Current Challenges and Pitfalls in Soil Metagenomics
Abstract
:1. Introduction
2. Soil Physicochemical Properties Improves Our Understanding of Community Processes in Soil Microbiomes
3. Untreated Controls Are Critical for a Better Understanding of Soil Microbial Communities
4. FAIR Data Are Needed to Better Understand the Soil Microbiome
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chaparro, J.M.; Sheflin, A.M.; Manter, D.K.; Vivanco, J.M. Manipulating the Soil Microbiome to Increase Soil Health and Plant Fertility. Biol. Fertil. Soils 2012, 48, 489–499. [Google Scholar] [CrossRef]
- Bossolani, J.W.; Crusciol, C.A.C.; Leite, M.F.A.; Merloti, L.F.; Moretti, L.G.; Pascoaloto, I.M.; Kuramae, E.E. Modulation of the Soil Microbiome by Long-Term Ca-Based Soil Amendments Boosts Soil Organic Carbon and Physicochemical Quality in a Tropical No-till Crop Rotation System. Soil Biol. Biochem. 2021, 156, 108188. [Google Scholar] [CrossRef]
- Mendes, R.; Garbeva, P.; Raaijmakers, J.M. The Rhizosphere Microbiome: Significance of Plant Beneficial, Plant Pathogenic, and Human Pathogenic Microorganisms. FEMS Microbiol. Rev. 2013, 37, 634–663. [Google Scholar] [CrossRef] [PubMed]
- Latz, E.; Eisenhauer, N.; Rall, B.C.; Scheu, S.; Jousset, A. Unravelling Linkages between Plant Community Composition and the Pathogen-Suppressive Potential of Soils. Sci. Rep. 2016, 6, 23584. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, P.; Delgado-Baquerizo, M.; Anderson, I.C.; Singh, B.K. Response of Soil Properties and Microbial Communities to Agriculture: Implications for Primary Productivity and Soil Health Indicators. Front. Plant Sci. 2016, 7, 990. [Google Scholar] [CrossRef]
- Momesso, L.; Crusciol, C.A.C.; Leite, M.F.A.; Bossolani, J.W.; Kuramae, E.E. Forage Grasses Steer Soil Nitrogen Processes, Microbial Populations, and Microbiome Composition in A Long-Term Tropical Agriculture System. Agric. Ecosyst. Environ. 2022, 323, 107688. [Google Scholar] [CrossRef]
- Lourenço, K.S.; Suleiman, A.K.; Pijl, A.; Van Veen, J.A.; Cantarella, H.; Kuramae, E.E. Resilience of the Resident Soil Microbiome to Organic and Inorganic Amendment Disturbances and to Temporary Bacterial Invasion. Microbiome 2018, 6, 142. [Google Scholar] [CrossRef]
- Lourenço, K.S.; Costa, O.Y.d.A.; Cantarella, H.; Kuramae, E.E. Ammonia-Oxidizing Bacteria and Fungal Denitrifier Diversity Are Associated with N2O Production in Tropical Soils. Soil Biol. Biochem. 2022, 166, 108563. [Google Scholar] [CrossRef]
- Malyan, S.K.; Bhatia, A.; Tomer, R.; Harit, R.C.; Jain, N.; Bhowmik, A.; Kaushik, R. Mitigation of Yield-Scaled Greenhouse Gas Emissions from Irrigated Rice through Azolla, Blue-Green Algae, and Plant Growth–Promoting Bacteria. Environ. Sci. Pollut. Res. 2021, 28, 51425–51439. [Google Scholar] [CrossRef]
- Fontaine, S.; Hénault, C.; Aamor, A.; Bdioui, N.; Bloor, J.M.G.; Maire, V.; Mary, B.; Revaillot, S.; Maron, P.-A. Fungi Mediate Long Term Sequestration of Carbon and Nitrogen in Soil through Their Priming Effect. Soil Biol. Biochem. 2011, 43, 86–96. [Google Scholar] [CrossRef]
- Liang, C.; Schimel, J.P.; Jastrow, J.D. The Importance of Anabolism in Microbial Control over Soil Carbon Storage. Nat. Microbiol. 2017, 2, 17105. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Amelung, W.; Lehmann, J.; Kästner, M. Quantitative Assessment of Microbial Necromass Contribution to Soil Organic Matter. Glob. Change Biol. 2019, 25, 3578–3590. [Google Scholar] [CrossRef] [PubMed]
- Nkongolo, K.K.; Narendrula-Kotha, R. Advances in Monitoring Soil Microbial Community Dynamic and Function. J. Appl. Genet. 2020, 61, 249–263. [Google Scholar] [CrossRef] [PubMed]
- Breitkreuz, C.; Heintz-Buschart, A.; Buscot, F.; Wahdan, S.F.M.; Tarkka, M.; Reitz, T. Can We Estimate Functionality of Soil Microbial Communities from Structure-Derived Predictions? A Reality Test in Agricultural Soils. Microbiol. Spectr. 2021, 9, e00278-21. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Zepeda, A.; Vera-Ponce de León, A.; Sanchez-Flores, A. The Road to Metagenomics: From Microbiology to DNA Sequencing Technologies and Bioinformatics. Front. Genet. 2015, 6, 348. [Google Scholar] [CrossRef] [PubMed]
- Handelsman, J.; Rondon, M.R.; Brady, S.F.; Clardy, J.; Goodman, R.M. Molecular Biological Access to the Chemistry of Unknown Soil Microbes: A New Frontier for Natural Products. Chem. Biol. 1998, 5, R245–R249. [Google Scholar] [CrossRef]
- Daniel, R. The Metagenomics of Soil. Nat. Rev. Microbiol. 2005, 3, 470–478. [Google Scholar] [CrossRef]
- Guseva, K.; Darcy, S.; Simon, E.; Alteio, L.V.; Montesinos-Navarro, A.; Kaiser, C. From Diversity to Complexity: Microbial Networks in Soils. Soil Biol. Biochem. 2022, 169, 108604. [Google Scholar] [CrossRef]
- Kuramae, E.E.; Yergeau, E.; Wong, L.C.; Pijl, A.S.; Veen, J.A.; Kowalchuk, G.A. Soil Characteristics More Strongly Influence Soil Bacterial Communities than Land-use Type. FEMS Microbiol. Ecol. 2012, 79, 12–24. [Google Scholar] [CrossRef]
- Liu, C.; Jin, Y.; Hu, Y.; Tang, J.; Xiong, Q.; Xu, M.; Bibi, F.; Beng, K.C. Drivers of Soil Bacterial Community Structure and Diversity in Tropical Agroforestry Systems. Agric. Ecosyst. Environ. 2019, 278, 24–34. [Google Scholar] [CrossRef]
- Dunn, L.; Lang, C.; Marilleau, N.; Terrat, S.; Biju-Duval, L.; Lelièvre, M.; Perrin, S.; Chemidlin Prévost-Bouré, N. Soil Microbial Communities in the Face of Changing Farming Practices: A Case Study in an Agricultural Landscape in France. PLoS ONE 2021, 16, e0252216. [Google Scholar] [CrossRef] [PubMed]
- Naylor, D.; McClure, R.; Jansson, J. Trends in Microbial Community Composition and Function by Soil Depth. Microorganisms 2022, 10, 540. [Google Scholar] [CrossRef]
- Yu, H.; Zha, T.; Zhang, X.; Ma, L. Vertical Distribution and Influencing Factors of Soil Organic Carbon in the Loess Plateau, China. Sci. Total Environ. 2019, 693, 133632. [Google Scholar] [CrossRef] [PubMed]
- Qi, Q.; Zhang, D.; Zhang, M.; Tong, S.; Wang, W.; An, Y. Spatial Distribution of Soil Organic Carbon and Total Nitrogen in Disturbed Carex Tussock Wetland. Ecol. Indic. 2021, 120, 106930. [Google Scholar] [CrossRef]
- Bai, Y.; Chen, S.; Shi, S.; Qi, M.; Liu, X.; Wang, H.; Wang, Y.; Jiang, C. Effects of Different Management Approaches on the Stoichiometric Characteristics of Soil C, N, and P in a Mature Chinese Fir Plantation. Sci. Total Environ. 2020, 723, 137868. [Google Scholar] [CrossRef]
- Shi, Y.; Su, C.; Wang, M.; Liu, X.; Liang, C.; Zhao, L.; Zhang, X.; Minggagud, H.; Feng, G.; Ma, W. Modern Climate and Soil Properties Explain Functional Structure Better Than Phylogenetic Structure of Plant Communities in Northern China. Front. Ecol. Evol. 2020, 8, 531947. [Google Scholar] [CrossRef]
- Bahram, M.; Hildebrand, F.; Forslund, S.K.; Anderson, J.L.; Soudzilovskaia, N.A.; Bodegom, P.M.; Bengtsson-Palme, J.; Anslan, S.; Coelho, L.P.; Harend, H.; et al. Structure and Function of the Global Topsoil Microbiome. Nature 2018, 560, 233–237. [Google Scholar] [CrossRef]
- Zhao, M.; Sun, M.; Xiong, T.; Tian, S.; Liu, S. On the Link between Tree Size and Ecosystem Carbon Sequestration Capacity across Continental Forests. Ecosphere 2022, 13, e4079. [Google Scholar] [CrossRef]
- Bulgarelli, R.G.; Leite, M.F.A.; de Hollander, M.; Mazzafera, P.; Andrade, S.A.L.; Kuramae, E.E. Eucalypt Species Drive Rhizosphere Bacterial and Fungal Community Assembly but Soil Phosphorus Availability Rearranges the Microbiome. Sci. Total Environ. 2022, 836, 155667. [Google Scholar] [CrossRef]
- Su, L.; Feng, H.; Mo, X.; Sun, J.; Qiu, P.; Liu, Y.; Zhang, R.; Kuramae, E.E.; Shen, B.; Shen, Q. Potassium Phosphite Enhanced the Suppressive Capacity of the Soil Microbiome against the Tomato Pathogen Ralstonia Solanacearum. Biol. Fertil. Soils 2022, 58, 553–563. [Google Scholar] [CrossRef]
- Reichenbach, M.; Fiener, P.; Garland, G.; Griepentrog, M.; Six, J.; Doetterl, S. The Role of Geochemistry in Organic Carbon Stabilization against Microbial Decomposition in Tropical Rainforest Soils. SOIL 2021, 7, 453–475. [Google Scholar] [CrossRef]
- Cassman, N.A.; Leite, M.F.; Pan, Y.; de Hollander, M.; van Veen, J.A.; Kuramae, E.E. Plant and Soil Fungal but Not Soil Bacterial Communities Are Linked in Long-Term Fertilized Grassland. Sci. Rep. 2016, 6, 23680. [Google Scholar] [CrossRef] [PubMed]
- Saghaï, A.; Banjeree, S.; Degrune, F.; Edlinger, A.; García-Palacios, P.; Garland, G.; Heijden, M.G.A.; Herzog, C.; Maestre, F.T.; Pescador, D.S.; et al. Diversity of Archaea and Niche Preferences among Putative Ammonia-oxidizing Nitrososphaeria Dominating across European Arable Soils. Environ. Microbiol. 2022, 24, 341–356. [Google Scholar] [CrossRef] [PubMed]
- Seitz, T.J.; Schütte, U.M.E.; Drown, D.M. Unearthing Shifts in Microbial Communities Across a Soil Disturbance Gradient. Front. Microbiol. 2022, 13, 781051. [Google Scholar] [CrossRef]
- She, W.; Bai, Y.; Zhang, Y.; Qin, S.; Feng, W.; Sun, Y.; Zheng, J.; Wu, B. Resource Availability Drives Responses of Soil Microbial Communities to Short-Term Precipitation and Nitrogen Addition in a Desert Shrubland. Front. Microbiol. 2018, 9, 186. [Google Scholar] [CrossRef]
- Leite, M.F.A.; Dimitrov, M.R.; Freitas-Iório, R.P.; de Hollander, M.; Cipriano, M.A.P.; Andrade, S.A.L.; da Silveira, A.P.D.; Kuramae, E.E. Rearranging the Sugarcane Holobiont via Plant Growth-Promoting Bacteria and Nitrogen Input. Sci. Total Environ. 2021, 800, 149493. [Google Scholar] [CrossRef]
- Zhou, L.; Guan, D.; Yuan, X.; Zhang, M.; Gao, W. Quantifying the Spatiotemporal Characteristics of Ecosystem Services and Livelihoods in China’s Poverty-Stricken Counties. Front. Earth Sci. 2021, 15, 553–579. [Google Scholar] [CrossRef]
- Schmidt, J.E.; Vannette, R.L.; Igwe, A.; Blundell, R.; Casteel, C.L.; Gaudin, A.C. Effects of Agricultural Management on Rhizosphere Microbial Structure and Function in Processing Tomato. Appl. Environ. Microbiol. 2019, 85, e01064-19. [Google Scholar] [CrossRef]
- Celestina, C.; Wood, J.L.; Manson, J.B.; Wang, X.; Sale, P.W.; Tang, C.; Franks, A.E. Microbial Communities in Top- and Subsoil of Repacked Soil Columns Respond Differently to Amendments but Their Diversity Is Negatively Correlated with Plant Productivity. Sci. Rep. 2019, 9, 8890. [Google Scholar] [CrossRef]
- Kuramae, E.E.; Gamper, H.A.; Yergeau, E.; Piceno, Y.M.; Brodie, E.L.; DeSantis, T.Z.; Andersen, G.L.; van Veen, J.A.; Kowalchuk, G.A. Microbial Secondary Succession in a Chronosequence of Chalk Grasslands. ISME J. 2010, 4, 711–715. [Google Scholar] [CrossRef]
- Pan, Y.; Cassman, N.; de Hollander, M.; Mendes, L.W.; Korevaar, H.; Geerts, R.H.; van Veen, J.A.; Kuramae, E.E. Impact of Long-Term N, P, K, and NPK Fertilization on the Composition and Potential Functions of the Bacterial Community in Grassland Soil. FEMS Microbiol. Ecol. 2014, 90, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Soman, C.; Li, D.; Wander, M.M.; Kent, A.D. Long-Term Fertilizer and Crop-Rotation Treatments Differentially Affect Soil Bacterial Community Structure. Plant Soil 2017, 413, 145–159. [Google Scholar] [CrossRef]
- Kuramae, E.E.; Zhou, J.Z.; Kowalchuk, G.A.; van Veen, J.A. Soil-Borne Microbial Functional Structure across Different Land Uses. Sci. World J. 2014, 2014, 216071. [Google Scholar] [CrossRef] [PubMed]
- Land, M.; Hauser, L.; Jun, S.-R.; Nookaew, I.; Leuze, M.R.; Ahn, T.-H.; Karpinets, T.; Lund, O.; Kora, G.; Wassenaar, T.; et al. Insights from 20 Years of Bacterial Genome Sequencing. Funct. Integr. Genom. 2015, 15, 141–161. [Google Scholar] [CrossRef]
- Katz, K.; Shutov, O.; Lapoint, R.; Kimelman, M.; Brister, J.R.; O’Sullivan, C. The Sequence Read Archive: A Decade More of Explosive Growth. Nucleic Acids Res. 2022, 50, D387–D390. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos, L.B.; Bourne, P.E. The FAIR Guiding Principles for Scientific Data Management and Stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef]
- Boeckhout, M.; Zielhuis, G.A.; Bredenoord, A.L. The FAIR Guiding Principles for Data Stewardship: Fair Enough? Eur. J. Hum. Genet. 2018, 26, 931–936. [Google Scholar] [CrossRef] [PubMed]
- Madduri, R.; Chard, K.; D’Arcy, M.; Jung, S.C.; Rodriguez, A.; Sulakhe, D.; Deutsch, E.; Funk, C.; Heavner, B.; Richards, M. Reproducible Big Data Science: A Case Study in Continuous FAIRness. PLoS ONE 2019, 14, e0213013. [Google Scholar] [CrossRef] [PubMed]
- Ten Hoopen, P.; Finn, R.D.; Bongo, L.A.; Corre, E.; Fosso, B.; Meyer, F.; Mitchell, A.; Pelletier, E.; Pesole, G.; Santamaria, M. The Metagenomic Data Life-Cycle: Standards and Best Practices. GigaScience 2017, 6, gix047. [Google Scholar] [CrossRef] [PubMed]
- Vogel, T.M.; Simonet, P.; Jansson, J.K.; Hirsch, P.R.; Tiedje, J.M.; Van Elsas, J.D.; Bailey, M.J.; Nalin, R.; Philippot, L. TerraGenome: A Consortium for the Sequencing of a Soil Metagenome. Nat. Rev. Microbiol. 2009, 7, 252. [Google Scholar] [CrossRef] [Green Version]
- Thompson, L.R.; Sanders, J.G.; McDonald, D.; Amir, A.; Ladau, J.; Locey, K.J.; Prill, R.J.; Tripathi, A.; Gibbons, S.M.; Ackermann, G.; et al. A Communal Catalogue Reveals Earth’s Multiscale Microbial Diversity. Nature 2017, 551, nature24621. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, J.A.; Jansson, J.K.; Knight, R. The Earth Microbiome Project: Successes and Aspirations. BMC Biol. 2014, 12, 69. [Google Scholar] [CrossRef] [PubMed]
- Field, D.; Amaral-Zettler, L.; Cochrane, G.; Cole, J.R.; Dawyndt, P.; Garrity, G.M.; Gilbert, J.; Glöckner, F.O.; Hirschman, L.; Karsch-Mizrachi, I.; et al. The Genomic Standards Consortium. PLoS Biol. 2011, 9, e1001088. [Google Scholar] [CrossRef] [PubMed]
- Schoch, C.L.; Ciufo, S.; Domrachev, M.; Hotton, C.L.; Kannan, S.; Khovanskaya, R.; Leipe, D.; Mcveigh, R.; O’Neill, K.; Robbertse, B.; et al. NCBI Taxonomy: A Comprehensive Update on Curation, Resources and Tools. Database 2020, 2020, baaa062. [Google Scholar] [CrossRef] [PubMed]
- Koers, H.; Bangert, D.; Hermans, E.; van Horik, R.; de Jong, M.; Mokrane, M. Recommendations for Services in a FAIR Data Ecosystem. Patterns 2020, 1, 100058. [Google Scholar] [CrossRef] [PubMed]
- Hajduk, G.K.; Jamieson, N.E.; Baker, B.L.; Olesen, O.F.; Lang, T. It Is Not Enough That We Require Data to Be Shared; We Have to Make Sharing Easy, Feasible and Accessible Too! BMJ Glob. Health 2019, 4, e001550. [Google Scholar] [CrossRef]
- Mardis, E.R. The Challenges of Big Data. Dis. Model. Mech. 2016, 9, 483–485. [Google Scholar] [CrossRef] [PubMed]
- Jurburg, S.D.; Konzack, M.; Eisenhauer, N.; Heintz-Buschart, A. The Archives Are Half-Empty: An Assessment of the Availability of Microbial Community Sequencing Data. Commun. Biol. 2020, 3, 474. [Google Scholar] [CrossRef] [PubMed]
- Vasilevsky, N.A.; Minnier, J.; Haendel, M.A.; Champieux, R.E. Reproducible and Reusable Research: Are Journal Data Sharing Policies Meeting the Mark? PeerJ 2017, 5, e3208. [Google Scholar] [CrossRef] [PubMed]
- Gabelica, M.; Bojčić, R.; Puljak, L. Many Researchers Were Not Compliant with Their Published Data Sharing Statement: A Mixed-Methods Study. J. Clin. Epidemiol. 2022, 150, 33–41. [Google Scholar] [CrossRef]
- Federer, L.M.; Belter, C.W.; Joubert, D.J.; Livinski, A.; Lu, Y.-L.; Snyders, L.N.; Thompson, H. Data Sharing in PLoS ONE: An Analysis of Data Availability Statements. PLoS ONE 2018, 13, e0194768. [Google Scholar] [CrossRef]
- Vuorre, M.; Crump, M.J. Sharing and Organizing Research Products as R Packages. Behav. Res. Methods 2021, 53, 792–802. [Google Scholar] [CrossRef] [PubMed]
- Mayer, G.; Müller, W.; Schork, K.; Uszkoreit, J.; Weidemann, A.; Wittig, U.; Rey, M.; Quast, C.; Felden, J.; Glöckner, F.O.; et al. Implementing FAIR Data Management within the German Network for Bioinformatics Infrastructure (de.NBI) Exemplified by Selected Use Cases. Brief. Bioinform. 2021, 22, bbab010. [Google Scholar] [CrossRef]
- Hättenschwiler, S.; Tiunov, A.V.; Scheu, S. Biodiversity and Litter Decomposition in Terrestrial Ecosystems. Annu. Rev. Ecol. Evol. Syst. 2005, 36, 191–218. [Google Scholar] [CrossRef]
- Doetterl, S.; Asifiwe, R.K.; Baert, G.; Bamba, F.; Bauters, M.; Boeckx, P.; Bukombe, B.; Cadisch, G.; Cooper, M.; Cizungu, L.N.; et al. Organic Matter Cycling along Geochemical, Geomorphic, and Disturbance Gradients in Forest and Cropland of the African Tropics—Project TropSOC Database Version 1.0. Earth Syst. Sci. Data 2021, 13, 4133–4153. [Google Scholar] [CrossRef]
- Manter, D.K.; Delgado, J.A.; Blackburn, H.D.; Harmel, D.; Pérez de León, A.A.; Honeycutt, C.W. Why We Need a National Living Soil Repository. Proc. Natl. Acad. Sci. USA 2017, 114, 13587–13590. [Google Scholar] [CrossRef]
- Chu, H.; Gao, G.-F.; Ma, Y.; Fan, K.; Delgado-Baquerizo, M. Soil Microbial Biogeography in a Changing World: Recent Advances and Future Perspectives. mSystems 2020, 5, e00803-19. [Google Scholar] [CrossRef]
- Guerra, C.A.; Delgado-Baquerizo, M.; Duarte, E.; Marigliano, O.; Görgen, C.; Maestre, F.T.; Eisenhauer, N. Global Projections of the Soil Microbiome in the Anthropocene. Glob. Ecol. Biogeogr. 2021, 30, 987–999. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, M.R.; Veraart, A.J.; de Hollander, M.; Smidt, H.; van Veen, J.A.; Kuramae, E.E. Successive DNA Extractions Improve Characterization of Soil Microbial Communities. PeerJ 2017, 5, e2915. [Google Scholar] [CrossRef] [PubMed]
- Murali, A.; Bhargava, A.; Wright, E.S. IDTAXA: A Novel Approach for Accurate Taxonomic Classification of Microbiome Sequences. Microbiome 2018, 6, 140. [Google Scholar] [CrossRef]
- Leite, M.F.A.; Kuramae, E.E. You Must Choose, but Choose Wisely: Model-Based Approaches for Microbial Community Analysis. Soil Biol. Biochem. 2020, 151, 108042. [Google Scholar] [CrossRef]
- Nayfach, S.; Pollard, K.S. Toward Accurate and Quantitative Comparative Metagenomics. Cell 2016, 166, 1103–1116. [Google Scholar] [CrossRef] [PubMed]
- Mocali, S.; Benedetti, A. Exploring Research Frontiers in Microbiology: The Challenge of Metagenomics in Soil Microbiology. Res. Microbiol. 2010, 161, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Prosser, J.I. Putting Science Back into Microbial Ecology: A Question of Approach. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190240. [Google Scholar] [CrossRef]
- Shakya, M.; Lo, C.-C.; Chain, P.S.G. Advances and Challenges in Metatranscriptomic Analysis. Front. Genet. 2019, 10, 904. [Google Scholar] [CrossRef]
- Djemiel, C.; Dequiedt, S.; Karimi, B.; Cottin, A.; Horrigue, W.; Bailly, A.; Boutaleb, A.; Sadet-Bourgeteau, S.; Maron, P.-A.; Chemidlin Prévost-Bouré, N.; et al. Potential of Meta-Omics to Provide Modern Microbial Indicators for Monitoring Soil Quality and Securing Food Production. Front. Microbiol. 2022, 13, 889788. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leite, M.F.A.; van den Broek, S.W.E.B.; Kuramae, E.E. Current Challenges and Pitfalls in Soil Metagenomics. Microorganisms 2022, 10, 1900. https://doi.org/10.3390/microorganisms10101900
Leite MFA, van den Broek SWEB, Kuramae EE. Current Challenges and Pitfalls in Soil Metagenomics. Microorganisms. 2022; 10(10):1900. https://doi.org/10.3390/microorganisms10101900
Chicago/Turabian StyleLeite, Marcio F. A., Sarah W. E. B. van den Broek, and Eiko E. Kuramae. 2022. "Current Challenges and Pitfalls in Soil Metagenomics" Microorganisms 10, no. 10: 1900. https://doi.org/10.3390/microorganisms10101900
APA StyleLeite, M. F. A., van den Broek, S. W. E. B., & Kuramae, E. E. (2022). Current Challenges and Pitfalls in Soil Metagenomics. Microorganisms, 10(10), 1900. https://doi.org/10.3390/microorganisms10101900