Design and First Operation of an Active Lower Limb Exoskeleton with Parallel Elastic Actuation
Abstract
:1. Introduction
2. Mechanical Design
2.1. Design Requirements
2.2. Actuator Design
2.3. Exoskeleton Design
3. Materials and Methods
3.1. Experimental Setup
3.2. Actuator Control
3.3. Simulation of Sit-to-Stand
3.4. Gait Experiments
3.5. Ethics Committee (EK190-19)
4. Results
4.1. Results of Sit-to-Stand Experiments
4.2. Results of Gait Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BLDC | Brushless Direct Current |
CPEA | Clutched Parallel Elastic Actuator |
MLB | MicroLabBox |
PE | Parallel Elasticity |
PEA | Parallel Elastic Actuator |
RA | Rigid Actuator |
RMS | Root Mean Square |
SEA | Serial Elastic Actuator |
Appendix A. Lagrange
Appendix A.1. Joint Torques
References
- Schütz, A. Robotic Exoskeleton: For a Better Quality of Life. Maxon Motor 2012. Available online: https://www.maxongroup.com/maxon/view/application/Robotic-exoskeleton-For-a-better-quality-of-life (accessed on 28 March 2021).
- Gorgey, A.S.; Sumrell, R.; Goetz, L.L. Exoskeletal assisted rehabilitation after spinal cord injury. In Atlas of Orthoses and Assistive Devices; Elsevier: Amsterdam, The Netherlands, 2019; pp. 440–447. [Google Scholar]
- Colombo, G.; Joerg, M.; Schreier, R.; Dietz, V. Treadmill training of paraplegic patients using a robotic orthosis. J. Rehabil. Res. Dev. 2000, 37, 693–700. [Google Scholar] [PubMed]
- Tabti, N.; Kardofaki, M.; Alfayad, S.; Chitour, Y.; Ouezdou, F.B.; Dychus, E. A Brief Review of the Electronics, Control System Architecture, and Human Interface for Commercial Lower Limb Medical Exoskeletons Stabilized by Aid of Crutches. In Proceedings of the 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), New Delhi, India, 14–18 October 2019; pp. 1–6. [Google Scholar]
- Zhang, T.; Tran, M.; Huang, H. Design and experimental verification of hip exoskeleton with balance capacities for walking assistance. IEEE/ASME Trans. Mechatron. 2018, 23, 274–285. [Google Scholar] [CrossRef]
- Neuhaus, P.D.; Noorden, J.H.; Craig, T.J.; Torres, T.; Kirschbaum, J.; Pratt, J.E. Design and Evaluation of Mina: A Robotic Orthosis for Paraplegics. In Proceedings of the IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011; pp. 1–8. [Google Scholar]
- Wang, S.; Wang, L.; Meijneke, C.; Van Asseldonk, E.; Hoellinger, T.; Cheron, G.; Ivanenko, Y.; La Scaleia, V.; Sylos-Labini, F.; Molinari, M.; et al. Design and control of the MINDWALKER exoskeleton. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 23, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Mummolo, C.; Peng, W.Z.; Agarwal, S.; Griffin, R.; Neuhaus, P.D.; Kim, J.H. Stability of mina v2 for robot-assisted balance and locomotion. Front. Neurorobotics 2018, 12, 62. [Google Scholar] [CrossRef]
- Liu, L.; Hong, Z.; Penzlin, B.; Misgeld, B.; Ngo, C.; Bergmann, L.; Leonhardt, S. Low impedance-guaranteed gain-scheduled GESO for torque-controlled VSA, with application of exoskeleton-assisted sit-to-stand. IEEE/ASME Trans. Mechatron. 2020. [Google Scholar] [CrossRef]
- Masood, J.; Ortiz, J.; Fernández, J.; Mateos, L.A.; Caldwell, D.G. Mechanical Design and Analysis of Light Weight Hip Joint Parallel Elastic Actuator for Industrial Exoskeleton. In Proceedings of the 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Singapore, 26–29 June 2016; pp. 631–636. [Google Scholar] [CrossRef]
- Verstraten, T.; Beckerle, P.; Furnémont, R.; Mathijssen, G.; Vanderborght, B.; Lefeber, D. Series and parallel elastic actuation: Impact of natural dynamics on power and energy consumption. Mech. Mach. Theory 2016, 102, 232–246. [Google Scholar] [CrossRef]
- Plooij, M.; Wisse, M.; Vallery, H. Reducing the energy consumption of robots using the bidirectional clutched parallel elastic actuator. IEEE Trans. Robot. 2016, 32, 1512–1523. [Google Scholar] [CrossRef] [Green Version]
- Aftabi, H.; Nasiri, R.; Ahmadabadi, M.N. A kinematic index for estimation of metabolic rate reduction in running with I-RUN. bioRxiv 2020. [Google Scholar] [CrossRef]
- Wang, S.; Van Dijk, W.; van der Kooij, H. Spring Uses in Exoskeleton Actuation Design. In Proceedings of the IEEE International Conference on Rehabilitation Robotics (ICORR), Zurich, Switzerland, 29 June–1 July 2011. [Google Scholar]
- Penzlin, B.; Enes Fincan, M.; Li, Y.; Ji, L.; Leonhardt, S.; Ngo, C. Design and Analysis of a Clutched Parallel Elastic Actuator. Actuators 2019, 8, 67. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Guan, X.; Li, Z.; Tang, Z.; Penzlin, B.; Yang, Z.; Leonhardt, S.; Ji, L. Analysis, design, and preliminary evaluation of a parallel elastic actuator for power-efficient walking assistance. IEEE Access 2020, 8, 88060–88075. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Penzlin, B.; Tang, Z.; Liu, Y.; Guan, X.; Ji, L.; Leonhardt, S. Design of the Clutched Variable Parallel Elastic Actuator (CVPEA) for Lower Limb Exoskeletons. In Proceedings of the 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019. [Google Scholar]
- Lehmann, A.; Floris, J.; Woitek, U.; Rühli, F.J.; Staub, K. Temporal trends, regional variation and socio-economic differences in height, BMI and body proportions among German conscripts, 1956–2010. Public Health Nutr. 2017, 20, 391–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, A.R.; Simpson, C.S.; van Asseldonk, E.H.; van der Kooij, H.; Ijspeert, A.J. Mechanics of very slow human walking. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perry, J.; Burnfield, J. Gait Analysis-Normal and Pathological Function, 2nd ed.; Slack Incorporated: Thorofare, NJ, USA, 2010. [Google Scholar]
- Pai, Y.C.; Rogers, M.W. Speed variation and resultant joint torques during sit-to-stand. Arch. Phys. Med. Rehabil. 1991, 72, 881–885. [Google Scholar] [CrossRef]
- Kong, K.; Bae, J.; Tomizuka, M. A Compact Rotary Series Elastic Actuator for Knee Joint Assistive System. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Anchorage, AK, USA, 3–7 May 2010. [Google Scholar]
- De Leva, P. Adjustments to Zatsiorsky-Seluyanovs segment inertia parameters. J. Biomech. 1996, 29, 1223–1230. [Google Scholar] [CrossRef]
- Cappozzo, A.; Catani, F.; Della Croce, U.; Leardini, A. Position and orientation in space of bones during movement: Anatomical frame definition and determination. Clin. Biomech. 1995, 10, 171–178. [Google Scholar] [CrossRef]
- Vukobratović, M.; Borovac, B. Zero-moment point—thirty five years of its life. Int. J. Humanoid Robot. 2004, 1, 157–173. [Google Scholar] [CrossRef]
- Harmonic Drive, A.G. Projektierungsanleitung Units HFUS-2UH / 2SO / 2SH, 2nd ed.; Harmonic Drive AG: Limburg, Germany, 2018; p. 13. [Google Scholar]
- Penzlin, B.; Leipnitz, A.; Bergmann, L.; Li, Y.; Ji, L.; Leonhardt, S.; Ngo, C. Conceptual design, modeling and control of a rigid parallel serial-elastic actuator. at-Automatisierungstechnik 2020, 68, 410–422. [Google Scholar] [CrossRef]
- Yoshioka, S.; Nagano, A.; Hay, D.C.; Fukashiro, S. Peak hip and knee joint moments during a sit-to-stand movement are invariant to the change of seat height within the range of low to normal seat height. Biomed. Eng. Online 2014, 13, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Browning, R.C.; Kram, R. Effects of obesity on the biomechanics of walking at different speeds. Med. Sci. Sport. Exerc. 2007, 39, 1632–1641. [Google Scholar] [CrossRef] [PubMed]
- Lenzi, T.; Carrozza, M.C.; Agrawal, S.K. Powered hip exoskeletons can reduce the user’s hip and ankle muscle activations during walking. IEEE Trans. Neural Syst. Rehabil. Eng. 2013, 21, 938–948. [Google Scholar] [CrossRef]
Exoskeleton | Gait Velocity | Joint Torque (Hip|Knee) | Joint Power (Hip|Knee) | Mass | Reference |
---|---|---|---|---|---|
REX | 0.1 m/s | 150 W|150 W (nominal) | 50 kg | [1] | |
Mina (V2) | 0.29 m/s | 110 N·m|110 N·m (peak) | 355 W|355 W (nominal) | 34 kg | [6,8] |
ReWalk | 0.71 m/s | 30 kg | [2] | ||
Ekso GT | 0.44 m/s | 83 N·m|83 N·m (peak) | 23 kg | [2,4] | |
Indego | 0.36 m/s | 80 N·m|80 N·m (peak) | 17.7 kg | [2,4] | |
Zhang et al. | 0.8 m/s | 40 N·m|-(nominal) | 90 W|-(nominal) | 9.2 kg | [5] |
Lokomat | 0.8 m/s | 50 N·m|30 N·m (nom.) | 150 W|150 W (nominal) | [3] | |
Mindwalker | 0.8 m/s | 100 N·m|100 N·m (peak) | 960 W|960 W (peak) | 28 kg | [7] |
Actuator | CPEA | RA |
---|---|---|
Nominal torque | 49.4 Nm | 49.4 Nm |
Nominal speed | 3.7 rad/s | 3.7 rad/s |
No load speed | 4.4 rad/s | 4.4 rad/s |
Rated motor power | 260 W | 260 W |
Mass | 3.0 kg (including 30 Nm/rad springs) | 2.6 kg |
Axial length | 105 mm | 105 mm |
Spring rate | 10–67 Nm/rad (Mass: 50–360 g) | – |
Spring type | Steel tension springs (EN 10270-1) | – |
Clutch actuator | Bistable solenoid (30 W) | – |
Joint | Knee | Hip | ||||
---|---|---|---|---|---|---|
Gait Velocity | 0.19 m/s | 0.31 m/s | 0.42 m/s | 0.19 m/s | 0.31 m/s | 0.42 m/s |
(s) | 2.814 | 1.993 | 1.740 | 2.814 | 1.993 | 1.740 |
(rad) | 0.352 | 0.387 | 0.407 | 0.150 | 0.192 | 0.209 |
(rad) | 0.221 | 0.309 | 0.339 | 0.138 | 0.176 | 0.187 |
(rad) | 0.091 | 0.073 | 0.079 | −1.139 | −1.177 | −1.225 |
(rad) | 0.153 | 0.211 | 0.226 | 0.055 | 0.049 | 0.043 |
(rad) | 0.075 | −0.010 | −0.038 | −1.142 | −1.070 | −1.010 |
(rad) | 0.104 | 0.115 | 0.107 | 0.029 | 0.031 | 0.032 |
(rad) | −0.050 | −0.161 | −0.178 | −0.564 | −0.266 | −0.212 |
(rad) | 0.063 | 0.044 | 0.030 | 0.014 | 0.015 | 0.012 |
(rad) | −0.151 | −0.301 | −0.332 | −0.406 | 0.124 | 0.197 |
(rad) | 0.032 | 0.011 | 0.008 | 0.009 | 0.005 | 0.005 |
(rad) | −0.070 | 0.255 | 1.334 | 0.187 | 0.671 | 1.754 |
(rad) | 0.011 | 0.009 | 0.010 | 0.005 | 0.005 | 0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Penzlin, B.; Bergmann, L.; Li, Y.; Ji, L.; Leonhardt, S.; Ngo, C. Design and First Operation of an Active Lower Limb Exoskeleton with Parallel Elastic Actuation. Actuators 2021, 10, 75. https://doi.org/10.3390/act10040075
Penzlin B, Bergmann L, Li Y, Ji L, Leonhardt S, Ngo C. Design and First Operation of an Active Lower Limb Exoskeleton with Parallel Elastic Actuation. Actuators. 2021; 10(4):75. https://doi.org/10.3390/act10040075
Chicago/Turabian StylePenzlin, Bernhard, Lukas Bergmann, Yinbo Li, Linhong Ji, Steffen Leonhardt, and Chuong Ngo. 2021. "Design and First Operation of an Active Lower Limb Exoskeleton with Parallel Elastic Actuation" Actuators 10, no. 4: 75. https://doi.org/10.3390/act10040075
APA StylePenzlin, B., Bergmann, L., Li, Y., Ji, L., Leonhardt, S., & Ngo, C. (2021). Design and First Operation of an Active Lower Limb Exoskeleton with Parallel Elastic Actuation. Actuators, 10(4), 75. https://doi.org/10.3390/act10040075