes involved in selective protein degradation are essential for cell viability. Acta Biol. Hung. 1991, 42, 27–37. [Google Scholar]
- Stoll, K.E.; Brzovic, P.S.; Davis, T.N.; Klevit, R.E. The essential Ubc4/Ubc5 function in yeast is HECT E3-dependent, and RING E3-dependent pathways require only monoubiquitin transfer by Ubc4. J. Biol. Chem. 2011, 286, 15165–15170. [Google Scholar] [CrossRef] [Green Version]
- Foury, F.; Roganti, T.; Lecrenier, N.; Purnelle, B. The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae. FEBS Lett. 1998, 440, 325–331. [Google Scholar] [CrossRef] [Green Version]
- Rodrigo-Brenni, M.C.; Morgan, D.O. Sequential E2s drive polyubiquitin chain assembly on APC targets. Cell 2007, 130, 127–139. [Google Scholar] [CrossRef] [Green Version]
- Schork, S.M.; Thumm, M.; Wolf, D.H. Catabolite inactivation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae. Degradation occurs via the ubiquitin pathway. J. Biol. Chem. 1995, 270, 26446–26450. [Google Scholar] [CrossRef] [PubMed]
- Seufert, W.; Jentsch, S. Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins. EMBO J. 1990, 9, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Michelle, C.; Vourc’h, P.; Mignon, L.; Andres, C.R. What was the set of ubiquitin and ubiquitin-like conjugating enzymes in the eukaryote common ancestor? J. Mol. Evol. 2009, 68, 616–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghaemmaghami, S.; Huh, W.K.; Bower, K.; Howson, R.W.; Belle, A.; Dephoure, N.; O’Shea, E.K.; Weissman, J.S. Global analysis of protein expression in yeast. Nature 2003, 425, 737–741. [Google Scholar] [CrossRef] [PubMed]
- Morano, K.A.; Grant, C.M.; Moye-Rowley, W.S. The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 2012, 190, 1157–1195. [Google Scholar] [CrossRef] [Green Version]
- Halliwell, B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol. 2006, 141, 312–322. [Google Scholar] [CrossRef] [Green Version]
- Ozkaynak, E.; Finley, D.; Solomon, M.J.; Varshavsky, A. The yeast ubiquitin genes: A family of natural gene fusions. EMBO J. 1987, 6, 1429–1439. [Google Scholar] [CrossRef]
- Cheng, L.; Watt, R.; Piper, P.W. Polyubiquitin gene expression contributes to oxidative stress resistance in respiratory yeast (Saccharomyces cerevisiae). Mol. Gen. Genet. 1994, 243, 358–362. [Google Scholar] [CrossRef]
- Watt, R.; Piper, P.W. UBI4, the polyubiquitin gene of Saccharomyces cerevisiae, is a heat shock gene that is also subject to catabolite derepression control. Mol. Gen. Genet. 1997, 253, 439–447. [Google Scholar] [CrossRef]
- Rasmussen, A.K.; Chatterjee, A.; Rasmussen, L.J.; Singh, K.K. Mitochondria-mediated nuclear mutator phenotype in Saccharomyces cerevisiae. Nucleic Acids Res. 2003, 31, 3909–3917. [Google Scholar] [CrossRef]
- Zhang, F.; Pracheil, T.; Thornton, J.; Liu, Z. Adenosine Triphosphate (ATP) Is a Candidate Signaling Molecule in the Mitochondria-to-Nucleus Retrograde Response Pathway. Genes 2013, 4, 86–100. [Google Scholar] [CrossRef] [PubMed]
- Hershko, A.; Leshinsky, E.; Ganoth, D.; Heller, H. ATP-dependent degradation of ubiquitin-protein conjugates. Proc. Natl. Acad. Sci. USA 1984, 81, 1619–1623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ocampo, A.; Liu, J.; Schroeder, E.A.; Shadel, G.S.; Barrientos, A. Mitochondrial respiratory thresholds regulate yeast chronological life span and its extension by caloric restriction. Cell Metab. 2012, 16, 55–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vowinckel, J.; Hartl, J.; Marx, H.; Kerick, M.; Runggatscher, K.; Keller, M.A.; Mülleder, M.; Day, J.; Weber, M.; Rinnerthaler, M.; et al. The metabolic growth limitations of petite cells lacking the mitochondrial genome. Nat. Metab. 2021, 3, 1521–1535. [Google Scholar] [CrossRef] [PubMed]
Strain | Genotype | Source | Application |
---|---|---|---|
BY4741 | MATa ura3 leu2 his3 met15 | ATCC | Figures 1A, 5A and S1 |
BY4741 hap4 | BY4741 hap4::kanMX4 | Yeast genome deletion project (YGDP) | Figures 1B and S1 |
PSY142 | MATα ura3 leu2 lys2 | Liu Lab stock | |
DCY210 | PSY142 KGD1-lacZ::URA3 | This study | |
ZLY3440 | PSY142 KGD1-lacZ::ura3::kanMX4 | This study | Figure 2 |
DCY247 | PSY142 KGD1-lacZ::ura3 hap4::LYS2 | This study | Figures 2, 3 and S2 |
ZLY4531 | BY4741 erg6::kanMX4 | This study | Figures 4A, 4B, S3 and S5A |
15Daub | MATa ura3Dns ade1 his2 leu2-3,112 trp1-1 bar1D | [29,30] | Figures 4C and S5B |
PY555 | MATa ura3Dns ade1 his2 leu2-3,112 trp1-1 pre1-1 pre4-1 | [29] | Figures 4C and S5B |
BY4741 ubc2 | BY4741 ubc2::kanMX4 | YGDP | Figure 5A |
BY4741 ubc4 | BY4741 ubc4::kanMX4 | YGDP | Figure 5A |
BY4741 ubc5 | BY4741 ubc5::kanMX4 | YGDP | Figure 5A |
BY4741 ubc7 | BY4741 ubc7::kanMX4 | YGDP | Figure 5A |
BY4741 ubc8 | BY4741 ubc8::kanMX4 | YGDP | Figure 5A |
BY4741 ubc10 | BY4741 ubc10::kanMX4 | YGDP | Figure 5A |
BY4741 ubc11 | BY4741 ubc11::kanMX4 | YGDP | Figure 5A |
BY4741 ubc12 | BY4741 ubc12::kanMX4 | YGDP | Figure 5A |
BY4741 ubc13 | BY4741 ubc13::kanMX4 | YGDP | Figure 5A |
RJD2141 (cdc34-2) | MATa ura3 leu2 his3 GCN4 (Myc9)::HIS3 cdc34-2 | [31] | Figure 5A |
Y0002 | MATα his3-Δ200 leu2-3,2-112 lys2-801 trp1-1(am) ura3-52 | [32] | Figures 5B, 6 and S4 |
Y0151 (ubc1) | Y0002 ubc1::HIS3 | [32] | Figure 5B |
Y0026 (ubc6) | Y0002 ubc6::HIS3 | [32] | Figure 5B |
Y0233 (ubc9-1) | Y0002 ubc9Δ::TRP1 ubc9-1::LEU2 bar1::HIS3 | [32] | Figure 5B |
Y0501 (ubc1/5) | Y0002 ubc1::URA3 ubc5::LEU2 | [32] | |
Y0096 (ubc4/5) | Y0002 ubc4::HIS3 ubc5::LEU2 | [32] | Figure 5B |
Y0108 (ubc1/4) | Y0002 ubc1::URA3 ubc4::HIS3 | [32] | |
ZLY3356 (ubc1/5) | Y0002 ubc1::ura3::kanMX4 ubc5::LEU2 | This study | Figure 5B |
ZLY3359 (ubc1/4) | Y0002 ubc1::ura3::kanMX4 ubc4::HIS3 | This study | Figures 5B,C and 6 |
ZLY4636 (erg6 ubc1/4) | Y0002 ubc1::ura3::kanMX4 ubc4::HIS3 erg6::kanMX4 | This study | Figure S5C |
AHY145 | Y0002 hap4::LYS2 | This study | Figure 6 |
Y0003 | MATa his3-Δ200 leu2-3,2-112 lys2-801 trp1-1(am) ura3-52 | [32] | |
TPY1277 | Y0003 hap4::kanMX4 (for making ZLY3839 via tetrad analysis) | This study | |
ZLY3839 | Y0002 ubc1::ura3::kanMX4 ubc4::HIS3 hap4::KanMX4 | This study | Figure 6 |
Plasmid | Description | Source | Application |
---|---|---|---|
pDC124 | pRS416-HAP4-lacZ, expressing lacZ under the control of a 1.8-kbp HAP4 promoter. | This study | Figure 1A |
pDC162 | YIp356-KGD1-lacZ, a yeast integrative vector encoding a KGD1-lacZ reporter gene and a URA3 section marker. | This study | Figure 2 |
pDC210 | pRS416-HAP4p-HAP4-HA, expressing Hap4 from its native promoter with a 3xHA tag at the C-terminus. | This study | Figures 2B,C, 3B, 4, 5, S1 and S5 |
pDC216 | pRS416-GPDp-HAP4-HA, expressing Hap4 from a GPD promoter with a 3xHA tag at the C-terminus. | This study | Figures 2B,C, 3A and S2 |
pDC218 | pRS416-TEF2p-HAP4-HA, expressing Hap4 from a TEF2 promoter with a 3xHA tag at the C-terminus. | This study | Figure 2B,C |
pDC160 | pRS416-KGD1-lacZ, expressing lacZ under the control of a 696-bp KGD1 promoter. | This study | Figure 6 |
pMC106 | pRS416-SDH1-lacZ, expressing lacZ under the control of a 740-bp SDH1 promoter. | This study | Figure 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capps, D.; Hunter, A.; Chiang, M.; Pracheil, T.; Liu, Z. Ubiquitin-Conjugating Enzymes Ubc1 and Ubc4 Mediate the Turnover of Hap4, a Master Regulator of Mitochondrial Biogenesis in Saccharomyces cerevisiae. Microorganisms 2022, 10, 2370. https://doi.org/10.3390/microorganisms10122370
Capps D, Hunter A, Chiang M, Pracheil T, Liu Z. Ubiquitin-Conjugating Enzymes Ubc1 and Ubc4 Mediate the Turnover of Hap4, a Master Regulator of Mitochondrial Biogenesis in Saccharomyces cerevisiae. Microorganisms. 2022; 10(12):2370. https://doi.org/10.3390/microorganisms10122370
Chicago/Turabian StyleCapps, Denise, Arielle Hunter, Mengying Chiang, Tammy Pracheil, and Zhengchang Liu. 2022. "Ubiquitin-Conjugating Enzymes Ubc1 and Ubc4 Mediate the Turnover of Hap4, a Master Regulator of Mitochondrial Biogenesis in Saccharomyces cerevisiae" Microorganisms 10, no. 12: 2370. https://doi.org/10.3390/microorganisms10122370
APA StyleCapps, D., Hunter, A., Chiang, M., Pracheil, T., & Liu, Z. (2022). Ubiquitin-Conjugating Enzymes Ubc1 and Ubc4 Mediate the Turnover of Hap4, a Master Regulator of Mitochondrial Biogenesis in Saccharomyces cerevisiae. Microorganisms, 10(12), 2370. https://doi.org/10.3390/microorganisms10122370