On the Evolution of Stress and Microstructure in Radio Frequency-Sputtered Lead-Free (Ba,Ca)(Zr,Ti)O3 Thin Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Morphological and Structural Properties
3.2. Film Stress
3.3. Electrical Properties
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trolier-McKinstry, S.; Zhang, S.; Bell, A.J.; Tan, X. High-Performance Piezoelectric Crystals, Ceramics, and Films. Annu. Rev. Mater. Res. 2018, 48, 191–217. [Google Scholar] [CrossRef]
- Dahl-Hansen, R.; Gjessing, J.; Mardilovich, P.; Fragkiadakis, C.; Thorstensen, J. Reliable Pb(Zr,Ti)O3-Based Thin Film Piezoelectric Micromirrors for Space-Applications. Appl. Phys. Lett. 2022, 121, 132901. [Google Scholar] [CrossRef]
- Rödel, J.; Li, J.-F. Lead-Free Piezoceramics: Status and Perspectives. MRS Bull. 2018, 43, 576–580. [Google Scholar] [CrossRef]
- Poon, K.K.; Wurm, M.C.; Evans, D.M.; Einarsrud, M.A.; Lutz, R.; Glaum, J. Biocompatibility of (Ba,Ca)(Zr,Ti)O3 Piezoelectric Ceramics for Bone Replacement Materials. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020, 108, 1902827. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Shi, B.; Ouyang, H.; Fan, Y.; Wang, Z.L.; Li, Z. Emerging Implantable Energy Harvesters and Self-Powered Implantable Medical Electronics. ACS Nano 2020, 14, 6436–6448. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Wang, L.; Wang, H.; Zhang, B.; Wang, X.; Stening, R.Y.Z.; Sheng, X.; Yin, L. Materials Strategies and Device Architectures of Emerging Power Supply Devices for Implantable Bioelectronics. Small 2020, 16, 1902827. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Kim, D.J.; Park, J.S.; Kim, S.W.; Song, T.K.; Kim, M.H.; Kim, W.J.; Do, D.; Jeong, I.K. High-Performance Lead-Free Piezoceramics with High Curie Temperatures. Adv. Mater. 2015, 27, 6976–6982. [Google Scholar] [CrossRef] [PubMed]
- Jeong, C.K.; Han, J.H.; Palneedi, H.; Park, H.; Hwang, G.T.; Joung, B.; Kim, S.G.; Shin, H.J.; Kang, I.S.; Ryu, J.; et al. Comprehensive Biocompatibility of Nontoxic and High-Output Flexible Energy Harvester Using Lead-Free Piezoceramic Thin Film. APL Mater. 2017, 5, 074102. [Google Scholar] [CrossRef]
- Rödel, J.; Webber, K.G.; Dittmer, R.; Jo, W.; Kimura, M.; Damjanovic, D. Transferring Lead-Free Piezoelectric Ceramics into Application. J. Eur. Ceram. Soc. 2015, 35, 1659–1681. [Google Scholar] [CrossRef]
- Acosta, M.; Novak, N.; Rojas, V.; Patel, S.; Vaish, R.; Koruza, J.; Rossetti, G.A.; Rödel, J. BaTiO3-Based Piezoelectrics: Fundamentals, Current Status, and Perspectives. Appl. Phys. Rev. 2017, 4, 041305. [Google Scholar] [CrossRef]
- Yeager, C.B.; Ehara, Y.; Oshima, N.; Funakubo, H.; Trolier-Mckinstry, S. Dependence of e31,f on Polar Axis Texture for Tetragonal Pb(Zrx,Ti1-x)O3 Thin Films. J. Appl. Phys. 2014, 116, 104907. [Google Scholar] [CrossRef]
- Khomyakova, E.; Wenner, S.; Bakken, K.; Schultheiß, J.; Grande, T.; Glaum, J.; Einarsrud, M.A. On the Formation Mechanism of Ba0.85Ca0.15Zr0.1Ti0.9O3 Thin Films by Aqueous Chemical Solution Deposition. J. Eur. Ceram. Soc. 2020, 40, 5376–5383. [Google Scholar] [CrossRef]
- Wang, Z.M.; Zhao, K.; Guo, X.L.; Sun, W.; Jiang, H.L.; Han, X.Q.; Tao, X.T.; Cheng, Z.X.; Zhao, H.Y.; Kimura, H.; et al. Crystallization, Phase Evolution and Ferroelectric Properties of Sol-Gel-Synthesized Ba(Ti0.8Zr0.2)O3-x(Ba0.7Ca0.3)TiO3 Thin Films. J. Mater. Chem. C 2013, 1, 522–530. [Google Scholar] [CrossRef]
- Luo, B.C.; Wang, D.Y.; Duan, M.M.; Li, S. Growth and Characterization of Lead-Free Piezoelectric BaZr0.2Ti0.8O3-Ba0.7Ca0.3TiO3 Thin Films on Si Substrates. Appl. Surf. Sci. 2013, 663, 818–822. [Google Scholar] [CrossRef]
- Luo, B.C.; Wang, D.Y.; Duan, M.M.; Li, S. Orientation-Dependent Piezoelectric Properties in Lead-Free Epitaxial 0.5BaZr0.2Ti0.8O3-0.5Ba0.7Ca0.3TiO3 Thin Films. Appl. Phys. Lett. 2013, 103, 122903. [Google Scholar] [CrossRef]
- Li, W.L.; Zhang, T.D.; Hou, Y.F.; Zhao, Y.; Xu, D.; Cao, W.P.; Fei, W.D. Giant Piezoelectric Properties of BZT–0.5BCT Thin Films Induced by Nanodomain Structure. RSC Adv. 2014, 4, 56933–56937. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, T.Y.; Chi, Q.G.; Lin, J.Q.; Wang, X.; Lei, Q.Q. Low Temperature Growth of (100)-Oriented Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 Thin Films Using a LaNiO3 Seed Layer. J. Alloys Compd. 2016, 663, 818–822. [Google Scholar] [CrossRef]
- Dos Santos E Lucato, S.L.; Lupascu, D.C.; Kamlah, M.; Rödel, J.; Lynch, C.S. Constraint-Induced Crack Initiation at Electrode Edges in Piezoelectric Ceramics. Acta Mater. 2001, 49, 2751–2759. [Google Scholar] [CrossRef]
- Posadas, A.B.; Park, H.; Reynaud, M.; Cao, W.; Reynolds, J.D.; Guo, W.; Jeyaselvan, V.; Beskin, I.; Mashanovich, G.Z.; Warner, J.H.; et al. Thick BaTiO3 Epitaxial Films Integrated on Si by RF Sputtering for Electro-Optic Modulators in Si Photonics. ACS Appl. Mater. Interfaces 2021, 13, 51230–51244. [Google Scholar] [CrossRef]
- Coleman, K.; Walker, J.; Beechem, T.; Trolier-McKinstry, S. Effect of Stresses on the Dielectric and Piezoelectric Properties of Pb(Zr0.52 Ti0.48)O3 Thin Films. J. Appl. Phys. 2019, 126, 034101. [Google Scholar] [CrossRef]
- Mathews, N.G.; Saxena, A.K.; Venkataramani, N.; Dehm, G.; Jaya, B.N. Multiscale Characterization of Damage Tolerance in Barium Titanate Thin Films. J. Appl. Phys. 2022, 132, 045302. [Google Scholar] [CrossRef]
- Bharathi, P.; Varma, K.B.R. Grain and the Concomitant Ferroelectric Domain Size Dependent Physical Properties of Ba0.85Ca0.15Zr0.1Ti0.9O3 Ceramics Fabricated Using Powders Derived from Oxalate Precursor Route. J. Appl. Phys. 2014, 116, 164107. [Google Scholar] [CrossRef]
- Chae, B.G.; Yang, Y.S.; Lee, S.H.; Jang, M.S.; Lee, S.J.; Kim, S.H.; Baek, W.S.; Kwon, S.C. Comparative Analysis for the Crystalline and Ferroelectric Properties of Pb(Zr,Ti)O3 Thin Films Deposited on Metallic LaNiO3 and Pt Electrodes. Thin Solid Films 2002, 410, 107–113. [Google Scholar] [CrossRef]
- Glazov, V.M.; Pashinkin, A.S. The Thermophysical Properties (Heat Capacity and Thermal Expansion) of Single-Crystal Silicon. High Temp. 2001, 39, 413–419. [Google Scholar] [CrossRef]
- He, Y. Heat Capacity, Thermal Conductivity, and Thermal Expansion of Barium Titanate-Based Ceramics. Thermochim. Acta 2004, 419, 135–141. [Google Scholar] [CrossRef]
- Bland, J.A. The Thermal Expansion of Cubic Barium Titanate (BaTiO3) from 350 °C to 1050 °C. Can. J. Phys. 1959, 37, 417–421. [Google Scholar] [CrossRef]
- Nazeer, H.; Nguyen, M.D.; Rijnders, G.; Abelmann, L. Sardan Sukas Residual Stress and Young’s Modulus of Pulsed Laser Deposited PZT Thin Films: Effect of Thin Film Composition and Crystal Direction of Si Cantilevers. Microelectron. Eng. 2016, 161, 56–62. [Google Scholar] [CrossRef]
- Towner, D.J.; Ni, J.; Marks, T.J.; Wessels, B.W. Effects of Two-Stage Deposition on the Structure and Properties of Heteroepitaxial BaTiO3 Thin Films. J. Cryst. Growth 2003, 255, 164107. [Google Scholar] [CrossRef]
- Janssen, G.C.A.M.; Abdalla, M.M.; van Keulen, F.; Pujada, B.R.; van Venrooy, B. Celebrating the 100th Anniversary of the Stoney Equation for Film Stress: Developments from Polycrystalline Steel Strips to Single Crystal Silicon Wafers. Thin Solid Films 2009, 517, 1858–1867. [Google Scholar] [CrossRef]
- Li, G.; Aydemir, U.; Morozov, S.I.; Miller, S.A.; An, Q.; Goddard, W.A.; Zhai, P.; Zhang, Q.; Snyder, G.J. Mechanical Properties in Thermoelectric Oxides: Ideal Strength, Deformation Mechanism, and Fracture Toughness. Acta Mater. 2018, 149, 341–349. [Google Scholar] [CrossRef]
- Cai, Z.L.; Wang, Z.M.; Wang, H.H.; Cheng, Z.X.; Li, B.W.; Guo, X.L.; Kimura, H.; Kasahara, A. An Investigation of the Nanomechanical Properties of 0.5Ba(Ti0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3 Thin Films. J. Am. Ceram. Soc. 2015, 98, 114–118. [Google Scholar] [CrossRef]
- Abadias, G.; Chason, E.; Keckes, J.; Sebastiani, M.; Thompson, G.B.; Barthel, E.; Doll, G.L.; Murray, C.E.; Stoessel, C.H.; Martinu, L. Review Article: Stress in Thin Films and Coatings: Current Status, Challenges, and Prospects. J. Vac. Sci. Technol. A Vac. Surf. Film. 2018, 36, 020801. [Google Scholar] [CrossRef]
- Ohno, K.; Uchiyama, H.; Kozuka, H. Understanding of the Development of In-Plane Residual Stress in Sol-Gel-Derived Metal Oxide Thin Films. J. Appl. Phys. 2012, 111, 014901. [Google Scholar] [CrossRef]
- Dubois, M.A.; Muralt, P. Stress and Piezoelectric Properties of Aluminum Nitride Thin Films Deposited onto Metal Electrodes by Pulsed Direct Current Reactive Sputtering. J. Appl. Phys. 2001, 102, 5328–5341. [Google Scholar] [CrossRef]
- Coleman, K.; Walker, J.; Zhu, W.; Ko, S.W.; Mardilovich, P.; Trolier-Mckinstry, S. Failure Mechanisms of Lead Zirconate Titanate Thin Films during Electromechanical Loading. In Proceedings of the IFCS-ISAF 2020—Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics, Keystone, CO, USA, 19–23 July 2020; pp. 4–8. [Google Scholar] [CrossRef]
- Coleman, K.; Bermejo, R.; Leguillon, D.; Trolier-McKinstry, S. Thickness Dependence of Crack Initiation and Propagation in Stacks for Piezoelectric Microelectromechanical Systems. Acta Mater. 2020, 191, 245–252. [Google Scholar] [CrossRef]
- Biswas, D.; Thapliyal, P.; Sharma, P.; Panwar, N.S. Annealing Temperature-Dependent Structural, Optical, and Electrical Properties of [(Ba1−zCaz)(Zr0.1Ti0.9)O3], (z = 0.155), Films. ECS J. Solid State Sci. Technol. 2023, 12, 023011. [Google Scholar] [CrossRef]
- Leguillon, D. Strength or Toughness? A Criterion for Crack Onset at a Notch. Eur. J. Mech. A/Solids 2002, 21, 61–72. [Google Scholar] [CrossRef]
- Dos Santos E Lucato, S.L.; Lupascu, D.C.; Rödel, J. Effect of Poling Direction on R-Curve Behavior in Lead Zirconate Titanate. J. Am. Ceram. Soc. 2000, 83, 424–426. [Google Scholar] [CrossRef]
- Shibata, K.; Suenaga, K.; Watanabe, K.; Horikiri, F.; Nomoto, A.; Mishima, T. Improvement of Piezoelectric Properties of (K,Na)NbO3 Films Deposited by Sputtering. Jpn. J. Appl. Phys. 2011, 50, 41503. [Google Scholar] [CrossRef]
- Malič, B.; Razpotnik, H.; Koruza, J.; Kokalj, S.; Cilenšek, J.; Kosec, M. Linear Thermal Expansion of Lead-Free Piezoelectric K0.5Na0.5NbO3 Ceramics in a Wide Temperature Range. J. Am. Ceram. Soc. 2011, 94, 2273–2275. [Google Scholar] [CrossRef]
- Bakken, K.; Blichfeld, A.B.; Nylund, I.; Chernyshov, D.; Glaum, J.; Grande, T.; Einarsrud, M. Tailoring Preferential Orientation in BaTiO3-based Thin Films from Aqueous Chemical Solution Deposition. Chem. Methods 2022, 2, e202100064. [Google Scholar] [CrossRef]
- Hyeon, D.Y.; Park, K.I. Piezoelectric Flexible Energy Harvester Based on BaTiO3 Thin Film Enabled by Exfoliating the Mica Substrate. Energy Technol. 2019, 7, 1900638. [Google Scholar] [CrossRef]
- Buscaglia, V.; Randall, C.A. Size and Scaling Effects in Barium Titanate. An Overview. J. Eur. Ceram. Soc. 2020, 40, 3744–3758. [Google Scholar] [CrossRef]
- Martin, E.; Leguillon, D.; Sevecek, O.; Bermejo, R. Understanding the Tensile Strength of Ceramics in the Presence of Small Critical Flaws. Eng. Fract. Mech. 2018, 201, 167–175. [Google Scholar] [CrossRef]
- Appleby, D.J.R.; Ponon, N.K.; Kwa, K.S.K.; Ganti, S.; Hannemann, U.; Petrov, P.K.; Alford, N.M.; O’Neill, A. Ferroelectric Properties in Thin Film Barium Titanate Grown Using Pulsed Laser Deposition. J. Appl. Phys. 2014, 116, 124105. [Google Scholar] [CrossRef]
Material | Measured Thickness [µm] | Measured Built-in Stress [MPa] |
---|---|---|
LaNiO3 | 0.03 | 370 ± 10 |
Pt | 0.1 | 670 ± 50 |
TiO2 | 0.05 | 445 ± 21 |
SiO2 | 0.5 | −300 ± 30 |
Si | 650 | ~0 |
Deposition Temperature, TD [°C] | Surface Roughness, Rq [nm] | Average Grain Size [nm] | Modelled Stress [MPa] | [MPa] | ||
---|---|---|---|---|---|---|
BCZT/Si | BCZT/Pt/Si | BCZT/LNO/Pt/Si | ||||
200 | N/A | 210 | ||||
400 | N/A | 581 | ||||
600 | 1085 | |||||
700 | 1526 | |||||
800 | 1721 |
Substrate | In-Plane Stress [MPa] | |||
---|---|---|---|---|
4 × 10−3 mbar | 8 × 10−3 mbar | 12 × 10−3 mbar | 16 × 10−3 mbar | |
BCZT/Si | ||||
BCZT/Pt/Si | ||||
BCZT/LNO/Pt/Si |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahl-Hansen, R.P.; Stange, M.S.S.; Sunde, T.O.; Ræder, J.H.; Rørvik, P.M. On the Evolution of Stress and Microstructure in Radio Frequency-Sputtered Lead-Free (Ba,Ca)(Zr,Ti)O3 Thin Films. Actuators 2024, 13, 115. https://doi.org/10.3390/act13030115
Dahl-Hansen RP, Stange MSS, Sunde TO, Ræder JH, Rørvik PM. On the Evolution of Stress and Microstructure in Radio Frequency-Sputtered Lead-Free (Ba,Ca)(Zr,Ti)O3 Thin Films. Actuators. 2024; 13(3):115. https://doi.org/10.3390/act13030115
Chicago/Turabian StyleDahl-Hansen, Runar Plünnecke, Marit Synnøve Sæverud Stange, Tor Olav Sunde, Johan Henrik Ræder, and Per Martin Rørvik. 2024. "On the Evolution of Stress and Microstructure in Radio Frequency-Sputtered Lead-Free (Ba,Ca)(Zr,Ti)O3 Thin Films" Actuators 13, no. 3: 115. https://doi.org/10.3390/act13030115
APA StyleDahl-Hansen, R. P., Stange, M. S. S., Sunde, T. O., Ræder, J. H., & Rørvik, P. M. (2024). On the Evolution of Stress and Microstructure in Radio Frequency-Sputtered Lead-Free (Ba,Ca)(Zr,Ti)O3 Thin Films. Actuators, 13(3), 115. https://doi.org/10.3390/act13030115