One Innovative Method for Improving the Power Density and Efficiency of Electro-Hydrostatic Actuators
Abstract
1. Introduction
2. Design and Development
2.1. Configuration Design
2.2. Prototype Development
2.2.1. Prototype Parameters
2.2.2. Components Selection
3. Dynamic Modeling and Simulation
3.1. Dynamic Model
3.1.1. F-PMSM Model
3.1.2. Piston Pump Model
3.1.3. Cylinder Model
3.1.4. VPVM-EHA Model
3.2. Controller Design
3.3. Dynamic Performance
4. Results and Discussions
4.1. Experiment Setup
4.2. Experiment Design
4.3. Experimental Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, W.; Li, S.; Han, D.; Sarlioglu, B.; Minav, T.A.; Pietola, M. A Review of Integrated Motor Drive and Wide-Bandgap Power Electronics for High-Performance Electro-Hydrostatic Actuators. IEEE Trans. Transp. Electrif. 2018, 4, 684–693. [Google Scholar] [CrossRef]
- Fan, S.; Wang, S.; Wang, Q.; Wang, X.; Liu, D.; Wu, X. Cumulative thermal coupling modeling and analysis of oil-immersed motor-pump assembly for electro–hydrostatic actuator. Chin. J. Aeronaut. 2025, 38, 103250. [Google Scholar]
- Tri, N.M.; Nam, D.N.C.; Park, H.G.; Ahn, K.K. Trajectory control of an electro hydraulic actuator using an iterative back stepping control scheme. Mechatronics 2015, 29, 96–102. [Google Scholar]
- MOOG Inc. Electro Hydrostatic Actuators; MOOG Inc.: SaltLake City, UT, USA, 2014. [Google Scholar]
- Van Den Bossche, D. The A380 flight control electro-hydrostatic actuators, achievements and lessons learnt. In Proceedings of the 25th Congress of International Council of the Aeronautical Sciences, Hamburg, Germany, 3–8 September 2006; pp. 1–8. [Google Scholar]
- Jensen, K.J.; Ebbesen, M.K.; Hansen, M.R. Novel Concept for Electro-Hydrostatic Actuators for Motion Control of Hydraulic Manipulators. Energies 2021, 14, 6566. [Google Scholar] [CrossRef]
- Tessari, F.; Galluzzi, R.; Tonoli, A.; Amati, N.; De Michieli, L.; Laffranchi, M. Knee Prosthesis Powered by a Fully Integrated and Highly Back-Drivable Electro-Hydrostatic Actuator. Mechatronics 2023, 91, 102972. [Google Scholar]
- Nguyen, M.H.; Ahn, K.K. Extended Sliding Mode Observer-Based Output Feedback Control for Motion Tracking of Electro-Hydrostatic Actuators. Mathematics 2023, 11, 4324. [Google Scholar]
- Komagata, M.; Nakanishi, T.; Yamamoto, K.; Nakamura, Y. Development of compact revolute electro-hydrostatic actuator module and evaluation of its backdrivability and internal leakage. Adv. Robot. 2023, 37, 1419–1437. [Google Scholar] [CrossRef]
- Rodriguez-Aguilar, R.; Marmolejo-Saucedo, J.-A.; Köse, U. Development of a Digital Twin Driven by a Deep Learning Model for Fault Diagnosis of Electro-Hydrostatic Actuators. Mathematics 2024, 12, 3124. [Google Scholar] [CrossRef]
- Dinca, L.; Corcau, J.-I.; Grigorie, T.L.; Cucu, A.-A.; Vasilescu, B. Studies on the Thermal Behavior of an Electro-Hydrostatic Servo Actuator. Actuators 2025, 14, 48. [Google Scholar] [CrossRef]
- Alle, N.; Hiremath, S.S.; Makaram, S.; Subramaniam, K.; Talukdar, A. Review on electro hydrostatic actuator for flight control. Int. J. Aerosp. Eng. 2016, 2016, 125–145. [Google Scholar]
- Kumar, G.; Mandal, N.P. Position Control Performance Analysis of Linear Actuator in Swashplate-Controlled Electro Hydrostatic Actuation System. Eng. Res. Express 2023, 5, 045087. [Google Scholar] [CrossRef]
- Ghanbari, M.; Kinsner, W.; Sepehri, N. Detection of Faults in Electro-Hydrostatic Actuators Using Feature Extraction Methods and an Artificial Neural Network. In Proceedings of the 2022 IEEE World AI IoT Congress (AIIoT), Seattle, WA, USA, 6–9 June 2022; pp. 1–7. [Google Scholar]
- Son, Y.S.; Kim, W. Robust Nonlinear Position Control with Extended State Observer for Single-Rod Electro-Hydrostatic Actuator. Mathematics 2021, 9, 2397. [Google Scholar] [CrossRef]
- Jiao, Z.; Li, Z.; Shang, Y.; Wu, S.; Song, Z.; Pan, Q. Active Load Sensitive Electro-Hydrostatic Actuator on More Electric Aircraft: Concept, Design, and Control. IEEE Trans. Ind. Electron. 2022, 69, 5030–5040. [Google Scholar] [CrossRef]
- Tao, Z.; Xie, H.; Yang, H. Design and tracking control of an electro-hydrostatic actuator for a disc cutter replacement manipulator. Autom. Constr. 2022, 142, 104480. [Google Scholar] [CrossRef]
- Shang, Y.; Hao, W.; Jiao, Z.; Song, Z. Direct load sensitive electro hydrostatic force control actuator for asymmetric cylinder with switch valve: Design and simulation. In Proceedings of the International Conference on Fluid Power and Mechatronics, Harbin, China, 5–7 August 2015. [Google Scholar]
- Zhu, T.; Xie, H.; Yang, H. Kinematics and workspace analysis of a disc cutter replacement manipulator for TBM in a constrained motion space. In Intelligent Robotics and Applications. Proceedings of the ICIRA 2023, Hangzhou, China, 5–7 July 2023; Lecture Notes in Computer, Science; Yang, H., Liu, H., Zou, J., Yin, Z., Liu, L., Yang, G., Ouyang, X., Wang, Z., Eds.; Springer: Singapore, 2023; Volume 14272, pp. 229–240. [Google Scholar]
- Kumar, M. A Survey on Electro Hydrostatic Actuator: Architecture and Way Ahead. Mater. Today Proc. 2021, 45, 6057–6063. [Google Scholar] [CrossRef]
- Bartlett, H.L. A Symmetric Multichamber Hydraulic Cylinder with Variable Piston Area: An Approach to Compact and Efficient Electrohydrostatic Actuation. J. Mech. Des. 2021, 143, 083501. [Google Scholar] [CrossRef]
- Gaile, A.; Lue, Y. Electro Hydraulic Actuation (EHA) systems for primary flight control, landing gear and other type of actuation. In Proceedings of the 2016 IEEE International Conference on Aircraft Utility Systems (AUS), Beijing, China, 10–12 October 2016; pp. 723–728. [Google Scholar]
- Zhou, F.; Liu, H.; Zhang, P.; Ouyang, X.; Xu, L.; Ge, Y.; Yao, Y.; Yang, H. High-Precision Control Solution for Asymmetrical Electro-Hydrostatic Actuators Based on the Three-Port Pump and Disturbance Observers. IEEE/ASME Trans. Mechatron. 2023, 28, 396–406. [Google Scholar] [CrossRef]
- Lyu, L.; Chen, Z.; Yao, B. Development of parallel-connected pump-valve-coordinated control unit with improved performance and efficiency. Mechatronics 2020, 70, 102419. [Google Scholar] [CrossRef]
- Galluzzi, R.; Xu, Y.; Amati, N.; Tonoli, A. Optimized design and characterization of motor-pump unit for energy-regenerative shock absorbers. Appl. Energy 2018, 210, 16–27. [Google Scholar]
- Yuan, C.; Pan, M.; Plummer, A. A Review of Switched Inertance Hydraulic Converter Technology. J. Dyn. Syst. Meas. Control 2020, 142, 050801. [Google Scholar] [CrossRef]
- Hati, K.; Mandal, N.P.; Sanyal, D. Energy-Saving Design of Variable-Displacement Bi-Directional Pump-Controlled Electrohydraulic System. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2021, 235, 1218–1236. [Google Scholar]
- Gøytil, P.; Hansen, M.R.; Tvilde, H. Effective Bulk Modulus in Low-Pressure Pump-Controlled Hydraulic Cylinders. Actuators 2025, 14, 366. [Google Scholar] [CrossRef]
- Costa, G.K.; Sepehri, N. Four-quadrant analysis and system design for single-rod hydrostatic actuators. J. Dyn. Syst. Meas. Control 2019, 141, 021011. [Google Scholar] [CrossRef]
- Huang, L.; Yu, T.; Jiao, Z.; Li, Y. Active Load-Sensitive Electro-Hydrostatic Actuator for More Electric Aircraft. Appl. Sci. 2020, 10, 6978. [Google Scholar] [CrossRef]
- Kulida, E.; Lebedev, V. Modern Approaches to Prognostics and Health Management of an Aircraft Electromechanical Actuator. Methods 2024, 18, 1–15. [Google Scholar] [CrossRef]
- Tiwari, D.; Miscandlon, J.; Tiwari, A.; Jewell, G.W. A Review of Circular Economy Research for Electric Motors and the Role of Industry 4.0 Technologies. Sustainability 2021, 13, 9668. [Google Scholar] [CrossRef]
- Tawfiq, K.B.; Ibrahim, M.N.; Sergeant, P. An Enhanced Fault-Tolerant Control of a Five-Phase Synchronous Reluctance Motor Fed from a Three-to-Five-Phase Matrix Converter. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 4182–4194. [Google Scholar] [CrossRef]
- Vu, D.T.; Nguyen, N.K.; Semail, E. Fault-Tolerant Control for Nonsinusoidal Multiphase Drives with Minimum Torque Ripple. IEEE Trans. Power Electron. 2021, 37, 6290–6304. [Google Scholar] [CrossRef]
- Naveed, M.M.; Shah, M.S.; Moonen, N.; Gerber, M.; Soeiro, T.B. Advancing High-Frequency Inverter Design in More Electric Aircraft: Challenges and Research Perspectives. IEEE Open J. Ind. Electron. Soc. 2025, 6, 1423–1447. [Google Scholar] [CrossRef]
- Nemeth, B.; Varga, B.; Gaspar, P. Hierarchical design of an electro-hydraulic actuator based on robust LPV methods. Int. J. Control 2015, 88, 1429–1440. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Ahn, J.-H.; Kwak, K.-S.; Ahn, K.K. Energy Efficiency Investigation of a Novel Independent Metering Valve System in Switching Modes. In Proceedings of the 2024 Autumn Conference on Drive and Control, The Korea Fluid Power Systems Society, Seoul, Republic of Korea, 10–12 October 2024; pp. 92–98. [Google Scholar]
- Ketelsen, S.; Padovani, D.; Andersen, T.O.; Ebbesen, M.K.; Schmidt, L. Classification and review of pump-controlled differential cylinder drives. Energies 2019, 12, 1293. [Google Scholar] [CrossRef]
- Zhou, F.; Xiao, W.; Xiaoping, O.; Zhang, P.; Xu, L.; Yang, H. Modeling and control of a novel electro-hydrostatic actuator with a three-port hydraulic pump. In Proceedings of the 2020 ASME Fluid Power and Motion Control, Online, 9–11 September 2020. [Google Scholar]
- Chen, X.; Ling, Z.; Li, T.; Liu, H.; Zhou, F.; Ouyang, X.; Jiang, H.; Yang, B. Fault-Tolerant Control Method for Five-Phase PMSM with High Control Performance and Low Computational Burden. In Proceedings of the 49th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 16–19 October 2023. [Google Scholar]
- Yang, B.; Lu, Y.; Jiang, H.; Ling, Z.; Li, T.; Liu, H.; Ouyang, X. Quantitative comparative study on the performance of a valve-controlled actuator and electro-hydrostatic actuator. Actuators 2024, 13, 118. [Google Scholar] [CrossRef]
- Jiang, H.; Ling, Z.; Zhou, F.; Sun, M.; Liu, H.; Xu, L.; Yao, Y.; Ouyang, X.; Yang, H. Adaptive Dead Zone Compensation Method for Electro-Hydrostatic Actuators Under Low-Speed Conditions. Chin. J. Mech. Eng. 2024, 37, 168. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Max output force | 120 kN |
Max piston rod velocity (no-load) | 110 mm/s |
Max stroke | 100 mm |
Max pressure | 28 MPa |
Max rotational speed | 12,000 rpm |
Max torque | 14 N·m |
Bus voltage | 270 VDC |
Max flow rate | 24 L/min |
Max displacement | 2 mL/rev |
Components | Parameters | Values |
---|---|---|
F-PMSM | 0.0375 | |
0.022 | ||
4.8 × 10−4 | ||
0.01235 | ||
4 | ||
0.001 | ||
270 | ||
Piston pump | 2 | |
1 × 10−13 | ||
Variable displacement mechanism | 0.1 | |
20,000 | ||
1.76 × 10−7 | ||
1 × 10−13 | ||
4 | ||
100 | ||
Cylinder | 1 × 10−13 | |
4615 × 10−6 | ||
100 | ||
1000 | ||
400 | ||
200 |
Controllers | Parameters | Values |
---|---|---|
Positional controller | 1 × 107 | |
1 × 104 | ||
0 | ||
Speed controller | 0.2 | |
10 | ||
0 | ||
Displacement controller | 1 × 103 | |
50 | ||
0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ling, Z.; Zhou, F.; Liu, H.; Yang, B.; Ouyang, X. One Innovative Method for Improving the Power Density and Efficiency of Electro-Hydrostatic Actuators. Actuators 2025, 14, 467. https://doi.org/10.3390/act14100467
Ling Z, Zhou F, Liu H, Yang B, Ouyang X. One Innovative Method for Improving the Power Density and Efficiency of Electro-Hydrostatic Actuators. Actuators. 2025; 14(10):467. https://doi.org/10.3390/act14100467
Chicago/Turabian StyleLing, Zhenfei, Fengqi Zhou, Hao Liu, Bo Yang, and Xiaoping Ouyang. 2025. "One Innovative Method for Improving the Power Density and Efficiency of Electro-Hydrostatic Actuators" Actuators 14, no. 10: 467. https://doi.org/10.3390/act14100467
APA StyleLing, Z., Zhou, F., Liu, H., Yang, B., & Ouyang, X. (2025). One Innovative Method for Improving the Power Density and Efficiency of Electro-Hydrostatic Actuators. Actuators, 14(10), 467. https://doi.org/10.3390/act14100467