A Suspended-Configuration Endoscopic Robotic Platform with Dual-Module Actuation for Enhanced Gastrointestinal Interventions
Abstract
1. Introduction
2. Materials and Method
2.1. System Architecture and Design Requirements
- 1
- The system shall enable the precise control of endoscope tip pitching (up–down) and yawing (left–right), ensuring accurate adjustment of the surgical field during interventions like ESD, polypectomy, and hemostasis.
- 2
- The system shall provide axial insertion/retraction and circumferential rotation, enabling stable access to the operative site and full four-DOF manipulation across anatomical regions (esophagus, stomach, duodenum, colon, and rectum).
2.2. System Specification Summary
2.3. Main Body Driving Device (MDD)
2.4. Flexible Arm Delivery Device (FDD)
2.4.1. Friction Wheel Assembly (FA)
2.4.2. Gripper Assembly (GA)
2.4.3. Force Sensing Platform (FP)
3. Results and Discussion
3.1. System Motion Capability Experiment
3.2. Operational Performance Experiment
3.2.1. Basic Surgical Operation Experiment
3.2.2. Tilt Angle Force Experiment
3.2.3. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Video Title | Displayed Content | Video Length(s) |
|---|---|---|
| Single-Person Operation of ERS | Basic Motion and Manipulation | 169 |
| Elevation Angle and Human Tissue Collision Test | Intuitive Manifestation of Fuzzy Sensing | 115 |
Appendix B
References
- Gotoda, T.; Kondo, H.; Ono, H.; Saito, Y.; Yamaguchi, H.; Saito, D.; Yokota, T. A new endoscopic mucosal resection procedure using an insulation-tipped electrosurgical knife for rectal flat lesions: Report of two cases. Gastrointest. Endosc. 1999, 50, 560–563. [Google Scholar] [CrossRef] [PubMed]
- Yahagi, N.; Fujishiro, M.; Kakushima, N.; Kobayashi, K.; Hashimoto, T.; Oka, M.; Iguchi, M.; Enomoto, S.; Ichinose, M.; Niwa, H.; et al. Endoscopic submucosal dissection for early gastric cancer using the tip of an electrosurgical snare (thin type). Dig. Endosc. 2004, 16, 34–38. [Google Scholar] [CrossRef]
- Swanström, L.L. Treatment of early colorectal cancers: Too many choices? Endoscopy 2012, 44, 991–992. [Google Scholar] [CrossRef] [PubMed]
- Deprez, P.H.; Bergman, J.J.; Meisner, S.; Ponchon, T.; Repici, A.; Dinis-Ribeiro, M.; Haringsma, J. Current practice with endoscopic submucosal dissection in Europe: Position statement from a panel of experts. Endoscopy 2010, 42, 853–858. [Google Scholar] [CrossRef]
- Fukami, N. What we want for ESD is a second hand! Traction method. Gastrointest. Endosc. 2013, 78, 274–276. [Google Scholar] [CrossRef]
- Lee, D.H.; Cheon, B.; Kim, J.; Kwon, D.S. easyEndo robotic endoscopy system: Development and usability test in a randomized controlled trial with novices and physicians. Int. J. Med. Robot. 2021, 17, 1–14. [Google Scholar] [CrossRef]
- Ruiter, J.; Rozeboom, E.; van der Voort, M.; Bonnema, M.; Broeders, I. Design and evaluation of robotic steering of a flexible endoscope. In Proceedings of the 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, 24–27 June 2012; pp. 761–767. [Google Scholar] [CrossRef]
- Yanpei, H.; Wenjie, L.; Lin, C.; Burdet, E.; Phee, S.J. Design and Evaluation of a Foot-Controlled Robotic System for Endoscopic Surgery. IEEE Robot. Autom. Lett. 2021, 6, 2469–2476. [Google Scholar] [CrossRef]
- Sivananthan, A.; Kogkas, A.; Glover, B.; Darzi, A.; Mylonas, G.; Patel, N. A novel gaze-controlled flexible robotized endoscope; preliminary trial and report. Surg. Endosc. 2021, 35, 4890–4899. [Google Scholar] [CrossRef]
- Ohuchida, K. Robotic surgery in gastrointestinal surgery. Cyborg Bionic Syst. 2020, 2020, 9724807. [Google Scholar] [CrossRef]
- Zorn, L.; Nageotte, F.; Zanne, P.; Legner, A.; Dallemagne, B.; Marescaux, J.; de Mathelin, M. A Novel Telemanipulated Robotic Assistant for Surgical Endoscopy: Preclinical Application to ESD. IEEE Trans. Biomed. Eng. 2018, 65, 797–808. [Google Scholar] [CrossRef]
- Basha, S.; Khorasani, M.; Abdurahiman, N.; Padhan, J.; Baez, V.; Al-Ansari, A.; Tsiamyrtzis, P.; Becker, A.T.; Navkar, N.V. A generic scope actuation system for flexible endoscopes. Surg. Endosc. 2024, 38, 1096–1105. [Google Scholar] [CrossRef] [PubMed]
- Nakadate, R.; Iwasa, T.; Onogi, S.; Arata, J.; Oguri, S.; Okamoto, Y.; Akahoshi, T.; Eto, M.; Hashizume, M. Surgical robot for intraluminal access: An ex vivo feasibility study. AAAS Cyborg Bionic Syst. 2020, 2020, 8378025. [Google Scholar]
- Pullens, H.J.; van der Stap, N.; Rozeboom, E.D.; Schwartz, M.P.; van der Heijden, F.; van Oijen, M.G.; Siersema, P.D.; Broeders, I.A. Colonoscopy with robotic steering and automated lumen centralization: A feasibility study in a colon model. Endoscopy 2016, 48, 286–290. [Google Scholar] [CrossRef] [PubMed]
- Rozeboom, E.; Ruiter, J.; Franken, M.; Broeders, I. Intuitive user interfaces increase efficiency in endoscope tip control. Surg. Endosc. 2014, 28, 2600–2605. [Google Scholar] [CrossRef]
- Reilink, R.; de Bruin, G.; Franken, M.; Mariani, M.A.; Misra, S.; Stramigioli, S. Endoscopic camera control by head movements for thoracic surgery. In Proceedings of the 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Tokyo, Japan, 26–29 September 2010; pp. 510–515. [Google Scholar]
- Khorasani, M.; Abdurahiman, N.; Padhan, J.; Zhao, H.; Al-Ansari, A.; Becker, A.T.; Navkar, N. Preliminary design and evaluation of a generic surgical scope adapter. Int. J. Med. Robot. Comput. Assist. Surg. 2023, 19, e2475. [Google Scholar] [CrossRef]
- Abdurahiman, N.; Khorasani, M.; Padhan, J.; Baez, V.M.; Al Ansari, A.; Tsiamyrtzis, P.; Becker, A.T.; Navkar, N.V. Scope actuation system for articulated laparoscopes. Surg. Endosc. 2023, 37, 2404–2413. [Google Scholar] [CrossRef]
- Abdurahiman, N.; Padhan, J.; Zhao, H.; Balakrishnan, S.; Al-Ansari, A.; Abinahed, J.; Velasquez, C.A.; Becker, A.T.; Navkar, N.V. Human-computer interfacing for control of angulated scopes in robotic scope assistant systems. In Proceedings of the 2022 International Symposium on Medical Robotics (ISMR), Atlanta, GA, USA, 13–15 April 2022; pp. 1–7. [Google Scholar]
- Ruiter, J.; Bonnema, G.M.; van der Voort, M.C.; Broeders, I.A.M.J. Robotic control of a traditional flexible endoscope for therapy. J. Robot. Surg. 2013, 7, 227–234. [Google Scholar] [CrossRef]
- Iwasa, T.; Nakadate, R.; Onogi, S.; Okamoto, Y.; Arata, J.; Oguri, S.; Ogino, H.; Ihara, E.; Ohuchida, K.; Akahoshi, T. A new robotic-assisted flexible endoscope with single-hand control: Endoscopic submucosal dissection in the ex vivo porcine stomach. Surg. Endosc. 2018, 32, 3386–3392. [Google Scholar] [CrossRef]
- Kume, K.; Sakai, N.; Goto, T. Development of a novel endoscopic manipulation system: The endoscopic operation robot ver. 3. Endoscopy 2015, 47, 815–819. [Google Scholar] [CrossRef]
- Liu, M. Research on the Design and Sensing Method of a Dexterous Mechanism for Digestive Endoscopic Robots. Master’s Thesis, Shenyang Ligong University, Shenyang, China, 2023. [Google Scholar]
- Funk, E.; Goldenberg, D.; Goyal, N. Demonstration of transoral robotic supraglottic laryngectomy and total laryngectomy in cadaveric specimens using the Medrobotics Flex System. Head Neck 2017, 39, 1218–1225. [Google Scholar] [CrossRef]
- Atallah, S.; Hodges, A.; Larach, S.W. Direct target NOTES: Prospective applications for next generation robotic platforms. Tech. Coloproctol. 2018, 22, 363–371. [Google Scholar] [CrossRef]
- Remacle, M.; Prasad, V.M.N.; Lawson, G.; Plisson, L.; Bachy, V.; Van der Vorst, S. Transoral robotic surgery (TORS) with the Medrobotics Flex™ System: First surgical application on humans. Eur. Arch. Oto-Rhino-Laryngol. 2015, 272, 1451–1455. [Google Scholar] [CrossRef]
- Rivera-Serrano, C.M.; Johnson, P.; Zubiate, B.; Kuenzler, R.; Choset, H.; Zenati, M.; Tully, S.; Duvvuri, U. A transoral highly flexible robot. Laryngoscope 2012, 122, 1067–1071. [Google Scholar] [CrossRef]
- Phee, S.J.; Reddy, N.; Chiu, P.W.; Rebala, P.; Rao, G.V.; Wang, Z.; Sun, Z.; Wong, J.Y.; Ho, K.Y. Robot-assisted endoscopic submucosal dissection is effective in treating patients with early-stage gastric neoplasia. Clin. Gastroenterol. Hepatol. 2012, 10, 1117–1121. [Google Scholar] [CrossRef]
- Abbott, D.J.; Becke, C.; Rothstein, R.I.; Peine, W.J. Design of an endoluminal NOTES robotic system. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October–2 November 2007; pp. 410–416. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, Z.; Phee, S. Modeling tendon-sheath mechanism with flexible configurations for robot control. Robotica 2013, 31, 1131–1142. [Google Scholar] [CrossRef]











| System Name (Research Team, Year) | DOF | Floor Area | Compatibility with Commercial Endoscopes | Quick Assembly/Disassembly Feasibility |
|---|---|---|---|---|
| Ruiter et al. (2012) System | Pitch, Yaw | Approx. 0.5 m2 | Compatible with at least one type, difficult to expand | Easy 1 |
| Yanpei et al. (2021) Foot-Controlled System | Pitch, Yaw, Rotation, Telescoping | Axial floor area > 500 mm | Compatible with at least one type, difficult to expand | Difficult, involving key driving components |
| Sivananthan et al. (2021) Gaze-Controlled System | Pitch, Yaw, Rotation | Requires UR5 Robotic Arm | Compatible with at least one type, difficult to expand | Difficult, involving robotic arm and key driving components |
| Zorn et al. (2018) STRAS v2 System | Pitch, Yaw, Rotation, Telescoping | At least >0.5 m2 | Not compatible | Difficult, involving key driving components |
| Basha et al. (2024) Generic Actuation System | Pitch, Yaw, Rotation, Telescoping | Requires UR5 Robotic Arm + Additional Guide Rail | Compatible with at least one type, difficult to expand | Relatively easy, multiple buckles |
| Nakadate et al. (2020) CBS-ESD Robot | Pitch, Yaw, Rotation | Hanging type, single module estimated < 0.2 m2 | Compatible with at least one type, relatively easy to expand | Easy |
| ERS (This Study) | Pitch, Yaw, Rotation, Telescoping | Hanging type, two single modules each < 0.2 m2 | Compatible with at least one type, easiest to expand | Easy |
| Acronym | Explanation |
|---|---|
| RAGES | Robot-Assisted Gastrointestinal Endoscopic Surgery |
| ERS | Endoscopic Robotic System |
| FDD | Flexible Arm Delivery Device |
| MDD | Main Body Driving Device |
| FA | Friction Wheel Assembly |
| GA | Gripper Assembly |
| FP | Force Sensing Platform |
| MIS | Minimally Invasive Surgery |
| ESD | Endoscopic Submucosal Dissection |
| PWM | Pulse Width Modulation |
| ADC | Analog-to-Digital Converter |
| DOF | Degrees of Freedom |
| Parameter | Specification | Module |
|---|---|---|
| Degrees of Freedom (DOF) | ||
| Pitching (Up/Down) | Full Range via Knobs | MDD |
| Yawing (Left/Right) | Full Range via Knobs | MDD |
| Primary Body Rotation | 360° Continuous | MDD |
| Axial Delivery | 280–330 mm Stroke | FDD (FA) |
| Rotational Compensation | Torque-sensing and ±15° Fine-tuning | FDD (GA) |
| Performance | ||
| Distal Bending Range | 180° | MDD |
| Clamping Spring Stroke | 12 mm | FDD (FA) |
| Axial force sensing accuracy | ±1.3 N (within valid tilt range) | FDD (FP) |
| Torque sensing value | Theoretical torque: equal to flexible arm’s input. | FDD (GA) |
| Physical Properties | ||
| Module Footprint | <0.2 m2 per module | MDD and FDD |
| Endoscope Compatibility | GS-600DQ (Standard) | ERS |
| Platform Height @ 0° | 680 mm | FDD (FP) |
| Platform Angle Adjust. | −23° to +20° | FDD (FP) |
| Name | Model | Key Specifications | Function in Charge |
|---|---|---|---|
| Motor 1 1 | BDC | 60 RPM (i = 168) | Delivery |
| Motor 2 | BDC | 37 RPM (i = 270) | Clamping |
| Motor 3 | BDC | 178 RPM (i = 56) | Gripping |
| Motor 4 | BDC | 60 RPM (i = 168) | Rotation |
| Encoder 5 | AB-Phase | 12 pulses | Slippage Detection |
| Sensor 1 | Tension 2 | 0–5 kg | Collision Detection |
| Sensor 2 | Torque | 0–2 NM | Angle Detection 3 |
| Control System | STM32 | F407zgt6 | Main Control |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Chen, P.; Hou, C.; Xiao, H.; Li, Y.; Guo, C.; Chen, J.; Gao, G. A Suspended-Configuration Endoscopic Robotic Platform with Dual-Module Actuation for Enhanced Gastrointestinal Interventions. Actuators 2026, 15, 14. https://doi.org/10.3390/act15010014
Chen P, Hou C, Xiao H, Li Y, Guo C, Chen J, Gao G. A Suspended-Configuration Endoscopic Robotic Platform with Dual-Module Actuation for Enhanced Gastrointestinal Interventions. Actuators. 2026; 15(1):14. https://doi.org/10.3390/act15010014
Chicago/Turabian StyleChen, Pengzhen, Cheng Hou, Han Xiao, Yuan Li, Chun Guo, Jian Chen, and Guanbin Gao. 2026. "A Suspended-Configuration Endoscopic Robotic Platform with Dual-Module Actuation for Enhanced Gastrointestinal Interventions" Actuators 15, no. 1: 14. https://doi.org/10.3390/act15010014
APA StyleChen, P., Hou, C., Xiao, H., Li, Y., Guo, C., Chen, J., & Gao, G. (2026). A Suspended-Configuration Endoscopic Robotic Platform with Dual-Module Actuation for Enhanced Gastrointestinal Interventions. Actuators, 15(1), 14. https://doi.org/10.3390/act15010014

