Gut Microbiota and Fecal Microbiota Transplantation in Patients with Food Allergies: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
Search Strategy and Criteria for Inclusion
3. Results
3.1. Literature Search and Study Characteristics
3.2. Study Characteristics
3.2.1. Characteristics of Studies Exploring the Gut Microbiota Profile in Humans with Food Allergies Versus Healthy Controls
3.2.2. Characteristics of Studies Exploring the Effect of FMT from Human Donors to Mice on Gut Microbiota and/or Allergic Symptoms
3.3. Main Findings
3.3.1. Differences in Gut Microbiota Diversity
3.3.2. Differences in Phylum and at the Lower Taxonomic Level
3.3.3. Fecal Microbiota Transplantation and the Effect on Allergy Symptoms and Gut Microbiota
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Angelucci, F.; Cechova, K.; Amlerova, J.; Hort, J. Antibiotics, gut microbiota, and Alzheimer’s disease. J. Neuroinflamm. 2019, 16, 108. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, E.Z. Human gut microbiota/microbiome in health and diseases: A review. Antonie van Leeuwenhoek 2020, 113, 2019–2040. [Google Scholar] [CrossRef] [PubMed]
- Rowland, I.; Gibson, G.; Heinken, A.; Scott, K.; Swann, J.; Thiele, I.; Tuohy, K. Gut microbiota functions: Metabolism of nutrients and other food components. Eur. J. Nutr. 2018, 57, 1–24. [Google Scholar] [CrossRef]
- Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021, 19, 55–71. [Google Scholar] [CrossRef]
- Jandhyala, S.M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Nageshwar Reddy, D. Role of the normal gut microbiota. World J. Gastroenterol. 2015, 21, 8787–8803. [Google Scholar] [CrossRef] [PubMed]
- D′Argenio, V.; Salvatore, F. The role of the gut microbiome in the healthy adult status. Clin. Chim. Acta 2015, 451, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Carding, S.; Verbeke, K.; Vipond, D.T.; Corfe, B.M.; Owen, L.J. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 2015, 26, 26191. [Google Scholar] [CrossRef]
- Cianferoni, A. Non-IgE Mediated Food Allergy. Curr. Pediatr. Rev. 2020, 16, 95–105. [Google Scholar] [CrossRef]
- Suther, C.; Moore, M.D.; Beigelman, A.; Zhou, Y. The Gut Microbiome and the Big Eight. Nutrients 2020, 12, 3728. [Google Scholar] [CrossRef]
- Lee, S. IgE-mediated food allergies in children: Prevalence, triggers, and management. Korean J. Pediatr. 2017, 60, 99–105. [Google Scholar] [CrossRef]
- Benedé, S.; Blázquez, A.B.; Chiang, D.; Tordesillas, L.; Berin, M.C. The rise of food allergy: Environmental factors and emerging treatments. EBioMedicine 2016, 7, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Bunyavanich, S.; Berin, M.C. Food allergy and the microbiome: Current understandings and future directions. J. Allergy Clin. Immunol. 2019, 144, 1468–1477. [Google Scholar] [CrossRef] [PubMed]
- Lambrecht, B.N.; Hammad, H. The immunology of the allergy epidemic and the hygiene hypothesis. Nat. Immunol. 2017, 18, 1076–1083. [Google Scholar] [CrossRef]
- Muraro, A.; Werfel, T.; Hoffmann-Sommergruber, K.; Roberts, G.; Beyer, K.; Bindslev-Jensen, C.; Cardona, V.; Dubois, A.; duToit, G.; Eigenmann, P.; et al. EAACI food allergy and anaphylaxis guidelines: Diagnosis and management of food allergy. Allergy 2014, 69, 1008–1025. [Google Scholar] [CrossRef]
- Warren, C.M.; Jiang, J.; Gupta, R.S. Epidemiology and Burden of Food Allergy. Curr. Allergy Asthma Rep. 2020, 20, 6. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.W.; Kuo, C.H.; Kuo, F.C.; Wang, Y.K.; Hsu, W.H.; Yu, F.J.; Hu, H.M.; Hsu, P.I.; Wang, J.Y.; Wu, D.C. Fecal microbiota transplantation: Review and update. J. Formos. Med. Assoc. 2019, 118 (Suppl. 1), S23–S31. [Google Scholar] [CrossRef]
- Leffler, D.A.; Lamont, J.T. Clostridium difficile infection. N. Engl. J. Med. 2015, 372, 1539–1548. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Abdel-Gadir, A.; Stephen-Victor, E.; Gerber, G.K.; Noval Rivas, M.; Wang, S.; Harb, H.; Wang, L.; Li, N.; Crestani, E.; Spielman, S.; et al. Microbiota therapy acts via a regulatory T cell MyD88/RORγt pathway to suppress food allergy. Nat. Med. 2019, 25, 1164–1174. [Google Scholar] [CrossRef]
- Azad, M.B.; Konya, T.; Guttman, D.S.; Field, C.J.; Sears, M.R.; HayGlass, K.T.; Mandhane, P.J.; Turvey, S.E.; Subbarao, P.; Becker, A.B.; et al. Infant gut microbiota and food sensitization: Associations in the first year of life. Clin. Exp. Allergy 2015, 45, 632–643. [Google Scholar] [CrossRef]
- Kourosh, A.; Luna, R.A.; Balderas, M.; Nance, C.; Anagnostou, A.; Devaraj, S.; Davis, C.M. Fecal microbiome signatures are different in food-allergic children compared to siblings and healthy children. Pediatr. Allergy Immunol. 2018, 29, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Berni Canani, R.; De Filippis, F.; Nocerino, R.; Paparo, L.; Di Scala, C.; Cosenza, L.; Della Gatta, G.; Calignano, A.; De Caro, C.; Laiola, M.; et al. Gut microbiota composition and butyrate production in children affected by non-IgE-mediated cow’s milk allergy. Sci. Rep. 2018, 8, 12500. [Google Scholar] [CrossRef] [PubMed]
- Mauras, A.; Wopereis, H.; Yeop, I.; Esber, N.; Delannoy, J.; Labellie, C.; Reygner, J.; Kapel, N.; Slump, R.; van Eijndthoven, T.; et al. Gut microbiota from infant with cow’s milk allergy promotes clinical and immune features of atopy in a murine model. Allergy 2019, 74, 1790–1793. [Google Scholar] [CrossRef]
- Goldberg, M.R.; Mor, H.; Magid Neriya, D.; Magzal, F.; Muller, E.; Appel, M.Y.; Nachshon, L.; Borenstein, E.; Tamir, S.; Louzoun, Y.; et al. Microbial signature in IgE-mediated food allergies. Genome Med. 2020, 12, 92. [Google Scholar] [CrossRef]
- Dong, P.; Feng, J.J.; Yan, D.Y.; Lyu, Y.J.; Xu, X. Early-life gut microbiome and cow’s milk allergy- a prospective case-control 6-month follow-up study. Saudi J. Biol. Sci. 2018, 25, 875–880. [Google Scholar] [CrossRef] [PubMed]
- Inoue, R.; Sawai, T.; Sawai, C.; Nakatani, M.; Romero-Pérez, G.A.; Ozeki, M.; Nonomura, K.; Tsukahara, T. A preliminary study of gut dysbiosis in children with food allergy. Biosci. Biotechnol. Biochem. 2017, 81, 2396–2399. [Google Scholar] [CrossRef] [PubMed]
- Ling, Z.; Li, Z.; Liu, X.; Cheng, Y.; Luo, Y.; Tong, X.; Yuan, L.; Wang, Y.; Sun, J.; Li, L.; et al. Altered fecal microbiota composition associated with food allergy in infants. Appl. Environ. Microbiol. 2014, 80, 2546–2554. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zheng, S.; Yang, X.; Huazeng, B.; Cheng, Q. Influences of non-IgE-mediated cow’s milk protein allergy-associated gut microbial dysbiosis on regulatory T cell-mediated intestinal immune tolerance and homeostasis. Microb. Pathog. 2021, 158, 105020. [Google Scholar] [CrossRef] [PubMed]
- Yamagishi, M.; Akagawa, S.; Akagawa, Y.; Nakai, Y.; Yamanouchi, S.; Kimata, T.; Hashiyada, M.; Akane, A.; Tsuji, S.; Kaneko, K. Decreased butyric acid-producing bacteria in gut microbiota of children with egg allergy. Allergy 2021, 76, 2279–2282. [Google Scholar] [CrossRef]
- Feehley, T.; Plunkett, C.H.; Bao, R.; Choi Hong, S.M.; Culleen, E.; Belda-Ferre, P.; Campbell, E.; Aitoro, R.; Nocerino, R.; Paparo, L.; et al. Healthy infants harbor intestinal bacteria that protect against food allergy. Nat. Med. 2019, 25, 448–453. [Google Scholar] [CrossRef]
- Anderson, M.J.; Ellingsen, K.E.; McArdle, B.H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 2006, 9, 683–693. [Google Scholar] [CrossRef] [PubMed]
- Wagner, B.D.; Grunwald, G.K.; Zerbe, G.O.; Mikulich-Gilbertson, S.K.; Robertson, C.E.; Zemanick, E.T.; Harris, J.K. On the Use of Diversity Measures in Longitudinal Sequencing Studies of Microbial Communities. Front. Microbiol. 2018, 9, 1037. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Song, Y.; Wu, W.; Yu, K.; Zhang, G. The gut microbiota, environmental factors, and links to the development of food allergy. Clin. Mol. Allergy 2020, 18, 5. [Google Scholar] [CrossRef] [PubMed]
- Diesner, S.C.; Bergmayr, C.; Pfitzner, B.; Assmann, V.; Krishnamurthy, D.; Starkl, P.; Endesfelder, D.; Rothballer, M.; Welzl, G.; Rattei, T.; et al. A distinct microbiota composition is associated with protection from food allergy in an oral mouse immunization model. Clin. Immunol. 2016, 173, 10–18. [Google Scholar] [CrossRef]
- Bunyavanich, S.; Shen, N.; Grishin, A.; Wood, R.; Burks, W.; Dawson, P.; Jones, S.M.; Leung, D.Y.M.; Sampson, H.; Sicherer, S.; et al. Early-life gut microbiome composition and milk allergy resolution. J. Allergy Clin. Immunol. 2016, 138, 1122–1130. [Google Scholar] [CrossRef]
- Savage, J.H.; Lee-Sarwar, K.A.; Sordillo, J.; Bunyavanich, S.; Zhou, Y.; O’Connor, G.; Sandel, M.; Bacharier, L.B.; Zeiger, R.; Sodergren, E.; et al. A prospective microbiome-wide association study of food sensitization and food allergy in early childhood. Allergy 2018, 73, 145–152. [Google Scholar] [CrossRef]
- Tanaka, M.; Korenori, Y.; Washio, M.; Kobayashi, T.; Momoda, R.; Kiyohara, C.; Kuroda, A.; Saito, Y.; Sonomoto, K.; Nakayama, J. Signatures in the gut microbiota of Japanese infants who developed food allergies in early childhood. FEMS Microbiol. Ecol. 2017, 93, fix099. [Google Scholar] [CrossRef]
- Voreades, N.; Kozil, A.; Weir, T.L. Diet and the development of the human intestinal microbiome. Front. Microbiol. 2014, 5, 494. [Google Scholar] [CrossRef] [Green Version]
Criteria | Inclusion | Exclusion |
---|---|---|
Study design | Observational studies | Review |
Intervention studies (both RCTs, nonrandomized and noncontrolled studies) | Meta-analysis Systematic review | |
Population | Individuals with food allergies | No food allergy 1 |
HC group | No HC group | |
Children (<18 years) | Adults (>18 years) | |
Outcome | Changes in gut microbiota (diversity/composition) | Reporting changes in gut microbiota after dietary intervention 2 |
Changes in gut microbiota/allergic symptoms after FMT from human donors (FA/HC) to mice or humans | No FMT/FMT from other donors | |
Language | English | Other languages |
Full text available | No full text available |
First Author, Year of Publication | Study Design | Country | Sample Size (Female:Male) | Age (Months ± SD) | Groups | Allergies | Gut Microbiota Protocol |
---|---|---|---|---|---|---|---|
Abdel-Gadir, 2019 [19] | Observational study 1 | USA | 154 (N/A) | 1–15 (all) | FA (n = 56) HC (n = 98) | Milk, soy, eggs, tree nuts, fish, shellfish, wheat, peanuts | Fecal samples |
16S rRNA | |||||||
α- and β-diversity 2,3 | |||||||
Azad, 2015 [20] | Longitudinal cohort study | Canada | 166 (81:85) | 11.8 ± 0.8 (all) | FA (n = 12) HC (n = 154) | Eggs, peanuts | Fecal samples |
16S rRNA | |||||||
α- and β-diversity 2,3 | |||||||
Berni Canani, 2018 [22] | Cross-sectional study | Italy | 52 (31:21) | 11.4 ± 7.2 (FA) 12.9 ± 7.4 (HC) | FA (n = 23) HC (n = 23) | Non-IgE CMA | Fecal samples |
16S rRNA | |||||||
α- and β-diversity 2,3 | |||||||
Dong, 2018 [25] | Case–control follow-up study | China | 120 (56:64) | 2.9 ± 1.0 (all) | FA (n = 60) HC (n = 60) | CMA | Fecal samples |
16S rRNA | |||||||
α- and β-diversity 2,3 | |||||||
Goldberg, 2020 [24] | Observational study 1 | Israel | 291 (120:171) | 77 (63.0–114.5) 4 (FA) 78 (48.0–125.3) 4 (HC) | FA (n = 233) HC (n = 58) | Milk, peanuts, sesame, tree nuts | Fecal samples |
16S rRNA | |||||||
α- and β-diversity 2,3 | |||||||
Inoue, 2017 [26] | Preliminary study | Japan | 8 (4:4) | 48 ± 21.166 (all) | FA (n = 4) HC (n = 4) | Eggs, wheat, soybeans, sesame, milk, peanuts, shellfish | Fecal samples |
16S rRNA | |||||||
α- and β-diversity 2,3 | |||||||
Kourosh, 2018 [21] | Case–control study | USA | 68 (36:32) | >7 years (n = 26) 7–18 years (n = 42) | FA (n = 22) HC (n = 21) NFA-S (n = 25) | Peanuts, tree nuts, fish, milk, eggs, sesame, soy | Fecal samples |
16S rRNA | |||||||
α-diversity 2 | |||||||
Ling, 2014 [27] | Observational study 1 | China | 79 (40:39) | 5.8 ± 1.83 (IgE) 5.0 ± 1.37 (non-IgE) 5.6 ± 2.33 (HC) | FA (n = 34) HC (n = 45) | Milk, soybeans, eggs, wheat, shrimp, tree nuts, fish, peanuts | Fecal samples |
16S rRNA | |||||||
α- and β-diversity 2,3 | |||||||
Mauras, 2019 [23] | Observational study 1 | United Kingdom | 11 (8:3) | 9.77 ± 3.38 (all) | FA (n = 5) HC (n = 6) | CMA | Fecal samples |
16S rRNA | |||||||
α-diversity 2 | |||||||
Wang, 2021 [28] | Observational study 1 | China | 6 (6:0) | 3.33 ± 1.15 (HC) 3.67 ± 1.15 (FA) | FA (n = 3) HC (n = 3) | CMA | Fecal samples |
16S rRNA | |||||||
α- and β-diversity 2,3 | |||||||
Yamagishi, 2021 [29] | Observational study 1 | Japan | 40 (15:25) | 3.1 years (FA) 4.0 years (HC) | FA (n = 18) HC (n = 22) | Eggs | Fecal samples |
16S rRNA | |||||||
α- and β-diversity 2,3 |
First Author, Year of Publication | Country | Sample Size, Mice:Donor | Recipients (Mice) | Donor | Sensitization Subject | Oral Challenge | FMT Protocol | Gut Microbiota Protocol |
---|---|---|---|---|---|---|---|---|
Abdel-Gadir, 2019 [19] | USA | 14:N/A | Adult GF | FA and HC infants | OVA/SEB on the skin and via oral gavage (daily for 1 week) | OVA | FMT from FA or HC infants 1. | Fecal samples |
Matched for age | N/A | |||||||
N/A | ||||||||
Feehley, 2019 [30] | Italy/USA | 73:8 | GF From FA (n = 42) From HC (n = 31) | FA (n = 4) HC (n = 4) | BLG and CT | BLG | Intragastric gavage with infant fecal homogenate (CMA or HC). | Fecal samples |
16S rRNA | ||||||||
Matched for age, gender and mode of delivery | α- and β-diversity 2,3 | |||||||
Mauras, 2019 [23] | United Kingdom | N/A:2 | Three-week-old GF | FA (n = 1) HC (n = 1) | NS (n = 12–13): CT S (n = 5–6): WP and CT | BLG after last sensitization | Oral gavage (from FA or HC) | Fecal samples (1st, 3rd and 5th sensitization) 16S rRNA α-diversity 2 |
Matched for age, gender and mode of delivery | Once a week for 5 weeks | |||||||
Wang, 2021 [28] | China | 11:6 | Six-week-old GF mice From FA (n = 6) From HC (n = 5) | FA (n = 3) HC (n = 3) | N/A | N/A | Oral gavage | Fecal samples (14 days post-FMT) |
Matched for age | 16S rRNA | |||||||
α- and β-diversity 2,3 |
First Author, Year of Publication | Allergy | FA vs. HC (Diversity and E/B Ratio) | Taxonomic Rank | GM Composition (FA vs. HC) |
---|---|---|---|---|
Abdel-Gadir, 2019 [19] | Milk, soy, eggs, tree nuts, fish, shellfish, wheat, peanuts | N/D α- and β-diversity | Species | Differences in Clostridiales 1 Difference in 77 OTUs Difference in Subdoligranulum variabile (OTU50 2) |
Azad, 2015 [20] | Milk, eggs, peanuts | N/D α- and β-diversity ↑ E/B ratio | Phylum | ↓ Bacteroidetes |
Family | ↑ Enterobacteriaceae ↓ Bacteroidaceae ↓ Ruminococcaceae | |||
Berni Canani, 2018 [22] | Non-IgE CMA | N/D α-diversity | Phylum | ↑ Bacteroidetes |
Genus | ↑ Bacteroides ↑ Alistipes ↑Sarcina | |||
Dong, 2018 [25] | CMA | ↓ α-diversity ↑ E/B ratio Difference in β-diversity | Phylum | ↓ Bacteroidetes ↑ Proteobaceria |
Family | ↑ Enterobacteriaceae ↓ Bacteroidaceae | |||
Genus | ↓ Bacteroides | |||
Goldberg, 2020 [24] | Milk, tree nuts, peanuts, sesame | ↓ α-diversity Difference in β-diversity | Family | ↑ Erysipelotrichaceae ↓ Enterobacteriaceae |
Genus | ↑ Adlercreutzia ↑ Eggerthella ↑ Turicibacter ↓ Enterococcus | |||
Species | ↑ Collinsella aerofaciens ↑ Dorea formicigenerans ↑Blautia obeum ↓Prevotella copri ↓Bifidobacterium adolescentis | |||
Inoue, 2017 [26] | Milk, soy, eggs, wheat, shellfish, peanuts, sesame | N/D α-diversity | Genus | ↓Dorea ↓Akkermansia ↑Lachnospira ↑Veillonella ↑Sutterella |
Kourosh, 2018 [21] | Milk, soy, eggs, tree nuts, fish, peanuts, sesame | N/D α-diversity N/D OTUs observed | Order | ↓Pasteurellales |
Species | ↑Oscillibacter valericigenes ↑Lachnoclostridium bolteae ↑Faecalibacterium ↓Haemophilus parainfluenzae ↓Blautia | |||
Species | Sibling group ↑ Alistipes putredinis ↑ Alistipes sp. ↑ Odoribacter splanchnicus ↓ Haemophilus parainfluenzae ↓ Blautia (Genus) | |||
Ling, 2014 [27] | Milk, soy, eggs, tree nuts, fish, shellfish, wheat, peanuts | N/D α-diversity | Phylum | ↑ Firmicutes ↑ Fusobacteria ↓ Bacteroidetes ↓ Proteobacteria ↓ Actinobacteria ↓ Verrucomicrobia |
Family | ↑Clostridiacea 1 ↑Cytophagaceae ↑Nocardiaceae | |||
Genus | ↑ Clostridium sensu stricto (IgE) ↑Enterococcus ↑Lactobacillus ↑Bifidobacterium ↑Staphylococcus ↑Faecalibacterium ↑Clostridium XIVa ↑Anaerostipes ↑Prevotella ↑Clostridium XVIII (non-IgE) ↑Flavonifractor ↓Bacteroides (non-IgE) ↓Veillonella ↓Blautia ↓Clostridium XI ↓Lachnospiraceae incertae sedis (non-IgE) | |||
Mauras, 2019 [23] | CMA | ↑ Bacterial diversity | Family | ↑Lachnospiraceae |
Genus | ↓Bifidobacterium ↑Eisenbergiella | |||
Wang, 2021 [28] | CM-FPIAP (Non-IgE) | ↑ E/B ratio ↓ α-diversity | Family | ↑Enterobacteriaceae ↓Bacteroidaceae |
Yamagishi, 2021 [29] | Eggs | ↓ α-diversity Difference in β-diversity ↓ OTUs observed | Order | ↑Enterobacteriales ↓Lactobacillales |
First Author, Year of Publication | Differences FA vs. HC | Responses to OAS and/or OFC (HC Mice) | Responses to OAS and/or OFC (FA Mice) | Bacterial Changes |
---|---|---|---|---|
Abdel-Gadir, 2019 [19] | OA of six Clostridiales species protected against FA (not FMT) | ↓ (mild) Core body temperature | ↓ Core body temperature | N/A |
Feehley, 2019 [30] | N/D Community diversity and evenness ↓ protective/nonprotective OTU ratio | Protected from anaphylactic responses | ↓ Core body temperature | Family: ↓ Lachnospiraceae Species: ↓ Anaerostipes caccae |
Mauras, 2019 [23] | ↓ Bifidobacteria/Lachnospiraceae ratio | Protected from allergic reactions | Diarrhea-related symptoms ↑ Clinical scores 1 | Family: ↑ Lachnospiraceae Genus: ↓ Bifidobacteria ↓ Anaerostipes |
Wang, 2021 [28] | ↓ α-diversity Difference β-diversity | N/A | N/A | Family: ↓ Bacteroidaceae ↓ Lachnospiraceae ↑ Clostridiaceae 1 ↑ Enterobacteriaceae ↑ Bifidobacteriaceae Genus: ↑ Bifidobacterium ↑ unclassified family Enterobacteriaceae ↑ Raoultella ↑ Clostridium sensu stricto ↓ Lactobacillus |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jensen, C.; Antonsen, M.F.; Lied, G.A. Gut Microbiota and Fecal Microbiota Transplantation in Patients with Food Allergies: A Systematic Review. Microorganisms 2022, 10, 1904. https://doi.org/10.3390/microorganisms10101904
Jensen C, Antonsen MF, Lied GA. Gut Microbiota and Fecal Microbiota Transplantation in Patients with Food Allergies: A Systematic Review. Microorganisms. 2022; 10(10):1904. https://doi.org/10.3390/microorganisms10101904
Chicago/Turabian StyleJensen, Caroline, Marie Fagervik Antonsen, and Gülen Arslan Lied. 2022. "Gut Microbiota and Fecal Microbiota Transplantation in Patients with Food Allergies: A Systematic Review" Microorganisms 10, no. 10: 1904. https://doi.org/10.3390/microorganisms10101904
APA StyleJensen, C., Antonsen, M. F., & Lied, G. A. (2022). Gut Microbiota and Fecal Microbiota Transplantation in Patients with Food Allergies: A Systematic Review. Microorganisms, 10(10), 1904. https://doi.org/10.3390/microorganisms10101904