Cogging Torque Minimization of Surface-Mounted Permanent Magnet Synchronous Motor Based on RSM and NSGA-II
Abstract
:1. Introduction
2. Mechanism and Analysis of Cogging Torque Generation in SPMSMs
3. Numerical Simulation Analysis and Optimal Design of SPMSM
3.1. Parameterization Model of a SPMSM
3.2. Optimized Design of SPMSM
3.3. Sensitivity Analysis of Parameters
3.4. Torque Performance Optimization of SPMSM
3.4.1. Constructing RSM Models of Structural Parameters and Optimization Objectives
3.4.2. Multi-Objective Optimized Design Based on NSGA-II
4. Optimized Result Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.M.; Su, H.; Ren, Q.; Li, W.; Zhou, H.C. Review on development and key technologies of permanent magnet synchronous traction system for rail transit. J. Traffic Transp. Eng. 2021, 21, 63–77. [Google Scholar]
- Zhang, W.; Shi, L.; Liu, K.; Li, L.; Jing, J. Optimization Analysis of Automotive Asymmetric Magnetic Pole Permanent Magnet Motor by Taguchi Method. Int. J. Rotating Mach. 2021, 2021, 6691574. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Zhu, X.Y.; Quan, L.; Han, X.; He, X.J. Parameter Sensitivity Optimization Design and Performance Analysis of Double-Salient Permanent-Magnet Double-Stator Machine. Trans. China Electrotech. Soc. 2017, 32, 160–168. [Google Scholar]
- Wu, Z.; Fan, Y.; Lee, C.H.; Gao, D.; Yu, K. Vibration Optimization of FSCW-IPM Motor Based on Iron-Core Modification for Electric Vehicles. IEEE Trans. Veh. Technol. 2020, 69, 14834–14845. [Google Scholar] [CrossRef]
- Hwang, M.-H.; Lee, H.-S.; Yang, S.-H.; Lee, G.-S.; Han, J.-H.; Kim, D.-H.; Kim, H.-W.; Cha, H.-R. Cogging Torque Reduction and Offset of Dual-Rotor Interior Permanent Magnet Motor in Electric Vehicle Traction Platforms. Energies 2019, 12, 1761. [Google Scholar] [CrossRef] [Green Version]
- Anuja, T.; Doss, M. Reduction of Cogging Torque in Surface Mounted Permanent Magnet Brushless DC Motor by Adapting Rotor Magnetic Displacement. Energies 2021, 14, 2861. [Google Scholar] [CrossRef]
- Gao, J.; Xiang, Z.; Dai, L.; Huang, S.; Ni, D.; Yao, C. Cogging Torque Dynamic Reduction Based on Harmonic Torque Counteract. IEEE Trans. Magn. 2021, 58, 8103405. [Google Scholar] [CrossRef]
- Arias, A.; Caum, J.; Ibarra, E.; Grino, R. Reducing the Cogging Torque Effects in Hybrid Stepper Machines by Means of Resonant Controllers. IEEE Trans. Ind. Electron. 2018, 66, 2603–2612. [Google Scholar] [CrossRef] [Green Version]
- Lei, G.; Zhu, J.; Guo, Y.; Liu, C.; Ma, B. A Review of Design Optimization Methods for Electrical Machines. Energies 2017, 10, 1962. [Google Scholar] [CrossRef] [Green Version]
- Bramerdorfer, G.; Tapia, J.A.; Pyrhonen, J.J.; Cavagnino, A. Modern Electrical Machine Design Optimization: Techniques, Trends, and Best Practices. IEEE Trans. Ind. Electron. 2018, 65, 7672–7684. [Google Scholar] [CrossRef]
- Ueda, Y.; Takahashi, H. Cogging Torque Reduction on Transverse-Flux Motor with Multilevel Skew Configuration of Toothed Cores. IEEE Trans. Magn. 2019, 55, 8203005. [Google Scholar] [CrossRef]
- Moon, J.-H.; Kang, D.-W. Torque Ripple and Cogging Torque Reduction Method of IPMSM Using Asymmetric Shoe of Stator and Notch in Stator. J. Electr. Eng. Technol. 2022, 17, 3465–3471. [Google Scholar] [CrossRef]
- Jo, I.-H.; Lee, H.-W.; Jeong, G.; Ji, W.-Y.; Park, C.-B. A Study on the Reduction of Cogging Torque for the Skew of a Magnetic Geared Synchronous Motor. IEEE Trans. Magn. 2018, 55, 8100505. [Google Scholar] [CrossRef]
- Brahim Ladghem, C.; Kamel, B.; Rachid, I. Permanent magnet shaping for cogging torque and torque ripple reduction of PMSM. COMPEL-Int. J. Comput. Math. Electr. Electron. Eng. 2018, 37, 2232–2248. [Google Scholar] [CrossRef]
- Orosz, T.; Rassõlkin, A.; Kallaste, A.; Arsénio, P.; Pánek, D.; Kaska, J.; Karban, P. Robust Design Optimization and Emerging Technologies for Electrical Machines: Challenges and Open Problems. Appl. Sci. 2020, 10, 6653. [Google Scholar] [CrossRef]
- Lan, Z.Y.; Yang, X.Y.; Wang, F.Y.; Zheng, C.D. Application for Optimal Designing of Sinusoidal Interior Permanent Magnet Synchronous Motors by Using the Taguchi Method. Trans. China Electrotech. Soc. 2011, 26, 37–42. [Google Scholar]
- Wang, X.Y.; Zhang, L.; Xu, W.G. Multi-objective Optimal Design for Interior Permanent Magnet Synchronous Motor Based on Taguchi Method. Micromotors 2016, 49, 1780–1783. [Google Scholar]
- Si, J.K.; Zhang, L.F.; Feng, H.C.; Xu, X.Z.; Zhang, X.L. Multi-objective optimal design of a surface-mounted and interior permanent magnet synchronous motor. J. China Coal Soc. 2016, 41, 3167–3173. [Google Scholar]
- Zou, J.J.; Zhao, S.W.; Yang, X.Y. Optimization of Cogging Torque of External Rotor PMSM Based on Genetic Algorithm. Small Spec. Electr. Mach. 2020, 48, 1–6. [Google Scholar]
- Ilka, R.; Alinejad-Beromi, Y.; Yaghobi, H. Cogging torque reduction of permanent magnet synchronous motor using multi-objective optimization. Math. Comput. Simul. 2018, 153, 83–95. [Google Scholar] [CrossRef]
- Wu, M.Q. Design and Characteristic Research of Permanent Magnet Synchronous Motor for New Energy Vehicle; Chongqing Jiaotong University: Chongqing, China, 2021. [Google Scholar]
- Krishnan, R. Permanent Magnet Synchronous and Brushless DC Motor Drives; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Tang, R.Y. Modern Permanent Magnet Machines: Theory and Design; China Machine Press: Beijing, China, 2016. [Google Scholar]
- Lei, G.; Liu, C.; Zhu, J.; Guo, Y. Techniques for Multilevel Design Optimization of Permanent Magnet Motors. IEEE Trans. Energy Convers. 2015, 30, 1574–1584. [Google Scholar] [CrossRef]
- Shields, M.D.; Zhang, J. The generalization of Latin hypercube sampling. Reliab. Eng. Syst. Saf. 2016, 148, 96–108. [Google Scholar] [CrossRef]
- Cao, Y.J.; Feng, L.L.; Mao, R.; Yu, L.; Jia, H.Y.; Jia, Z. Multi-objective Stratified Optimization Design of Axial-flux Permanent Magnet Memory Motor. Proc. CSEE 2021, 41, 1983–1992. [Google Scholar]
- Gao, F.Y.; Gao, J.N.; Li, M.M.; Yao, P.; Song, Z.X.; Yang, K.W.; Gao, X.Y. Optimization Design of Halbach Interior Permanent Magnet Synchronous Motor Based on Parameter Sensitivity Stratification. J. Xi’an Jiaotong Univ. 2022, 56, 180–190. [Google Scholar]
Parameter | Value | Parameter | Value |
---|---|---|---|
Stator outer diameter/mm | 165 | Rated voltage/V | 269 |
Stator inner diameter/mm | 106 | Number of rotor poles | 8 |
Rotor outer diameter/mm | 105 | Number of stator slots | 36 |
Rated power/kW | 4.4 | Rated speed/rpm | 1500 |
Magnet type | NdFe35 | Length/mm | 100 |
Parameter (Unit) | Range | Initial |
---|---|---|
αp | 0.7–0.9 | 0.82 |
Hm (mm) | 3.5–5 | 4.5 |
Hs0 (mm) | 0.5–1 | 0.8 |
Hs1 (mm) | 0–1 | 0.9 |
Hs2 (mm) | 13.5–15.5 | 14.5 |
Bs0 (mm) | 1.5–3 | 2 |
Bs1 (mm) | 4–5 | 4.2 |
Bs2 (mm) | 6–7.5 | 6.6 |
Number | αp | Bs0 | Bs1 | Hm | Tc(N·m) | Ta(N·m) | Tr (%) |
---|---|---|---|---|---|---|---|
1 | 0.7 | 1.5 | 4.5 | 4.25 | 4.29 | 27.33 | 18.38 |
2 | 0.9 | 1.5 | 4.5 | 4.25 | 2.61 | 28.19 | 15.83 |
3 | 0.7 | 3 | 4.5 | 4.25 | 4.86 | 30.34 | 22.38 |
4 | 0.9 | 3 | 4.5 | 4.25 | 1.20 | 30.81 | 12.27 |
5 | 0.8 | 2.25 | 4 | 3.5 | 1.78 | 25.26 | 9.07 |
6 | 0.8 | 2.25 | 5 | 3.5 | 3.01 | 28.84 | 11.74 |
7 | 0.8 | 2.25 | 4 | 5 | 2.16 | 29.56 | 9.45 |
8 | 0.8 | 2.25 | 5 | 5 | 3.80 | 33.86 | 12.48 |
9 | 0.7 | 2.25 | 4.5 | 3.5 | 4.55 | 26.22 | 21.85 |
10 | 0.9 | 2.25 | 4.5 | 3.5 | 0.99 | 27.33 | 10.79 |
11 | 0.7 | 2.25 | 4.5 | 5 | 5.20 | 31.41 | 20.16 |
12 | 0.9 | 2.25 | 4.5 | 5 | 1.57 | 31.56 | 12.94 |
13 | 0.8 | 1.5 | 4 | 4.25 | 2.28 | 26.02 | 10.48 |
14 | 0.8 | 3 | 4 | 4.25 | 1.31 | 28.83 | 7.55 |
15 | 0.8 | 1.5 | 5 | 4.25 | 3.94 | 30.04 | 13.36 |
16 | 0.8 | 3 | 5 | 4.25 | 2.45 | 32.80 | 10.36 |
17 | 0.7 | 2.25 | 4 | 4.25 | 4.34 | 27.65 | 20.69 |
18 | 0.9 | 2.25 | 4 | 4.25 | 0.88 | 27.66 | 12.43 |
19 | 0.7 | 2.25 | 5 | 4.25 | 5.90 | 30.82 | 21.83 |
20 | 0.9 | 2.25 | 5 | 4.25 | 2.27 | 32.53 | 11.88 |
21 | 0.8 | 1.5 | 4.5 | 3.5 | 2.55 | 25.37 | 10.88 |
22 | 0.8 | 3 | 4.5 | 3.5 | 1.47 | 27.88 | 8.34 |
23 | 0.8 | 1.5 | 4.5 | 5 | 3.12 | 29.65 | 11.69 |
24 | 0.8 | 3 | 4.5 | 5 | 1.89 | 32.73 | 8.91 |
25 | 0.8 | 2.25 | 4.5 | 4.25 | 2.50 | 29.33 | 10.28 |
Parameter (Unit) | Initial | RSM+NSGA-II | Local Range of Values |
---|---|---|---|
αp | 0.82 | 0.9 | 0.86–0.9 |
Bs0(mm) | 2 | 3 | 2.7–3 |
Tc(N·m) | Ta(N·m) | Tr (%) | |
---|---|---|---|
Initial | 4.77 | 28.42 | 19.19 |
RSM+NSGA-II | 1.37 | 29.33 | 12.81 |
Taguchi method | 2.74 | 35.17 | 10.61 |
RSM | 1.2 | 30.81 | 12.27 |
RSM+NSGA-II-LR | 0.78 | 28.89 | 11.69 |
Parameter (Unit) | Initial | RSM+NSGA-II-LR |
---|---|---|
αp | 0.82 | 0.9 |
Hm(mm) | 4.5 | 4.28 |
Bs0(mm) | 2 | 2.7 |
Bs1(mm) | 4.2 | 4.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Pan, Y.; Chen, Q.; Zeng, D.; Hu, Y.; Goh, H.-H.; Niu, S.; Zhao, Z. Cogging Torque Minimization of Surface-Mounted Permanent Magnet Synchronous Motor Based on RSM and NSGA-II. Actuators 2022, 11, 379. https://doi.org/10.3390/act11120379
Yu Y, Pan Y, Chen Q, Zeng D, Hu Y, Goh H-H, Niu S, Zhao Z. Cogging Torque Minimization of Surface-Mounted Permanent Magnet Synchronous Motor Based on RSM and NSGA-II. Actuators. 2022; 11(12):379. https://doi.org/10.3390/act11120379
Chicago/Turabian StyleYu, Yinquan, Yue Pan, Qiping Chen, Dequan Zeng, Yiming Hu, Hui-Hwang Goh, Shuangxia Niu, and Zhao Zhao. 2022. "Cogging Torque Minimization of Surface-Mounted Permanent Magnet Synchronous Motor Based on RSM and NSGA-II" Actuators 11, no. 12: 379. https://doi.org/10.3390/act11120379
APA StyleYu, Y., Pan, Y., Chen, Q., Zeng, D., Hu, Y., Goh, H. -H., Niu, S., & Zhao, Z. (2022). Cogging Torque Minimization of Surface-Mounted Permanent Magnet Synchronous Motor Based on RSM and NSGA-II. Actuators, 11(12), 379. https://doi.org/10.3390/act11120379