A Microchannel Device for Droplet Classification by Manipulation Using Piezoelectric Vibrator
Abstract
:1. Introduction
2. Overview of Droplet Manipulation
2.1. Principle of Droplet Manipulation
2.2. Relationship between Sound Pressure and Droplet Diameter Required for Droplet Manipulation
2.3. Polystyrene Particle Manipulation Experiment
2.4. Travel Distance and Calculation of Droplets in Emulsions
3. Experiments and Results
3.1. Overview of the Droplet Manipulation Experiment
3.2. Experiments on Droplet Manipulation Using Flow Channels with Narrowed Sections
3.3. Comparison of the Droplet Manipulation Results with and without a Constriction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Meltem, S.; Burcu, Ö.; Ayşe, K. An Overview of Food Emulsions: Description, Classification and Recent Potential Applications. Turk. J. Agric. Food Sci. Technol. 2015, 3, 430–438. [Google Scholar]
- Muschiolik, G. Multiple emulsions for food use. Curr. Opin. Colloid Interface Sci. 2007, 12, 213–220. [Google Scholar] [CrossRef]
- Fredrick, E.; Walstra, P.; Dewettinck, K. Factors governing partial coalescence in oil in water emulsions. Adv. Colloid Interface Sci. 2010, 153, 30–42. [Google Scholar] [CrossRef]
- Amarasinghe, B.M.W.P.K.; Kumarasiri, M.P.M.; Gangodavilage, N.C. Effect of method of stabilization on aqueous extraction of rice bran oil. Food Bioprod. Process. 2009, 87, 108–114. [Google Scholar] [CrossRef]
- Byun, A.; Shim, J.; Han, S.W.; Kim, B.; Chae, P.S.; Shin, H.S.; Kim, J.W. One-pot microfluidic fabrication of graphene oxide-patched hollow hydrogel microcapsules with remarkable shell impermeability. Chem. Commun. 2015, 51, 12756–12759. [Google Scholar] [CrossRef]
- Kwon, W.T.; Park, K.; Han, S.D.; Yoon, S.M.; Kim, J.Y.; Bae, W.; Rhee, Y.W. Investigation of water separation from water-in-oil emulsion using electric field. J. Ind. Eng. Chem. 2010, 16, 684–687. [Google Scholar] [CrossRef]
- Filho, R. Occlusive power evaluation of O/W/O multiple emulsions on gelatin support cells. Int. J. Cosmet. Sci. 1997, 19, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Koyama, D.; Kiyan, W.; Watanabe, Y. Optical observation of microcapsule destruction in an acoustic standing wave. Jpn. J. Appl. Phys. 2004, 43, 3215–3219. [Google Scholar] [CrossRef]
- Anna, S.L.; Bontoux, N.; Stone, H.S. Formation of dispersions using ‘flow focusing’ in microchannels. Appl. Phys. Lett. 2003, 82, 364–366. [Google Scholar] [CrossRef]
- Taha, A.; Ahmed, E.; Ismaiel, A.; Ashokkumar, M.; Xu, X.; Pan, S.; Hu, H. Ultrasonic emulsification: An overview on the preparation of different emulsifiers-stabilized emulsions. Trends Food Sci. Technol. 2020, 105, 363–377. [Google Scholar] [CrossRef]
- Carugo, D.; Browing, R.J.; Iranmanesh, I.; Messaoudi, W.; Rademeyer, P.; Stride, E. Scaleable production of microbubbles using an ultrasound-modulated microfluidic device. J. Acoust. Soc. Am. 2021, 150, 1577–1589. [Google Scholar] [CrossRef] [PubMed]
- Harada, T.; Kanda, T.; Suzumori, K.; Ono, T.; Iwabuchi, S.; Ito, K.; Higaki, K. Emulsion generating microchannel device oscillated by 2.25 MHz ultrasonic vibrator. Jpn. J. Appl. Phys. 2010, 49, 07HE13. [Google Scholar] [CrossRef]
- Kanda, T.; Harada, T.; Tominaga, Y.; Ono, T.; Iwabuchi, S.; Ito, K.; Ogawara, K.; Higaki, K.; Yoshizawa, Y. Design and Evaluation of Emulsion Gemeration Device Using Ultrasonic Vibration and Microchannel. Jpn. J. Appl. Phys. 2011, 50, 07HE24. [Google Scholar] [CrossRef]
- Kanda, T.; Yabumoto, M.; Suzumori, K. A piezoelectric polymer cavitation sensor installed in an emulsion generation microchannel device and an evaluation of cavitation state. Jpn. J. Appl. Phys. 2016, 55, 07KE07. [Google Scholar] [CrossRef]
- Mason, T.G.; Bibette, J. Emulsification in viscoelastic media. Phys. Rev. Lett. 1996, 77, 3481–3484. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Neves, M.A.; Isoda, H.; Nakajima, M. Preparation and Characterization of Micro / Nano-emulsions Containing Functional Food Components. Jpn. J. Food Eng. 2015, 16, 263–276. [Google Scholar] [CrossRef]
- Kuntaegowdanahalli, S.S.; Bhagat, A.A.S.; Kumar, G.; Papautsky, I. Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip 2009, 9, 2973–2980. [Google Scholar] [CrossRef]
- Raihan, M.K.; Li, D.; Kummetz, A.J.; Song, L.; Yu, L.; Xuan, X. Vortex trapping and separation of particles in shear thinning fluids. Appl. Phys. Lett. 2020, 116, 183701. [Google Scholar] [CrossRef]
- Pamme, N.; Manz, A. On-chip free-flow magnetophoresis: Continuous flow separation of magnetic particles and agglomerates. Anal. Chem. 2004, 76, 7250–7256. [Google Scholar] [CrossRef]
- Sajeesh, P.; Sen, A.K. Particle separation and sorting in microfluidic devices: A review. Microfluid. Nanofluid. 2014, 17, 1–52. [Google Scholar] [CrossRef]
- Hung, S.H.; Lin, Y.H.; Lee, G.B. A microfluidic platform for manipulation and separation of oil-in-water emulsion droplets using optically induced dielectrophoresis. J. Micromech. Microeng. 2010, 20, 045026. [Google Scholar] [CrossRef]
- Zhao, K.; Li, D. Tunable Droplet Manipulation and Characterization by ac-DEP. ACS Appl. Mater. Interfaces 2018, 10, 36572–36581. [Google Scholar] [CrossRef]
- Chen, X.; Chang, C.L.; Hui, L. Microfluidic chip for blood cell separation and collection based on crossflow filtration. Sens. Actuators B Chem. 2008, 130, 216–221. [Google Scholar] [CrossRef]
- Pangu, G.D.; Feke, D.L. Acoustically aided separation of oil droplets from aqueous emulsions. Chem. Eng. Sci. 2004, 59, 3183–3193. [Google Scholar] [CrossRef]
- Ding, X.; Lin, S.S.; Kiraly, B.; Yue, H.; Li, S.; Chiang, I.; Shi, J.; Benkovic, S.J.; Huang, T.J. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proc. Natl. Acad. Sci. USA 2012, 109, 11105–11109. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Nawaz, A.A.; Zhao, Y.; Huang, P.; Mccoy, J.; Levine, S.; Wang, L.; Huang, J.T. Standing surface acoustic wave (SSAW)-based microfluidic cytometer. Lab Chip 2014, 14, 916–923. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Kiyama, Y.; Kanda, T.; Suzumori, K.; Ono, T. An Ultrasonic vibration device for emulsion concentration. In Proceedings of the ACTUATOR14 14th International Conference on New Actuators & 8th International Exhibition on Smart Actuators and Drive Systems, Bremen, Germany, 23–25 June 2014; pp. 402–405. [Google Scholar]
- Onishi, K.; Kanda, T.; Ogawa, N.; Suzumori, K. Study of Droplet Manipulation Condition in Droplet Manipulation Device Using Ultrasonic Vibration. IEEJ Trans. Sens. Micromach. 2016, 136, 348–356. [Google Scholar] [CrossRef]
- Kanda, T.; Seo, S.; Ohara, Y.; Wakimoto, S. A Microchannel Device for Droplet Classification by Manipulation Using Piezoelectric Vibrator. In Proceedings of the 18th International Conference on New Actuator Systems and Applications (Actuator 2022), Mannheim, Germany, 28–30 June 2022; pp. 272–273. [Google Scholar]
- Guo, J.; Li, J.L.; Chen, Y.; Yeo, L.Y.; Friend, J.R.; Kang, Y. RF activated standing surface acoustic wave for on-chip particle manipulation. IEEE Trans. Microw. Theory Tech. 2014, 62, 1898–1904. [Google Scholar] [CrossRef]
Experimental Condition and Physical Property | Value | Unit |
---|---|---|
Frequency | 3.14 | MHz |
Wavelength | 3.95 × 10−4 | m |
Density of solvent | 853.3 | |
Density of particles | 940 | |
Viscosity of solvent | 1.4 × 10−3 | |
Sound velocity of solvent | 1252.8 | m/s |
Sound velocity of particles | 2340 | m/s |
Flow rate | 100 | µL/min |
Cross-sectional area of flow channel | 0.08 |
Experimental Condition | Value | Unit |
---|---|---|
Pressure in the microchannel | 1.54 × 105 | Pa |
Frequency | 2.25 | MHz |
Wavelength | 6.65 × 10−4 | m |
Material | Physical Property | Value | Unit |
---|---|---|---|
n-dodecane | Density | 750 | kg/m3 |
Speed of sound | 1280 | m/s | |
1 wt% SDSsolution | Density | 1000 | |
Speed of sound | 1500 | m/s | |
Viscosity | 8.9 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujioka, A.; Seo, S.; Kanda, T.; Wakimoto, S.; Yamaguchi, D. A Microchannel Device for Droplet Classification by Manipulation Using Piezoelectric Vibrator. Actuators 2024, 13, 95. https://doi.org/10.3390/act13030095
Fujioka A, Seo S, Kanda T, Wakimoto S, Yamaguchi D. A Microchannel Device for Droplet Classification by Manipulation Using Piezoelectric Vibrator. Actuators. 2024; 13(3):95. https://doi.org/10.3390/act13030095
Chicago/Turabian StyleFujioka, Ao, Shoko Seo, Takefumi Kanda, Shuichi Wakimoto, and Daisuke Yamaguchi. 2024. "A Microchannel Device for Droplet Classification by Manipulation Using Piezoelectric Vibrator" Actuators 13, no. 3: 95. https://doi.org/10.3390/act13030095
APA StyleFujioka, A., Seo, S., Kanda, T., Wakimoto, S., & Yamaguchi, D. (2024). A Microchannel Device for Droplet Classification by Manipulation Using Piezoelectric Vibrator. Actuators, 13(3), 95. https://doi.org/10.3390/act13030095