In Vitro Antiparasitic Activity of Propyl-Propane-Thiosulfinate (PTS) and Propyl-Propane-Thiosulfonate (PTSO) from Allium cepa against Eimeria acervulina Sporozoites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Allium Compounds and Reagents
2.2. Parasites
2.3. Cell Cultures
2.4. Cytotoxicity Assays
2.5. Cell Cultures Infection
2.5.1. Experiment 1: Inhibition of Sporozoites Invasion Capability
2.5.2. Experiment 2: Preventive Effect of Allium Compounds against Sporozoite Invasion
2.6. Determination of Invasion Efficiency by qPCR
2.6.1. DNA Extraction from Purified Oocysts and Samples
2.6.2. Standard Curve
2.6.3. Determination of Invasion Efficiency by qPCR
2.7. Statistical Analyses
3. Results
3.1. Cytotoxicity of PTS and PTSO Compounds in Sporozoites and MDBK Cells
3.2. In Vitro Anticoccidial Sensitivity Assays for qPCR
3.3. Inhibition of Sporozoite Invasion Capability
3.4. Preventive Effect
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geetha, M.; Palanivel, K.M. A review on poultry coccidiosis. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 3345–3349. [Google Scholar] [CrossRef]
- Chapman, H.D. Milestones in avian coccidiosis research: A review. Poult. Sci. 2014, 93, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Noack, S.; Chapman, H.D.; Selzer, P.M. Anticoccidial drugs of the livestock industry. Parasitol. Res. 2019, 118, 2009–2026. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Adhikari, P.; Kiess, A.; Adhikari, R.; Jha, R. An approach to alternative strategies to control avian coccidiosis and necrotic enteritis. J. Appl. Poult. Res. 2020, 29, 515–534. [Google Scholar] [CrossRef]
- Quiroz-Castañeda, R.E.; Dantán-González, E. Control of avian coccidiosis: Future and present natural alternatives. BioMed Res. Int. 2015, 2015, 430610. [Google Scholar] [CrossRef][Green Version]
- Peek, H.W.; Landman, W.J.M. Coccidiosis in poultry: Anticoccidial products, vaccines and other prevention strategies. Veter Q. 2011, 31, 143–161. [Google Scholar] [CrossRef]
- Suresh, G.; Das, R.K.; Brar, S.K.; Rouissi, T.; Ramirez, A.A.; Chorfi, Y.; Godbout, S. Alternatives to antibiotics in poultry feed: Molecular perspectives. Crit. Rev. Microbiol. 2018, 44, 318–335. [Google Scholar] [CrossRef]
- Wink, M. Plant secondary metabolites modulate insect behavior-steps toward addiction? Front. Physiol. 2018, 9, 364. [Google Scholar] [CrossRef][Green Version]
- Yang, C.; Chowdhury, M.A.K.; Hou, Y.; Gong, J. Phytogenic compounds as alternatives to in-feed antibiotics: Potentials and challenges in application. Pathogens 2015, 4, 137–156. [Google Scholar] [CrossRef][Green Version]
- Vidanarachchi, J.K.; Mikkelsen, L.L.; Sims, I.; Iji, P.A.; Choct, M. Phytobiotics: Alternatives to antibiotic growth promoters in monogastric animal feeds. Recent Adv. Anim. Nutr. Aust. 2005, 15, 131–144. [Google Scholar]
- Sharifi-Rad, M.; Mnayer, D.; Tabanelli, G.; Stojanović-Radić, Z.Z.; Sharifi-Rad, M.; Yousaf, Z.; Vallone, L.; Setzer, W.N.; Iriti, M. Plants of the genus Allium as antibacterial agents: From tradition to pharmacy. Cell. Mol. Biol. 2016, 62, 57–68. [Google Scholar]
- Kothari, D.; Lee, W.-D.; Niu, K.-M.; Kim, S.-K. The genus allium as poultry feed additive: A review. Animals 2019, 9, 1032. [Google Scholar] [CrossRef]
- Khalil, A.M.; Yasuda, M.; Farid, A.S.; Desouky, M.I.; Mohi-Eldin, M.M.; Haridy, M.; Horii, Y. Immunomodulatory and antiparasitic effects of garlic extract on Eimeria vermiformis-infected mice. Parasitol. Res. 2015, 114, 2735–2742. [Google Scholar] [CrossRef]
- Foroutan-Rad, M.; Tappeh, K.H.; Khademvatan, S. Antileishmanial and immunomodulatory activity of Allium sativum(Garlic): A review. J. Evid. Based Integr. Med. 2017, 22, 141–155. [Google Scholar] [CrossRef]
- Fujisawa, H.; Suma, K.; Origuchi, K.; Kumagai, H.; Seki, T.; Ariga, T. Biological and chemical stability of garlic-derived allicin. J. Agric. Food Chem. 2008, 56, 4229–4235. [Google Scholar] [CrossRef]
- Putnik, P.; Gabrić, D.; Roohinejad, S.; Barba, F.J.; Granato, D.; Mallikarjunan, K.; Lorenzo, J.M.; Bursać Kovačević, D. An overview of organosulfur compounds from Allium spp.: From processing and preservation to evaluation of their bioavailability, antimicrobial, and anti-inflammatory properties. Food Chem. 2019, 276, 680–691. [Google Scholar] [CrossRef]
- Cascajosa-Lira, A.; Ortega, A.I.P.; Guzmán-Guillén, R.; Cătunescu, G.M.; de la Torre, J.M.; Guillamón, E.; Jos, Á.; Fernández, A.M.C. Simultaneous determination of Allium compounds (Propyl propane thiosulfonate and thiosulfinate) in animal feed using UPLC-MS/MS. Food Chem. Toxicol. 2021, 157, 112619. [Google Scholar] [CrossRef]
- Guillamón, E.; Andreo-Martínez, P.; Mut-Salud, N.; Fonollá, J.; Baños, A. Beneficial effects of organosulfur compounds from Allium cepa on gut health: A systematic review. Foods 2021, 10, 1680. [Google Scholar] [CrossRef]
- Peinado, M.J.; Ruiz, R.; Echávarri, A.; Aranda-Olmedo, I.; Rubio, L.A. Garlic derivative PTS-O modulates intestinal microbiota composition and improves digestibility in growing broiler chickens. Anim. Feed Sci. Technol. 2013, 181, 87–92. [Google Scholar] [CrossRef]
- Rabelo-Ruiz, M.; Ariza-Romero, J.J.; Zurita-González, M.J.; Martín-Platero, A.M.; Baños, A.; Maqueda, M.; Valdivia, E.; Martínez-Bueno, M.; Peralta-Sánchez, J. Allium-based phytobiotic enhances egg production in laying hens through microbial composition changes in ileum and cecum. Animals 2021, 11, 448. [Google Scholar] [CrossRef]
- Abad, P.; Arroyo-Manzanares, N.; Ariza, J.J.; Baños, A.; García-Campaña, A.M. Effect of allium extract supplementation on egg quality, productivity, and intestinal microbiota of laying hens. Animals 2021, 11, 41. [Google Scholar] [CrossRef]
- Sánchez, C.J.; Martínez-Miró, S.; Ariza, J.J.; Madrid, J.; Orengo, J.; Aguinaga, M.A.; Baños, A.; Hernández, F. Effect of Alliaceae extract supplementation on performance and intestinal microbiota of growing-finishing pig. Animals 2020, 10, 1557. [Google Scholar] [CrossRef]
- Rabelo-Ruiz, M.; Teso-Pérez, C.; Peralta-Sánchez, J.M.; Ariza, J.J.; Martín-Platero, A.M.; Casabuena-Rincón, Ó.; Vázquez-Chas, P.; Guillamón, E.; Aguinaga-Casañas, M.A.; Maqueda, M.; et al. Allium extract implements weaned piglet’s productive parameters by modulating distal gut microbiota. Antibiotics 2021, 10, 269. [Google Scholar] [CrossRef]
- Sorlozano-Puerto, A.; Albertuz-Crespo, M.; Lopez-Machado, I.; Gil-Martinez, L.; Ariza-Romero, J.J.; Maroto-Tello, A.; Baños-Arjona, A.; Gutierrez-Fernandez, J. Antibacterial and antifungal activity of propyl-propane-thiosulfinate and propyl-propane-thiosulfonate, two organosulfur compounds from Allium cepa: In vitro antimicrobial effect via the gas phase. Pharmaceuticals 2021, 14, 21. [Google Scholar] [CrossRef]
- Sorlozano-Puerto, A.; Albertuz-Crespo, M.; Lopez-Machado, I.; Ariza-Romero, J.J.; Baños-Arjona, A.; Exposito-Ruiz, M.; Gutierrez-Fernandez, J. In vitro antibacterial activity of propyl-propane-thiosulfinate and propyl-propane-thiosulfonate derived from Allium spp. against gram-negative and gram-positive multidrug-resistant bacteria isolated from human samples. BioMed Res. Int. 2018, 2018, 7861207. [Google Scholar] [CrossRef][Green Version]
- Qi, N.; Liao, S.; Abuzeid, A.M.; Li, J.; Wu, C.; Lv, M.; Lin, X.; Hu, J.; Xiao, W.; Sun, M.; et al. Effect of different floatation solutions on E. tenella oocyst purification and optimization of centrifugation conditions for improved recovery of oocysts and sporocysts. Exp. Parasitol. 2020, 217, 107965. [Google Scholar] [CrossRef]
- Castañón, C.A.B.; Fraga, J.S.; Fernandez, S.; Gruber, A.; Costa, L.D.F. Biological shape characterization for automatic image recognition and diagnosis of protozoan parasites of the genus Eimeria. Pattern Recognit. 2007, 40, 1899–1910. [Google Scholar] [CrossRef]
- Pastor-Fernández, I.; Pegg, E.; Macdonald, S.E.; Tomley, F.M.; Blake, D.P.; Marugán-Hernández, V. Laboratory growth and genetic manipulation of Eimeria tenella. Curr. Protoc. Microbiol. 2019, 53, e81. [Google Scholar] [CrossRef][Green Version]
- Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 2006, 1, 1112–1116. [Google Scholar] [CrossRef]
- Fernández, S.; Katsuyama, Â.M.; Kashiwabara, A.Y.; Madeira, A.M.B.N.; Durham, A.M.; Gruber, A. Characterization of SCAR markers of Eimeria spp. of domestic fowl and construction of a public relational database (The Eimeria SCARdb). FEMS Microbiol. Lett. 2004, 238, 183–188. [Google Scholar] [CrossRef]
- Kundu, K.; Kumar, S.; Banerjee, P.S.; Garg, R. Quantification of Eimeria necatrix, E. acervulina and E. maxima genomes in commercial chicken farms by quantitative real time PCR. J. Parasit. Dis. 2020, 44, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Dhanasekaran, S.; Doherty, T.M.; Kenneth, J. Comparison of different standards for real-time PCR-based absolute quantification. J. Immunol. Methods 2010, 354, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Thabet, A.; Zhang, R.; Alnassan, A.-A.; Daugschies, A.; Bangoura, B. Anticoccidial efficacy testing: In vitro Eimeria tenella assays as replacement for animal experiments. Veter Parasitol. 2017, 233, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Burrell, A.; Tomley, F.M.; Vaughan, S.; Marugan-Hernandez, V. Life cycle stages, specific organelles and invasion mechanisms of Eimeria species. Parasitology 2020, 147, 263–278. [Google Scholar] [CrossRef] [PubMed]
- López-Osorio, S.; Chaparro-Gutiérrez, J.J.; Gómez-Osorio, L.M. Overview of poultry eimeria life cycle and host-parasite interactions. Front. Veter Sci. 2020, 7, 384. [Google Scholar] [CrossRef]
- El-Shall, N.A.; El-Hack, M.E.A.; Albaqami, N.M.; Khafaga, A.F.; Taha, A.E.; Swelum, A.A.; El-Saadony, M.T.; Salem, H.M.; El-Tahan, A.M.; AbuQamar, S.F.; et al. Phytochemical control of poultry coccidiosis: A review. Poult. Sci. 2021, 101, 101542. [Google Scholar] [CrossRef]
- Kim, D.K.; Lillehoj, H.S.; Lee, S.H.; Lillehoj, E.P.; Bravo, D. Improved resistance to Eimeria acervulina infection in chickens due to dietary supplementation with garlic metabolites. Br. J. Nutr. 2012, 109, 76–88. [Google Scholar] [CrossRef][Green Version]
- Coppi, A.; Cabinian, M.; Mirelman, D.; Sinnis, P. Antimalarial activity of allicin, a biologically active compound from garlic cloves. Antimicrob. Agents Chemother. 2006, 50, 1731–1737. [Google Scholar] [CrossRef][Green Version]
- Mehlhorn, H.; Pooch, H.; Raether, W. The action of polyether ionophorous antibiotics (monensin, salinomycin, lasalocid) on developmental stages of Eimeria tenella (Coccidia, Sporozoa) in vivo and in vitro: Study by light and electron microscopy. Z. Für Parasitenkd 1983, 69, 457–471. [Google Scholar] [CrossRef]
- Waag, T.; Gelhaus, C.; Rath, J.; Stich, A.; Leippe, M.; Schirmeister, T. Allicin and derivates are cysteine protease inhibitors with antiparasitic activity. Bioorganic Med. Chem. Lett. 2010, 20, 5541–5543. [Google Scholar] [CrossRef]
- Shang, A.; Cao, S.-Y.; Xu, X.-Y.; Gan, R.-Y.; Tang, G.-Y.; Corke, H.; Mavumengwana, V.; Li, H.-B. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods 2019, 8, 246. [Google Scholar] [CrossRef][Green Version]
- Borlinghaus, J.; Albrecht, F.; Gruhlke, M.C.H.; Nwachukwu, I.D.; Slusarenko, A.J. Allicin: Chemistry and biological properties. Molecules 2014, 19, 12591–12618. [Google Scholar] [CrossRef]
- Sidiropoulou, E.; Skoufos, I.; Marugan-Hernandez, V.; Giannenas, I.; Bonos, E.; Aguiar-Martins, K.; Lazari, D.; Blake, D.P.; Tzora, A. In vitro anticoccidial study of oregano and garlic essential oils and effects on growth performance, fecal oocyst output, and intestinal microbiota in vivo. Front. Veter Sci. 2020, 7, 420. [Google Scholar] [CrossRef]
- Elsasser, T.H.; Caperna, T.J.; Ward, P.J.; Sartin, J.L.; Steele, B.P.; Li, C.; Kahl, S. Modeling growth factor activity during proinflammatory stress: Methodological considerations in assessing cytokine modulation of IGF binding proteins released by cultured bovine kidney epithelial cells. Domest. Anim. Endocrinol. 2007, 33, 390–399. [Google Scholar] [CrossRef]
- Fredericksen, F.; Carrasco, G.; Villalba, M.; Olavarría, V.H. Cytopathic BVDV-1 strain induces immune marker production in bovine cells through the NF-κB signaling pathway. Mol. Immunol. 2015, 68, 213–222. [Google Scholar] [CrossRef]
- Vezza, T.; Algieri, F.; Garrido-Mesa, J.; Utrilla, M.P.; Rodríguez-Cabezas, M.E.; Baños, A.; Guillamón, E.; García, F.; Rodríguez-Nogales, A.; Galvez, J. The immunomodulatory properties of propyl-propane thiosulfonate contribute to its intestinal anti-inflammatory effect in experimental colitis. Mol. Nutr. Food Res. 2019, 63, e1800653. [Google Scholar] [CrossRef]
- Zhu, L.; Myhill, L.J.; Andersen-Civil, A.I.; Thamsborg, S.M.; Blanchard, A.; Williams, A.R. Garlic-derived organosulfur compounds regulate metabolic and immune pathways in macrophages and attenuate intestinal inflammation in mice. Mol. Nutr. Food Res. 2022, 66, 2101004. [Google Scholar] [CrossRef]
- Naidoo, V.; McGaw, L.J.; Bisschop, S.P.R.; Duncan, N.; Eloff, J.N. The value of plant extracts with antioxidant activity in attenuating coccidiosis in broiler chickens. Veter Parasitol. 2008, 153, 214–219. [Google Scholar] [CrossRef][Green Version]
- Alhotan, R.A.; Abudabos, A. Anticoccidial and antioxidant effects of plants derived polyphenol in broilers exposed to induced coccidiosis. Environ. Sci. Pollut. Res. 2019, 26, 14194–14199. [Google Scholar] [CrossRef]
- Burt, S.A.; Tersteeg-Zijderveld, M.H.G.; Jongerius-Gortemaker, B.G.M.; Vervelde, L.; Vernooij, J.C.M. In vitro inhibition of Eimeria tenella invasion of epithelial cells by phytochemicals. Veter Parasitol. 2013, 191, 374–378. [Google Scholar] [CrossRef][Green Version]
- Felici, M.; Tugnoli, B.; Ghiselli, F.; Massi, P.; Tosi, G.; Fiorentini, L.; Piva, A.; Grilli, E. In vitro anticoccidial activity of thymol, carvacrol, and saponins. Poult. Sci. 2020, 99, 5350–5355. [Google Scholar] [CrossRef]
PTS, µg/mL | PTSO, µg/mL | ||||||||
---|---|---|---|---|---|---|---|---|---|
Control | 0.1 | 1 | 5 | 10 | 0.1 | 1 | 10 | 50 | |
MDBK 1 | 100.90 | 95.65 | 103.50 | 100.30 | 85.40 | 99.88 | 99.36 | 97.38 | 88.60 |
MDBK + E 2 | 32.55 | 34.43 | 47.09 | 40.18 | 23.85 | 73.38 | 93.48 | 95.96 | 40.91 |
SEM | 2.28 | 2.438 | 2.181 | 2.28 | 2.28 | 2.181 | 2.28 | 2.438 | 2.28 |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.113 | 0.9994 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguinaga-Casañas, M.A.; Mut-Salud, N.; Falcón-Piñeiro, A.; Alcaraz-Martínez, Á.; Guillamón, E.; Baños, A. In Vitro Antiparasitic Activity of Propyl-Propane-Thiosulfinate (PTS) and Propyl-Propane-Thiosulfonate (PTSO) from Allium cepa against Eimeria acervulina Sporozoites. Microorganisms 2022, 10, 2040. https://doi.org/10.3390/microorganisms10102040
Aguinaga-Casañas MA, Mut-Salud N, Falcón-Piñeiro A, Alcaraz-Martínez Á, Guillamón E, Baños A. In Vitro Antiparasitic Activity of Propyl-Propane-Thiosulfinate (PTS) and Propyl-Propane-Thiosulfonate (PTSO) from Allium cepa against Eimeria acervulina Sporozoites. Microorganisms. 2022; 10(10):2040. https://doi.org/10.3390/microorganisms10102040
Chicago/Turabian StyleAguinaga-Casañas, María Arántzazu, Nuria Mut-Salud, Ana Falcón-Piñeiro, Ángela Alcaraz-Martínez, Enrique Guillamón, and Alberto Baños. 2022. "In Vitro Antiparasitic Activity of Propyl-Propane-Thiosulfinate (PTS) and Propyl-Propane-Thiosulfonate (PTSO) from Allium cepa against Eimeria acervulina Sporozoites" Microorganisms 10, no. 10: 2040. https://doi.org/10.3390/microorganisms10102040