Antiviral Drugs in Adenovirus-Induced Keratoconjunctivitis
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Some of These Compounds Were Tested Only in Laboratory Studies
3.1.1. Ribavirin
Laboratory Studies
3.1.2. Zalcitabine
Laboratory Studies
3.2. Other Compounds Showed a Poor Efficacy
3.2.1. Acyclovir
Clinical Studies
3.2.2. Vidarabine
Laboratory Studies
Clinical Studies
3.2.3. Idoxuridine
Clinical Studies
3.3. The Following Drugs Seem to Show Some Degree of Efficacy
3.3.1. Ganciclovir
Laboratory Studies
Clinical Studies
3.3.2. Cidofovir
Laboratory Studies
Clinical Studies
3.3.3. Trifluridine
Laboratory Studies
Clinical Studies
3.3.4. Filociclovir
Laboratory Studies
Clinical Studies
3.4. Other Agents
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chigbu, D.I.; Labib, B.A. Pathogenesis and management of adenoviral keratoconjunctivitis. Infect. Drug Resist. 2018, 11, 981–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cronau, H.; Kankanala, R.R.; Mauger, T. Diagnosis and management of red eye in primary care. Am. Fam. Physician 2010, 81, 137–144. [Google Scholar]
- Azari, A.A.; Arabi, A. Conjunctivitis: A Systematic Review. J. Ophthalmic Vis. Res. 2020, 15, 372–395. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, H.E. Adenovirus advances: New diagnostic and therapeutic options. Curr. Opin. Ophthalmol. 2011, 22, 290–293. [Google Scholar] [CrossRef] [PubMed]
- Jhanji, V.; Chan, T.C.; Li, E.Y.; Agarwal, K.; Vajpayee, R.B. Adenoviral keratoconjunctivitis. Surv. Ophthalmol. 2015, 60, 435–443. [Google Scholar] [CrossRef]
- Meyer-Rusenberg, B.; Loderstadt, U.; Richard, G.; Kaulfers, P.M.; Gesser, C. Epidemic keratoconjunctivitis: The current situation and recommendations for prevention and treatment. Dtsch. Arztebl. Int. 2011, 108, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Zalisnak, D.; Rapuano, C.; Sheppard, J.D.; Davis, A.R. Adenovirus Ocular Infections: Prevalence, Pathology, Pitfalls, and Practical Pointers. Eye Contact Lens Sci. Clin. Pract. 2018, 44, S1–S7. [Google Scholar] [CrossRef]
- Skevaki, C.L.; Galani, I.E.; Pararas, M.V.; Giannopoulou, K.P.; Tsakris, A. Treatment of Viral Conjunctivitis with Antiviral Drugs. Drugs 2011, 71, 331–347. [Google Scholar] [CrossRef] [PubMed]
- Ison, M.G. Antiviral Treatments. Clin. Chest Med. 2016, 38, 139–153. [Google Scholar] [CrossRef] [PubMed]
- Kinchington, P.R.; Romanowski, E.G.; Jerold, G.Y. Prospects for adenovirus antivirals. J. Antimicrob. Chemother. 2005, 55, 424–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La Rosa, A.M.; Champlin, R.E.; Mirza, N.; Gajewski, J.; Giralt, S.; Rolston, K.V.; Raad, I.; Jacobson, K.; Kontoyiannis, D.; Elting, L.; et al. Adenovirus infections in adult recipients of blood and marrow transplants. Clin. Infect. Dis. 2001, 32, 871–876. [Google Scholar] [CrossRef]
- Bordigoni, P.; Carret, A.-S.; Venard, V.; Witz, F.; Le Faou, A. Treatment of Adenovirus Infections in Patients Undergoing Allogeneic Hematopoietic Stem Cell Transplantation. Clin. Infect. Dis. 2001, 32, 1290–1297. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Collingham, K.; Fegan, C.; Milligan, D. Fulminant adenovirus hepatitis following unrelated bone marrow transplantation: Failure of intravenous ribavirin therapy. Bone Marrow Transplant. 1999, 23, 1209–1211. [Google Scholar] [CrossRef] [Green Version]
- Mann, D.; Moreb, J.; Smith, S.; Gian, V. Failure of intravenous ribavirin in the treatment of invasive adenovirus infection following allogeneic bone marrow transplantation: A case report. J. Infect. 1998, 36, 227–228. [Google Scholar] [CrossRef]
- Pihos, A.M. Epidemic keratoconjunctivitis: A review of current concepts in management. J. Optom. 2012, 6, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Kinchington, P.R.; Araullo-Cruz, T.; Vergnes, J.-P.; Yates, K.; Gordon, Y. Sequence changes in the human adenovirus type 5 DNA polymerase associated with resistance to the broad spectrum antiviral cidofovir. Antivir. Res. 2002, 56, 73–84. [Google Scholar] [CrossRef]
- Lenaerts, L.; Naesens, L. Antiviral therapy for adenovirus infections. Antivir. Res. 2006, 71, 172–180. [Google Scholar] [CrossRef]
- Morfin, F.; Dupuis-Girod, S.; Mundweiler, S.; Falcon, D.; Carrington, D.; Sedlacek, P.; Bierings, M.; Cetkovsky, P.; Kroes, A.C.; van Tol, M.J.; et al. In vitro susceptibility of adenovirus to antiviral drugs is species-dependent. Antivir Ther. 2005, 10, 225–229. [Google Scholar] [CrossRef]
- Shelton, M.J.; O’Donnell, A.M.; Morse, G.D. Zalcitabine. Ann Pharmacother. 1993, 27, 480–489. [Google Scholar] [CrossRef]
- Romanowski, E.G.; Yates, K.A.; Heiry, M. Beyond cidofovir: The in vitro evaluation of newer potential antiviral agents against ocular isolates of adenovirus. [Abstract 3107]. Investig. Ophthalmol. Vis. Sci. 2001, 42, S579. [Google Scholar]
- Mentel, R.; Kurek, S.; Wegner, U.; Janta-Lipinski, M.V.; Gürtler, L.; Matthes, E. Inhibition of adenovirus DNA polymerase by modified nucleoside triphosphate analogs correlate with their antiviral effects on cellular level. Med. Microbiol. Immunol. 2000, 189, 91–95. [Google Scholar] [CrossRef]
- Mentel, R.; Kinder, M.; Wegner, U.; von Janta-Lipinski, M.; Matthes, E. Inhibitory activity of 3’-fluoro-2’ deoxythymidine and related nucleoside analogues against adenoviruses in vitro. Antivir. Res. 1997, 34, 113–119. [Google Scholar] [CrossRef]
- van der Vliet, P.C.; Kwant, M.M. Role of DNA polymerase gamma in adenovirus DNA replication. Mechanism of inhibition by 2’,3’-dideoxynucleoside 5’-triphosphates. Biochemistry 1981, 20, 2628–2632. [Google Scholar] [CrossRef]
- Uchio, E.; Fuchigami, A.; Kadonosono, K.; Hayashi, A.; Ishiko, H.; Aoki, K.; Ohno, S. Anti-adenoviral effect of anti-HIV agents in vitro in serotypes inducing keratoconjunctivitis. Graefes. Arch. Clin. Exp. Ophthalmol. 2007, 245, 1319–1325. [Google Scholar] [CrossRef]
- Gordon, Y.J.; Araullo-Cruz, T.; Romanowski, E.G. The effects of topical nonsteroidal anti-inflammatory drugs on adenoviral replication. Arch. Ophthalmol. 1998, 116, 900–905. [Google Scholar] [CrossRef] [Green Version]
- Zarubalev, V.V.; Slita, A.V.; Sukhinin, V.P.; Nosach, L.N.; Dyachenko, N.S.; Povnitsa, O.Y.; Zhovnovataya, V.L.; Alexeeva, I.V.; Palchikovskaya, L.I. Effect of 6-azacytidine on the course of experimental adenoviral infection in newborn Syrian hamsters. J Chemother. 2007, 19, 44–51. [Google Scholar] [CrossRef]
- Alexeeva, I.; Dyachenko, N.; Nosach, L.; Zhovnovataya, V.; Rybalko, S.; Lozitskaya, R.; Fedchuk, A.; Lozitsky, V.; Gridina, T.; Shalamay, A.; et al. 6-Azacytidine—Compound with wide spectrum of antiviral activity. Nucleosides Nucleotides Nucleic Acids 2001, 20, 1147–1152. [Google Scholar] [CrossRef]
- Holzer, S.; Rzechorzek, N.J.; Short, I.R.; Jenkyn-Bedford, M.; Pellegrini, L.; Kilkenny, M.L. Structural Basis for Inhibition of Human Primase by Arabinofuranosyl Nucleoside Analogues Fludarabine and Vidarabine. ACS Chem. Biol. 2019, 14, 1904–1912. [Google Scholar] [CrossRef] [Green Version]
- Jordheim, L.P.; Durantel, D.; Zoulim, F.; Dumontet, C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat. Rev. Drug Discov. 2013, 12, 447–464. [Google Scholar] [CrossRef]
- Huang, P.; Sandoval, A.; Neste, E.V.D.; Keating, M.; Plunkett, W. Inhibition of RNA transcription: A biochemical mechanism of action against chronic lymphocytic leukemia cells by fludarabine. Leukemia 2000, 14, 1405–1413. [Google Scholar] [CrossRef] [Green Version]
- De Clercq, E.; Li, G. Approved Antiviral Drugs over the Past 50 Years. Clin. Microbiol. Rev. 2016, 29, 695–747. [Google Scholar] [CrossRef] [Green Version]
- Omari, A.A.; Mian, S.I. Adenoviral keratitis. Curr. Opin. Ophthalmol. 2018, 29, 365–372. [Google Scholar] [CrossRef]
- Waring, G.O.; Laibson, P.R.; Satz, J.E.; Joseph, N.H. Use of vidarabine in Epidemic Keratoconjunctivitis Due to Adenovirus Types 3, 7, 8, and 19. Am. J. Ophthalmol. 1976, 82, 781–785. [Google Scholar] [CrossRef]
- Pavan-Langston, D.; Foster, C.S. Trifluorothymidine and Idoxuridine Therapy of Ocular Herpes. Am. J. Ophthalmol. 1977, 84, 818–825. [Google Scholar] [CrossRef]
- Hecht, S.D.; Hanna, L.; Sery, T.W.; Jawetz, E. Treatment of Epidemic Keratoconjunctivitis with Idoxuridine (IUDR). Arch. Ophthalmol. 1965, 73, 49–54. [Google Scholar] [CrossRef]
- Dudgeon, J.; Bhargava, S.K.; Ross, C.A. Treatment of adenovirus infection of the eye with 5-iodo-2′-deoxyuridine. A double-blind trial. Br. J. Ophthalmol. 1969, 53, 530–533. [Google Scholar] [CrossRef] [Green Version]
- Gnann, J.W., Jr.; Barton, N.H.; Whitley, R.J. Acyclovir: Mechanism of Action, Pharmacokinetics, Safety and Clinical Applications. Pharmacother. J. Hum. Pharmacol. Drug Ther. 1983, 3, 275–283. [Google Scholar] [CrossRef]
- Gajdatsy, A.D.; Kosmin, A.; Barrett, G.D. Coexistent adenoviral keratoconjunctivitis and Acanthamoeba keratitis. Clin. Exp. Ophthalmol. 2000, 28, 434–436. [Google Scholar] [CrossRef]
- Matthews, T.; Boehme, R. Antiviral Activity and Mechanism of Action of Ganciclovir. Clin. Infect. Dis. 1988, 10, S490–S494. [Google Scholar] [CrossRef]
- Huang, J.; Kadonosono, K.; Uchio, E. Antiadenoviral effects of ganciclovir in types inducing keratoconjunctivitis by quantitative polymerase chain reaction methods. Clin Ophthalmol. 2014, 8, 315–320. [Google Scholar] [CrossRef] [Green Version]
- Gordon, Y.J.; Romanowski, E.; Araullo-Cruz, T.; Seaberg, L.; Erzurum, S.; Tolman, R.; De Clercq, E. Inhibitory effect of (S)-HPMPC, (S)-HPMPA, and 2’-nor-cyclic GMP on clinical ocular adenoviral isolates is serotype-dependent in vitro. Antivir. Res. 1991, 16, 11–16. [Google Scholar] [CrossRef]
- Ying, B.; Tollefson, A.E.; Spencer, J.F.; Balakrishnan, L.; Dewhurst, S.; Capella, C.; Buller, R.M.L.; Toth, K.; Wold, W.S.M. Ganciclovir Inhibits Human Adenovirus Replication and Pathogenicity in Permissive Immunosuppressed Syrian Hamsters. Antimicrob. Agents Chemother. 2014, 58, 7171–7181. [Google Scholar] [CrossRef]
- Ozen, S.; Ozer, M.A. Ganciclovir ophthalmic gel treatment shortens the recovery time and prevents complications in the adenoviral eye infection. Int. Ophthalmol. 2016, 37, 245–249. [Google Scholar] [CrossRef]
- Yabiku, S.T.; Yabiku, M.M.; Bottós, K.M.; de Araujo, A.L.; de Freitas, D.; Belfort, R., Jr. Uso de ganciclovir 0.15% gel para tratamento de ceratoconjuntivite adenoviral. Arq. Bras. Oftalmol. 2011, 74, 417–421. [Google Scholar] [CrossRef] [Green Version]
- De Clercq, E.; Holý, A. Acyclic nucleoside phosphonates: A key class of antiviral drugs. Nat. Rev. Drug Discov. 2005, 4, 928–940. [Google Scholar] [CrossRef]
- Andrei, G.; Topalis, D.; De Schutter, T.; Snoeck, R. Insights into the mechanism of action of cidofovir and other acyclic nucleoside phosphonates against polyoma- and papillomaviruses and non-viral induced neoplasia. Antivir. Res. 2015, 114, 21–46. [Google Scholar] [CrossRef]
- Declercq, E. The acyclic nucleoside phosphonates from inception to clinical use: Historical perspective. Antivir. Res. 2007, 75, 1–13. [Google Scholar] [CrossRef]
- Gordon, Y.J.; Romanowski, E.; Araullo-Cruz, T.; De Clercq, E. Pretreatment with Topical 0.1% (S)-1 -(3-hydroxy-2-phosphonylmethoxypropyl)cytosine Inhibits Adenovirus Type 5 Replication in the New Zealand Rabbit Ocular Model. Cornea 1992, 11, 529–533. [Google Scholar] [CrossRef]
- Gordon, Y.J.; Romanowski, E.G.; Araullo-Cruz, T. Topical HPMPC inhibits adenovirus type 5 in the New Zealand rabbit ocular replication model. Investig. Ophthalmol. Vis. Sci. 1994, 35, 4135–4143. [Google Scholar]
- Kaneko, H.; Mori, S.; Suzuki, O.; Iida, T.; Shigeta, S.; Abe, M.; Ohno, S.; Aoki, K.; Suzutani, T. The cotton rat model for adenovirus ocular infection: Antiviral activity of cidofovir. Antivir. Res. 2003, 61, 63–66. [Google Scholar] [CrossRef]
- Romanowski, E.G.; Yates, K.A.; Gordon, Y. Antiviral prophylaxis with twice daily topical cidofovir protects against challenge in the adenovirus type 5/New Zealand rabbit ocular model. Antivir. Res. 2001, 52, 275–280. [Google Scholar] [CrossRef]
- Romanowski, E.G.; Gordon, Y.J. Efficacy of topical cidofovir on multiple adenoviral serotypes in the New Zealand rabbit ocular model. Investig. Ophthalmol. Vis. Sci. 2000, 41, 460–463. [Google Scholar]
- Romanowski, E.G.; Gordon, Y.J.; Araullo-Cruz, T.; Yates, K.A.; Kinchington, P.R. The antiviral resistance and replication of cidofovir-resistant adenovirus variants in the New Zealand White rabbit ocular model. Investig. Ophthalmol. Vis. Sci. 2001, 42, 1812–1815. [Google Scholar]
- Romanowski, E.G.; Yates, K.A.; Gordon, Y.J. The In Vitro and In Vivo Evaluation of ddC as a Topical Antiviral for Ocular Adenovirus Infections. Investig. Opthalmology Vis. Sci. 2009, 50, 5295–5299. [Google Scholar] [CrossRef]
- de Oliveira, C.B.; Stevenson, D.; LaBree, L.; McDonnell, P.J.; Trousdale, M.D. Evaluation of Cidofovir (HPMPC, GS-504) against adenovirus type 5 infection in vitro and in a New Zealand rabbit ocular model. Antivir. Res. 1996, 31, 165–172. [Google Scholar] [CrossRef]
- Gordon, Y.J.; Naesens, L.; DeClercq, E.; Maudgal, P.C.; Veckeneer, M. Treatment of Adenoviral Conjunctivitis with Topical Cidofovir. Cornea 1996, 15, 546. [Google Scholar] [CrossRef]
- Hillenkamp, J.; Reinhard, T.; Ross, R.S.; Böhringer, D.; Cartsburg, O.; Roggendorf, M.; De Clercq, E.; Godehardt, E.; Sundmacher, R. The effects of cidofovir 1% with and without cyclosporin a 1% as a topical treatment of acute adenoviral keratoconjunctivitis: A controlled clinical pilot study. Ophthalmology 2002, 109, 845–850. [Google Scholar] [CrossRef]
- Hillenkamp, J.; Reinhard, T.; Ross, R.S.; Böhringer, D.; Cartsburg, O.; Roggendorf, M.; De Clercq, E.; Godehardt, E.; Sundmacher, R. Topical Treatment of Acute Adenoviral Keratoconjunctivitis With 0.2% Cidofovir and 1% Cyclosporine. Arch. Ophthalmol. 2001, 119, 1487–1491. [Google Scholar] [CrossRef]
- Carmine, A.A.; Brogden, R.N.; Heel, R.C.; Speight, T.M.; Avery, G.S. Trifluridine. Drugs 1982, 23, 329–353. [Google Scholar] [CrossRef]
- Lennette, D.A.; Eiferman, R.A. Inhibition of Adenovirus Replication in Vitro by Trifluridine. Arch. Ophthalmol. 1978, 96, 1662–1663. [Google Scholar] [CrossRef]
- Little, J.M.; Lorenzetti, D.W.C.; Brown, D.C.; Schweem, H.H.; Jones, B.R.; Kaufman, H.E. Studies of Adenovirus Type III Infection Treated with Methisazone and Trifluorothymidine. Exp. Biol. Med. 1968, 127, 1028–1032. [Google Scholar] [CrossRef] [PubMed]
- Darougar, S.; Quinlan, M.P.; A Gibson, J.; Jones, B.R. Epidemic keratoconjunctivitis and chronic papillary conjunctivitis in London due to adenovirus type 19. Br. J. Ophthalmol. 1977, 61, 76–85. [Google Scholar] [CrossRef] [Green Version]
- Ward, J.B.; Siojo, L.G.; Waller, S.G. A Prospective, Masked Clinical Trial of Trifluridine, Dexamethasone, and Artificial Tears in the Treatment of Epidemic Keratoconjunctivitis. Cornea 1993, 12, 216–221. [Google Scholar] [CrossRef]
- Kana, J.S. Delayed Trifluridine Treatment of Subepithelial Corneal Infiltrates. Am. J. Ophthalmol. 1992, 113, 212–214. [Google Scholar] [CrossRef]
- Hussein, I.T.M.; Brooks, J.; Bowlin, T.L. The discovery and development of filociclovir for the prevention and treatment of human cytomegalovirus-related disease. Antivir. Res. 2020, 176, 104710. [Google Scholar] [CrossRef] [PubMed]
- Kern, E.R.; Kushner, N.L.; Hartline, C.B.; Williams-Aziz, S.L.; Harden, E.A.; Zhou, S.; Zemlicka, J.; Prichard, M. In Vitro Activity and Mechanism of Action of Methylenecyclopropane Analogs of Nucleosides against Herpesvirus Replication. Antimicrob. Agents Chemother. 2005, 49, 1039–1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prichard, M.N.; Williams, J.D.; Komazin-Meredith, G.; Khan, A.R.; Price, N.B.; Jefferson, G.M.; Harden, E.A.; Hartline, C.B.; Peet, N.P.; Bowlin, T.L. Synthesis and Antiviral Activities of Methylenecyclopropane Analogs with 6-Alkoxy and 6-Alkylthio Substitutions That Exhibit Broad-Spectrum Antiviral Activity against Human Herpesviruses. Antimicrob. Agents Chemother. 2013, 57, 3518–3527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rouphael, N.G.; Hurwitz, S.J.; Hart, M.; Beck, A.; Anderson, E.J.; Deye, G.; Osborn, B.; Cai, S.Y.; Focht, C.; Amegashie, C.; et al. Phase Ib Trial To Evaluate the Safety and Pharmacokinetics of Multiple Ascending Doses of Filociclovir (MBX-400, Cyclopropavir) in Healthy Volunteers. Antimicrob. Agents Chemother. 2019, 63, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acosta, E.; Bowlin, T.; Brooks, J.; Chiang, L.; Hussein, I.; Kimberlin, D.; Kauvar, L.M.; Leavitt, R.; Prichard, M.; Whitley, R. Advances in the Development of Therapeutics for Cytomegalovirus Infections. J. Infect. Dis. 2020, 221, S32–S44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartline, C.B.; Keith, K.A.; Eagar, J.; Harden, E.A.; Bowlin, T.L.; Prichard, M.N. A standardized approach to the evaluation of antivirals against DNA viruses: Orthopox-, adeno-, and herpesviruses. Antivir. Res. 2018, 159, 104–112. [Google Scholar] [CrossRef]
- Bowlin, T.; Hussein, I.; Romanowski, E.G. Evaluation of Filociclovir as a Potent Antiviral for Ocular Adenoviral Infections. Investig. Ophthalmol. Vis. Sci. 2020, 61, 422. [Google Scholar]
- Toth, K.; Hussein, I.T.M.; Tollefson, A.E.; Ying, B.; Spencer, J.F.; Eagar, J.; James, S.H.; Prichard, M.N.; Wold, W.S.M.; Bowlin, T.L. Filociclovir Is a Potent In Vitro and In Vivo Inhibitor of Human Adenoviruses. Antimicrob. Agents Chemother. 2020, 64, e01299-20. [Google Scholar] [CrossRef]
- Romanowski, E.; Hussein, I.; Cardinale, S.; Butler, M.; Morin, L.; Bowlin, T.; Yates, K.; Shanks, R.; Kowalski, R. Filociclovir Is an Active Antiviral Agent against Ocular Adenovirus Isolates In Vitro and in the Ad5/NZW Rabbit Ocular Model. Pharmaceuticals 2021, 14, 294. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, H.; Mori, S.; Shigeta, S.; Shigeta, S. Antiviral effect of NNMS03 against adenovirus in vitro. Investig. Ophthalmol. Vis. Sci. 2002, 43, 433665. [Google Scholar]
- Kaneko, H.; Kato, K.; Mori, S.; Shigeta, S. Antiviral activity of NMSO3 against adenovirus in vitro. Antivir. Res. 2001, 52, 281–288. [Google Scholar] [CrossRef]
- Nagl, M.; Larcher, C.; Gottardi, W. Activity of N-chlorotaurine against herpes simplex- and adenoviruses. Antivir. Res. 1998, 38, 25–30. [Google Scholar] [CrossRef]
- Romanowski, E.G.; Yates, K.A.; Teuchner, B.; Nagl, M.; Gottardi, W.; Gordon, Y.J. The in vitro evaluation of the new antimicrobial agent N-chlorotaurine (NCT) against ocular isolates of adenovirus. Investig. Ophthalmol. Vis. Sci. 2002, 43, E-abstract 3858. [Google Scholar]
- Nagl, M.; Miller, B.; Daxecker, F.; Ulmer, H.; Gottardi, W. Tolerance of N-chlorotaurine, an endogenous antimicrobial agent, in the rabbit and human eye—A phase I clinical study. J. Ocul. Pharmacol. Ther. 1998, 14, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Nagl, M.; Brown, N.; Neher, A.; Prieskorn, D.; Schrott-Fischer, A.; Mitchell, A.; Miller, J.M. Tolerability of N-Chlorotaurine in the Guinea Pig Middle Ear: A Pilot Study Using an Improved Application System. Ann. Otol. Rhinol. Laryngol. 2004, 113, 76–81. [Google Scholar] [CrossRef]
- Nagl, M.; Teuchner, B.; Pottinger, E.; Ulmer, H.; Gottardi, W. Tolerance of N-chlorotaurine, a new antimicrobial agent, in infectious conjunctivitis—A phase II pilot study. Ophthalmologica 2000, 214, 111–114. [Google Scholar] [CrossRef] [PubMed]
- Epstein, S.P.; Pashinsky, Y.Y.; Gershon, D.; Winicov, I.; Srivilasa, C.; Kristic, K.J.; Asbell, P.A. Efficacy of topical cobalt chelate CTC-96 against adenovirus in a cell culture model and against adenovirus keratoconjunctivitis in a rabbit model. BMC Ophthalmol. 2006, 6, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiang, L.-C.; Cheng, H.-Y.; Liu, M.-C.; Chiang, W.; Lin, C.-C. In Vitro Anti-herpes Simplex Viruses and Anti-adenoviruses Activity of Twelve Traditionally Used Medicinal Plants in Taiwan. Biol. Pharm. Bull. 2003, 26, 1600–1604. [Google Scholar] [CrossRef] [Green Version]
- Weber, J.M.; Ruzindana-Umunyana, A.; Imbeault, L.; Sircar, S. Inhibition of adenovirus infection and adenain by green tea catechins. Antivir. Res. 2002, 58, 167–173. [Google Scholar] [CrossRef]
- Zarubaev, V.; Slita, A.; Krivitskaya, V.; Sirotkin, A.; Kovalenko, A.; Chatterjee, N. Direct antiviral effect of cycloferon (10-carboxymethyl-9-acridanone) against adenovirus type 6 in vitro. Antivir. Res. 2003, 58, 131–137. [Google Scholar] [CrossRef]
- Arnold, D.; Di Biase, A.M.; Marchetti, M.; Pietrantoni, A.; Valenti, P.; Seganti, L.; Superti, F. Antiadenovirus activity of milk proteins: Lactoferrin prevents viral infection. Antivir. Res. 2001, 53, 153–158. [Google Scholar] [CrossRef]
- Das, A.; Trousdale, M.D.; Ren, S.; Lien, E.J. Inhibition of herpes simplex virus type 1 and adenovirus type 5 by heterocyclic Schiff bases of aminohydroxyguanidine tosylate. Antivir. Res. 1999, 44, 201–208. [Google Scholar] [CrossRef]
- Hui, M.; Lien, E.; Trousdale, M. Inhibition of human adenoviruses by 1-(2′-hydroxy-5′-methoxybenzylidene)amino-3-hydroxyguanidine tosylate. Antivir. Res. 1994, 24, 261–273. [Google Scholar] [CrossRef]
- Wong, H.K.; Hsu, M.T. Involvement of topoisomerases in replication, transcription, and packaging of the linear adenovirus genome. J. Virol. 2004, 64, 691–699. [Google Scholar] [CrossRef]
- Brown, M.T.; McGrath, W.; Toledo, D.L.; Mangel, W.F. Different modes of inhibition of human adenovirus proteinase, probably a cysteine proteinase, by bovine pancreatic trypsin inhibitor. FEBS Lett. 1996, 388, 233–237. [Google Scholar] [CrossRef] [Green Version]
- Sircar, S.; Keyvani-Amineh, H.; Weber, J.M. Inhibition of adenovirus infection with protease inhibitors. Antivir. Res. 1996, 30, 147–153. [Google Scholar] [CrossRef]
- Hippenmeyer, P.J.; Ruminski, P.G.; Rico, J.G.; Lu, H.S.S.; Griggs, D.W. Adenovirus inhibition by peptidomimetic integrin antagonists. Antivir. Res. 2002, 55, 169–178. [Google Scholar] [CrossRef]
- Bastian, A.; Schäfer, H. Human α-defensin 1 (HNP-1) inhibits adenoviral infection in vitro. Regul. Pept. 2001, 101, 157–161. [Google Scholar] [CrossRef]
- Martínez-Aguado, P.; Serna-Gallego, A.; Marrugal-Lorenzo, J.A.; Gómez-Marín, I.; Sánchez-Céspedes, J. Antiadenovirus drug discovery: Potential targets and evaluation methodologies. Drug Discov. Today 2015, 20, 1235–1242. [Google Scholar] [CrossRef]
IC50 | CC50 | ||
---|---|---|---|
Acyclovir | Herpesvirus DNA polymerase inhibition, integration into and ending of the developing viral DNA chain, and inactivating the viral DNA polymerase | n.a. | n.a. |
Ganciclovir | Viral DNA polymerase inhibition, viral DNA replication suppression by ganciclovir-5′-triphosphate (ganciclovir-TP) | n.a. | 212 mg/mL (827 mM) 40 |
Cidofovir | Enters cell via an endocytosis-like mechanism and is transformed intracellularly by cellular enzymes to their diphosphate metabolites. These enzymes interact with the usual substrates as competitive inhibitors/alternative substrates | 0.018 to 5.47 mg/mL 54 0.487 to 30.304 µM 71 | 0.49 to 30.3 µM 73 |
Ribavirin | Quickly phosphorylated by intracellular enzymes, the triphosphate inhibits influenza virus RNA polymerase activity and competitively prevents the guanosine triphosphate–dependent 5′ capping of influenza viral messenger RNA | 396 to >500 µM 48 to 108 µM 18 | n.a. |
Zalcitabine | Two antiretroviral mechanisms have been proposed: integration of dideoxynucleoside triphosphates onto expanding strands of viral DNA or competition for reverse transcriptase with endogenous nucleoside triphosphates | 3.5 to 48.7 mg/mL 25 | 4282 μg/mL (20.3 mM) 24 |
Vidarabine | Upon cellular uptake, this nucleoside analogue is physiologically triggered by 5′-triphosphorylation. Then, it inhibits intracellular enzymes and/or delays or terminates nucleic acid production, as they are integrated into nascent DNA and RNA strands | n.a. | n.a. |
Idoxuridine | Effective reversible inhibitor of the enzyme thymidilate synthetase, which converts irridine monophosphate to thymidine monophosphate. DNA synthesis is decreased because of this thymidilate synthetase inhibition | n.a. | n.a. |
Trifluridine | Fluorinated pyrimidine nucleoside and a structural analogue of the deoxyribonucleoside, thymidine, as well as the established antiviral agent, idoxuridine | n.a. | n.a. |
Filociclovir | Methylenecyclopropane nucleoside analog with broad-spectrum antiviral activity | 0.496 to 4.684 µM 71 | 0.50 to 4.68 µM 73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imparato, R.; Rosa, N.; De Bernardo, M. Antiviral Drugs in Adenovirus-Induced Keratoconjunctivitis. Microorganisms 2022, 10, 2014. https://doi.org/10.3390/microorganisms10102014
Imparato R, Rosa N, De Bernardo M. Antiviral Drugs in Adenovirus-Induced Keratoconjunctivitis. Microorganisms. 2022; 10(10):2014. https://doi.org/10.3390/microorganisms10102014
Chicago/Turabian StyleImparato, Roberto, Nicola Rosa, and Maddalena De Bernardo. 2022. "Antiviral Drugs in Adenovirus-Induced Keratoconjunctivitis" Microorganisms 10, no. 10: 2014. https://doi.org/10.3390/microorganisms10102014
APA StyleImparato, R., Rosa, N., & De Bernardo, M. (2022). Antiviral Drugs in Adenovirus-Induced Keratoconjunctivitis. Microorganisms, 10(10), 2014. https://doi.org/10.3390/microorganisms10102014