Microbial Community, Co-Occurrence Network Relationship and Fermentation Lignocellulose Characteristics of Broussonetia papyrifera Ensiled with Wheat Bran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Silage Preparation
2.2. Silage Chemical Composition and Enzyme Activity Assays
2.3. Microbial Community Analysis
2.3.1. Total DNA Extraction
2.3.2. High-Throughput Sequencing of Bacterial 16SrDNA and Fungal ITS Region
2.3.3. Bioinformatics Analysis
2.3.4. Statistical Analysis
3. Results and Discussion
3.1. Dynamic Analysis of Chemical Composition and Enzyme Activity during Silage Fermentation
3.2. Composition Succession Characteristics of Bacterial and Fungal Community
3.3. Functional Succession Characteristics of Bacterial and Fungal Community
3.4. Correlation Analysis of Environmental Factors
3.5. Co-Occurrence Network Characteristics of Bacterial and Fungal Communities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saito, K.; Linquist, B.; Keobualapha, B.; Shiraiwa, T.; Horie, T. Broussonetia papyrifera (paper mulberry): Its growth, yield and potential as a fallow crop in slash-and burn upland rice system of northern Laos. Agrofor. Syst. 2009, 76, 525–532. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.; Huang, S.; Liu, G.; Zhang, J.; Liu, G.; Cao, Z.; Wang, Y.; Wang, W.; Li, S. Effects of different parts on the chemical composition, silage fermentation profile, in vitro and in situ digestibility of paper mulberry. Animals 2021, 11, 413. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Chen, H.; Gao, H.; Li, Z. Bioconversion of corn straw by coupling ensiling and solid-state fermentation. Bioresour. Technol. 2001, 78, 277–280. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Y.; Gou, W.L.; Cheng, Q.M.; Bai, S.Q.; Cai, Y.M. Silage fermentation and bacterial community of bur clover, annual ryegrass and their mixtures prepared with microbial inoculant and chemical additive. Anim. Feed Sci. Technol. 2019, 247, 285–293. [Google Scholar] [CrossRef]
- Wright, D.A.; Gordon, F.J.; Steen, R.W.J.; Patterson, D.C. Factors influencing the response in intake of silage and animal performance after wilting of grass before ensiling: A review. Grass Forage Sci. 2000, 55, 1–13. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Li, D.X.; Wang, X.K.; Lin, Y.L.; Zhang, Q.; Chen, X.Y.; Yang, F.Y. Fermentation dynamics and diversity of bacterial community in four typical woody forages. Ann. Microbiol. 2019, 69, 233–240. [Google Scholar] [CrossRef]
- Guo, L.; Wang, X.; Lin, Y.; Yang, X.; Ni, K.; Yang, F. Microorganisms that are critical for the fermentation quality of paper mulberry silage. Food Energy Secur. 2021, 10, e304. [Google Scholar]
- Du, Z.; Lin, Y.; Sun, L.; Yang, F.; Cai, Y. Microbial community structure, co-occurrence network and fermentation characteristics of woody plant silage. J. Sci. Food Agric. 2021, 102, 1193–1204. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, H.; Gao, Y.; Diao, Q. Dynamic profiles of fermentation characteristics and bacterial community composition of Broussonetia papyrifera ensiled with perennial ryegrass. Bioresour. Technol. 2020, 310, 123396. [Google Scholar] [CrossRef]
- Lin, H.; Lin, S.; Awasthi, M.; Wang, Y.; Xu, P. Exploring the bacterial community and fermentation characteristics during silage fermentation of abandoned fresh tea leaves. Chemosphere 2021, 283, 131234. [Google Scholar] [CrossRef]
- Jönsson, L.J.; Alriksson, B.; Nilvebrant, N.O. Bioconversion of lignocellulose: Inhibitors and detoxification. Biotechnol. Biofuels 2013, 6, 16. [Google Scholar] [CrossRef] [PubMed]
- Przemieniecki, S.W.; Kosewska, A.; Kosewska, O.; Purwin, C.; Lipiński, K.; Ciesielski, S. Polyethylene, polystyrene and lignocellulose wastes as mealworm (Tenebrio molitor L.) diets and their impact on the breeding condition, biometric parameters, metabolism, and digestive microbiome. Sci. Total Environ. 2022, 832, 154758. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Xie, D.; Wang, M.; Li, Z.; Guo, X. Effects of antibacterial peptide-producing Bacillus subtilis and Lactobacillus buchneri on fermentation, aerobic stability, and microbial community of alfalfa silage. Bioresour. Technol. 2020, 315, 123881. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhao, J.; Dong, Z.; Li, J.; Kaka, N.A.; Shao, T. Sequencing and microbiota transplantation to determine the role of microbiota on the fermentation type of oat silage. Bioresour. Technol. 2020, 309, 123371. [Google Scholar] [CrossRef]
- Yan, Y.; Li, X.; Guan, H.; Huang, L.; Ma, X.; Peng, Y.; Li, Z.; Nie, G.; Zhou, J.; Yang, W.; et al. Microbial community and fermentation characteristic of Italian ryegrass silage prepared with corn stover and lactic acid bacteria. Bioresour. Technol. 2019, 279, 166–173. [Google Scholar] [CrossRef]
- Lee, S.M.; Guan, L.L.; Eun, J.S.; Kim, C.H.; Lee, S.J.; Kim, E.T.; Lee, S.S. The effect of anaerobic fungal inoculation on the fermentation characteristics of rice straw silages. J. Appl. Microbiol. 2015, 118, 565–573. [Google Scholar] [CrossRef]
- Abegunde, T.O.; Akinropo, T.F.; Akande, T.O.; Ogunyemi, E.K. Proximate composition and physico-chemical parameters of water hyacinth (Eicchornia crassipes) ensiled with breadfruit (Artocarpus altilis) as feed for wad goats. Niger. J. Anim. Prod. 2017, 44, 194–198. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Colombatto, D.; Mould, F.L.; Bhat, M.K.; Phipps, R.H.; Owena, E. In vitro evaluation of fibrolytic enzymes as additives for maize (Zea mays L.) silage: III. Comparison of enzymes derived from psychrophilic, mesophilic or thermophilic sources. Anim. Feed Sci. Technol. 2004, 111, 111–128. [Google Scholar] [CrossRef]
- Shu, L.; Si, X.; Yang, X.; Ma, W.; Sun, J.; Zhang, J.; Xue, X.; Wang, D.; Gao, Q. Enhancement of acid protease activity of Aspergillus oryzae using atmospheric and room temperature plasma. Front. Microbiol. 2020, 11, 1418. [Google Scholar] [CrossRef]
- Gupta, P.; Samant, K.; Sahu, A. Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential. Int. J. Microbiol. 2012, 6, 578925. [Google Scholar] [CrossRef]
- Kourtev, P.S.; Ehrenfeld, J.G.; Huang, W.Z. Enzyme activities during litter decomposition of two exotic and two native plant species in hardwood forests of New Jersey. Soil Biol. Biochem. 2002, 34, 1207–1218. [Google Scholar] [CrossRef]
- Sansupa, C.; Wahdan, S.F.M.; Hossen, S.; Disayathanoowat, T.; Wubet, T.; Purahong, W. Can we use functional annotation of prokaryotic taxa (FAPROTAX) to assign the ecological functions of soil bacteria? Appl. Sci. 2021, 11, 688. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Song, Z.; Bates, S.T.; Branco, S.; Tedersoo, L.; Menke, J.; Schilling, J.S.; Kennedy, P.G. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016, 20, 241–248. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Q.; Sun, X.; Chen, D.; Insam, H.; Koide, R.T.; Zhang, S. Effects of mixed-species litter on bacterial and fungal lignocellulose degradation functions during litter decomposition. Soil Biol. Biochem. 2020, 141, 107690. [Google Scholar] [CrossRef]
- Liu, Z.; Gu, M.; Zhu, W.; Zhang, M.; Zhou, W. Petroleum-contamination drives the shift of microbiome through modifying soil metallome. Land Degrad. Dev. 2022, 33, 1718–1730. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J.; Wang, Q.; Bermudez, R.S.; Yu, S.; Bu, P.; Wang, Z.; Chen, D.; Feng, J. Effects of plantation type and soil depth on microbial community structure and nutrient cycling function. Front. Microbiol. 2022, 13, 846468. [Google Scholar] [CrossRef]
- Wang, W.; Chen, D.; Sun, X.; Zhang, Q.; Koide, R.T.; Insam, H.; Zhang, S. Impacts of mixed litter on the structure and functional pathway of microbial community in litter decomposition. Appl. Soil Ecol. 2019, 144, 72–82. [Google Scholar] [CrossRef]
- Mandakovic, D.; Rojas, C.; Maldonado, J.; Latorre, M.; Travisany, D.; Delage, E.; Bihouée, A.; Jean, G.; Díaz, F.P.; Fernández-Gómez, B.; et al. Structure and co-occurrence patterns in microbial communities under acute environmental stress reveal ecological factors fostering resilience. Sci. Rep. 2018, 8, 5875. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Dong, W.; Wang, H.; Feng, Y. Role of acid/alkalitreatment in primary sludge anaerobic fermentation: Insights into microbial community structure, functional shifts and metabolic output by high-throughput sequencing. Bioresour. Technol. 2018, 249, 943–952. [Google Scholar] [CrossRef]
- Banerjee, S.; Schlaeppi, K.; van der Heijden, M.G.A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 2018, 16, 567–576. [Google Scholar] [CrossRef]
- Der Bedrosian, M.C.; Kung, L., Jr.; Nestor, K.E., Jr. The effects of hybrid, maturity, and length of storage on the nutritive value of corn silage. J. Dairy Sci. 2012, 95, 5115–5126. [Google Scholar] [CrossRef] [Green Version]
- Young, K.M.; Lim, J.M.; Der Bedrosian, M.C.; Kung, L., Jr. Effect of exogenous protease enzymes on the fermentation and nutritive value of corn silage. J. Dairy Sci. 2012, 95, 6687–6694. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Zheng, M.; Jiang, D.; Tian, P.; Zheng, M.; Xu, C. Replacing alfalfa with paper mulberry in total mixed ration silages: Effects on ensiling characteristics, protein degradation, and in vitro digestibility. Animals 2021, 11, 1273. [Google Scholar] [CrossRef]
- Bedrosian, M.; Kung, L. The effect of various doses of an exogenous acid protease on the fermentation and nutritive value of corn silage. J. Dairy Sci. 2019, 102, 16436. [Google Scholar] [CrossRef]
- Liu, B.; Huan, H.; Gu, H.; Xu, N.; Shen, Q.; Ding, C. Dynamics of a microbial community during ensiling and upon aerobic exposure in lactic acid bacteria inoculation-treated and untreated barley silages. Bioresour. Technol. 2019, 273, 212–219. [Google Scholar] [CrossRef]
- Yin, X.; Zhao, J.; Wang, S.; Dong, Z.; Li, J.; Shao, T. Separating the chemical and microbial factors of oat harvested at two growth stages to determine the main factor on silage fermentation. J. Appl. Microbiol. 2020, 132, 4266–4276. [Google Scholar] [CrossRef]
- Ridwan, R.; Rusmana, I.; Widyastuti, Y.; Wiryawan, K.G.; Prasetya, B.; Sakamoto, M.; Ohkuma, M. Fermentation characteristics and microbial diversity of tropical grass-legumes silages. Asian-Australas. J. Anim. Sci. 2015, 28, 511–518. [Google Scholar] [CrossRef] [Green Version]
- He, L.W.; Zhou, W.; Xing, Y.Q.; Pian, R.Q.; Chen, X.Y.; Zhang, Q. Improving the quality of rice straw silage with Moringa oleifera leaves and propionic acid: Fermentation, nutrition, aerobic stability and microbial communities. Bioresour. Technol. 2020, 299, 122579. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, G.; Wang, L.; Zhang, B.; Chen, J.; Liu, Y.; Pang, H.; Tan, Z. Characteristics of Lactobacillus plantarum QZW5 and its effects on wheat silage under multigelation. Chem. Biol. Technol. Agric. 2021, 8, 52. [Google Scholar] [CrossRef]
- Wang, M.; Franco, M.; Cai, Y.; Yu, Z. Dynamics of fermentation profile and bacterial community of silage prepared with alfalfa, whole-plant corn and their mixture. Anim. Feed Sci. Technol. 2020, 270, 114702. [Google Scholar] [CrossRef]
- Ndagano, D.; Lamoureux, T.; Dortu, C.; Vandermoten, S.; Thonart, P. Antifungal activity of 2 lactic acid bacteria of the Weissella genus isolated from food. J. Food Sci. 2011, 76, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Ávila, C.L.S.; Carvalho, B.F. Silage fermentation-updates focusing on the performance of micro-organisms. J. Appl. Microbiol. 2020, 128, 966–984. [Google Scholar] [CrossRef] [Green Version]
- Pahlow, G.; Muck, R.E.; Driehuis, F.; Elferink, S.J.W.H.O.; Spoelstra, S.F. Microbiology of ensiling. In Silage Science and Technology; Buxton, D.R., Muck, R.E., Harrison, J.H., Eds.; American Society of Agronomy: Madison, WI, USA, 2003; pp. 31–94. [Google Scholar]
- Graf, K.; Ulrich, A.; Idler, C.; Klocke, M. Bacterial community dynamics during ensiling of perennial ryegrass at two compaction levels monitored by terminal restriction fragment length polymorphism. J. Appl. Microbiol. 2016, 120, 1479–1491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruth, T.; Márcia, M.; Douglas, M.; Josimar, B.; Cynthia, M.; Virginia, M. Endophytic fungi from Sorghum bicolor (L.) moench: Influence of genotypes and crop systems and evaluation of antimicrobial activity. J. Agric. Sci. Technol. 2018, 8, 267–277. [Google Scholar]
- Panagou, E.Z.; Skandamis, P.N.; Nychas, G.J.E. Modelling the combined effect of temperature, pH and aw on the growth rate of Monascus ruber, a heat-resistant fungus isolated from green table olives. J. Appl. Microbiol. 2003, 94, 146–156. [Google Scholar]
- Pedroso, A.D.F.; Nussio, L.G.; Paziani, S.D.F.; Santana, L.; Scoton, I.M.; Michelini, C.R.; Humberto, P.I.; Jorge, H.; Humberto, G.L. Fermentation and epiphytic microflora dynamics in sugar cane silage. Sci. Agric. 2005, 62, 427–432. [Google Scholar] [CrossRef]
- Ni, K.; Wang, F.; Zhu, B.; Yang, J.; Zhou, G.; Pan, Y.; Tao, Y.; Zhong, J. Effects of lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage. Bioresour. Technol. 2017, 238, 706–715. [Google Scholar]
- O’Brien, M.; O’Kiely, P.; Forristal, P.D.; Fuller, H.T. Fungal contamination of big-bale grass silage on Irish farms: Predominant mould and yeast species and features of bales and silage. Grass Forage Sci. 2008, 63, 121–137. [Google Scholar] [CrossRef]
- Cardoso, F.C. Invited Review: Applying fungicide on corn plants to improve the composition of whole-plant silage in diets for dairy cattle. Appl. Anim. Sci. 2020, 36, 57–69. [Google Scholar] [CrossRef]
- Makau, C.M.; Matofari, J.W.; Muliro, P.S.; Bebe, B.O. Aflatoxin B1 and Deoxynivalenol contamination of dairy feeds and presence of Aflatoxin M1 contamination in milk from smallholder dairy systems in Nakuru, Kenya. Int. J. Food Contam. 2016, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Guan, H.; Yan, Y.; Li, X.; Li, X.; Shuai, Y.; Feng, G.; Ran, Q.; Cai, Y.; Li, Y.; Zhang, X. Microbial communities and natural fermentation of corn silages prepared with farm bunker-silo in Southwest China. Bioresour. Technol. 2018, 265, 282–290. [Google Scholar] [CrossRef]
- Puntenney, S.B.; Wang, Y.; Forsberg, N.E. Mycotic infections in livestock: Recent insights and studies on etiology, diagnostics and prevention of Hemorrhagic Bowel Syndrome. In Southwest Nutrition & Management Conference; Department of Animal Science, University of Arizona: Pheonix, AZ, USA; Tuscon, AZ, USA, 2003; pp. 49–63. [Google Scholar]
- Ni, K.; Zhao, J.; Zhu, B.; Su, R.; Pan, Y.; Ma, J.; Zhou, G.; Tao, Y.; Liu, X.; Zhong, J. Assessing the fermentation quality and microbial community of the mixed silage of forage soybean with crop corn or sorghum. Bioresour. Technol. 2018, 265, 563–567. [Google Scholar] [CrossRef]
- Patakova, P. Monascus secondary metabolites: Production and biological activity. J. Ind. Microbiol. Biotechnol. 2013, 40, 169–181. [Google Scholar] [CrossRef]
- Aamod, A.N.; Sharad, L.; Shilpa, P.; Aarohi, K. Evaluation of bacillus circulans in imparting aerobic stability to silage. Proteins 2017, 2, 391–396. [Google Scholar]
- Nandini, C.D.; Salimath, P.V. Carbohydrate composition of wheat, wheat bran, sorghum and bajra with good cha pati/roti (Indian flat bread) making quality. Food Chem. 2001, 73, 197–203. [Google Scholar] [CrossRef]
- Thébault, E.; Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 2010, 329, 853–856. [Google Scholar] [CrossRef]
- Hubbell, S.P. Neutral theory in community ecology and the hypothesis of functional equivalence. Funct. Ecol. 2005, 19, 166–172. [Google Scholar] [CrossRef]
- Lohar, P.S.; Sonawane, S.M. Isolation and identification of pathogenic fungi from post-harvested stored grains in jalgaon district of Maharashtra. Biosci. Biotech. Res. Comm. 2013, 6, 178–181. [Google Scholar]
- Schneweis, I.; Meyer, K.; Hörmansdorfer, S.; Bauer, J. Metabolites of Monascus ruber in silages. J. Anim. Physiol. Anim. Nutr. 2001, 85, 38–44. [Google Scholar] [CrossRef]
- Garcia, N.F.L.; Da Silva Santos, F.R.; Bocchini, D.A.; Da Paz, M.F.; Fonseca, G.G.; Leite, R.S.R. Catalytic properties of cellulases and hemicellulases produced by Lichtheimia ramosa: Potential for sugarcane bagasse saccharification. Ind. Crops Prod. 2018, 122, 49–56. [Google Scholar] [CrossRef]
- Kameshwar, A.K.S.; Qin, W. Lignin degrading fungal enzymes. In Production of Biofuels and Chemicals from Lignin. Biofuels and Biorefineries; Fang, Z., Smith, R., Jr., Eds.; Springer: Singapore, 2016. [Google Scholar]
Network Metrics | BP100 | BP90 | BP80 | BP65 |
---|---|---|---|---|
Number of nodes | 69 | 57 | 66 | 59 |
Number of edges | 166 | 120 | 215 | 256 |
Average connectivity | 4.81 | 4.21 | 6.52 | 8.68 |
Average clustering coefficient | 0.27 | 0.39 | 0.29 | 0.39 |
Positive interaction | 111 | 89 | 146 | 189 |
Negative interaction | 55 | 31 | 69 | 67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Nie, Y.; Tian, H.; Quan, X.; Li, J.; Shan, Q.; Li, H.; Cai, Y.; Ning, S.; Santos Bermudez, R.; et al. Microbial Community, Co-Occurrence Network Relationship and Fermentation Lignocellulose Characteristics of Broussonetia papyrifera Ensiled with Wheat Bran. Microorganisms 2022, 10, 2015. https://doi.org/10.3390/microorganisms10102015
Wang W, Nie Y, Tian H, Quan X, Li J, Shan Q, Li H, Cai Y, Ning S, Santos Bermudez R, et al. Microbial Community, Co-Occurrence Network Relationship and Fermentation Lignocellulose Characteristics of Broussonetia papyrifera Ensiled with Wheat Bran. Microorganisms. 2022; 10(10):2015. https://doi.org/10.3390/microorganisms10102015
Chicago/Turabian StyleWang, Wenbo, Yanshun Nie, Hua Tian, Xiaoyan Quan, Jialin Li, Qiuli Shan, Hongmei Li, Yichao Cai, Shangjun Ning, Ramon Santos Bermudez, and et al. 2022. "Microbial Community, Co-Occurrence Network Relationship and Fermentation Lignocellulose Characteristics of Broussonetia papyrifera Ensiled with Wheat Bran" Microorganisms 10, no. 10: 2015. https://doi.org/10.3390/microorganisms10102015
APA StyleWang, W., Nie, Y., Tian, H., Quan, X., Li, J., Shan, Q., Li, H., Cai, Y., Ning, S., Santos Bermudez, R., & He, W. (2022). Microbial Community, Co-Occurrence Network Relationship and Fermentation Lignocellulose Characteristics of Broussonetia papyrifera Ensiled with Wheat Bran. Microorganisms, 10(10), 2015. https://doi.org/10.3390/microorganisms10102015