Animal Models of Lassa Fever
Abstract
:1. Introduction
2. Lassa Fever Symptoms and Pathogenesis
3. Murine Models
3.1. Natal Mastomys (Mastomys Natalensis) Mice
3.2. IFNAR-/- Mice
3.3. IFNαβ/γR-/- Mice
3.4. STAT1-/- Mice
3.5. CBA Mice
3.6. HHD Mice
4. Guinea Pig Models
4.1. Strain 13 Guinea Pigs
4.2. Hartley Guinea Pigs
5. Non-Human Primate Models
5.1. Squirrel Monkey Model
5.2. Marmoset Model
5.3. Rhesus Monkey (Rhesus Macaque) Model
5.4. Cynomolgus Macaque Model
6. Surrogate Models of Lassa Fever
6.1. Pichindé Virus in Guinea Pigs
6.2. Pichindé Virus in Golden Hamsters
6.3. Pirital Virus in Golden Hamsters
6.4. Lymphocytic Choriomeningitis Virus (LCMV) in Rhesus Monkeys
7. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Günther, S.; Lenz, O. Lassa fever. Br. Med. J. 1972, 4, 253–254. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1788780/ (accessed on 14 June 2019).
- Centers for Disease Control and Prevention. Lassa Fever. 2019. Available online: https://www.cdc.gov/vhf/lassa/index.html (accessed on 15 June 2019).
- Frame, J.D.; Baldwin, J.M., Jr.; Gocke, D.J.; Troup, J.M. Lassa fever, a new virus disease of man from West Africa. I. Clinical description and pathological findings. Am. J. Trop. Med. Hyg. 1970, 19, 670–676. [Google Scholar] [CrossRef] [PubMed]
- Olayemi, A.; Oyeyiola, A.; Obadare, A.; Igbokwe, J.; Adesina, A.S.; Onwe, F.; Ukwaja, K.N.; Ajayi, N.A.; Rieger, T.; Gunther, S.; et al. Widespread arenavirus occurrence and seroprevalence in small mammals, Nigeria. Parasit Vectors 2018, 11, 416. [Google Scholar] [CrossRef]
- Andersen, K.G.; Shapiro, B.J.; Matranga, C.B.; Sealfon, R.; Lin, A.E.; Moses, L.M.; Folarin, O.A.; Goba, A.; Odia, I.; Ehiane, P.E.; et al. Clinical Sequencing Uncovers Origins and Evolution of Lassa Virus. Cell 2015, 162, 738–750. [Google Scholar] [CrossRef] [Green Version]
- Manning, J.T.; Forrester, N.; Paessler, S. Lassa virus isolates from Mali and the Ivory Coast represent an emerging fifth lineage. Front. Microbiol. 2015, 6, 1037. [Google Scholar] [CrossRef] [Green Version]
- Ehichioya, D.U.; Dellicour, S.; Pahlmann, M.; Rieger, T.; Oestereich, L.; Becker-Ziaja, B.; Cadar, D.; Ighodalo, Y.; Olokor, T.; Omomoh, E.; et al. Phylogeography of Lassa Virus in Nigeria. J. Virol. 2019, 93. [Google Scholar] [CrossRef] [Green Version]
- Yun, N.E.; Ronca, S.; Tamura, A.; Koma, T.; Seregin, A.V.; Dineley, K.T.; Miller, M.; Cook, R.; Shimizu, N.; Walker, A.G.; et al. Animal Model of Sensorineural Hearing Loss Associated with Lassa Virus Infection. J. Virol. 2015, 90, 2920–2927. [Google Scholar] [CrossRef] [Green Version]
- Welch, S.R.; Scholte, F.E.M.; Albariño, C.G.; Kainulainen, M.H.; Coleman-McCray, J.D.; Guerrero, L.W.; Chakrabarti, A.K.; Klena, J.D.; Nichol, S.T.; Spengler, J.R.; et al. The S Genome Segment Is Sufficient to Maintain Pathogenicity in Intra-Clade Lassa Virus Reassortants in a Guinea Pig Model. Front. Cell. Infect. Microbiol. 2018, 8, 240. [Google Scholar] [CrossRef]
- Ibekwe, T.S.; Okokhere, P.O.; Asogun, D.; Blackie, F.F.; Nwegbu, M.M.; Wahab, K.W.; Omilabu, S.A.; Akpede, G.O. Early-onset sensorineural hearing loss in Lassa fever. Eur. Arch. Otorhinolaryngol. 2011, 268, 197–201. [Google Scholar] [CrossRef]
- Dan-Nwafor, C.C.; Furuse, Y.; Ilori, E.A.; Ipadeola, O.; Akabike, K.O.; Ahumibe, A.; Ukponu, W.; Bakare, L.; Okwor, T.J.; Joseph, G.; et al. Measures to control protracted large Lassa fever outbreak in Nigeria, 1 January to 28 April 2019. Euro. Surveill. 2019, 24. [Google Scholar] [CrossRef]
- World Health Organization. On the Frontlines of the Fight against Lassa Fever in Nigeria. 2018. Available online: http://www.who.int/features/2018/lassa-fever-nigeria/en/ (accessed on 15 June 2019).
- Nigeria Centers for Disease Control. 2018 Lassa Fever Outbreak in Nigeria. 2018. Available online: https://ncdc.gov.ng/themes/common/files/sitreps/00235292b8a3f55c01f9ea2eb15c8d3a.pdf (accessed on 15 June 2019).
- World Health Organization. Emergencies Preparedness, Response Lassa Fever. 2019. Available online: https://www.who.int/csr/don/archive/disease/lassa_fever/en/ (accessed on 16 June 2019).
- McCormick, J.B.; King, I.J.; Webb, P.A.; Scribner, C.L.; Craven, R.B.; Johnson, K.M.; Elliott, L.H.; Belmont-Williams, R. Lassa fever. Effective therapy with ribavirin. N. Engl. J. Med. 1986, 314, 20–26. [Google Scholar] [CrossRef]
- Mustapha, A. Lassa fever: Unveiling the misery of the Nigerian health worker. Ann. Nigerian. Med. 2017, 11, 1–5. [Google Scholar]
- Walker, D.H.; McCormick, J.B.; Johnson, K.M.; Webb, P.A.; Komba-Kono, G.; Elliott, L.H.; Gardner, J.J. Pathologic and virologic study of fatal Lassa fever in man. Am. J. Pathol. 1982, 107, 349–356. [Google Scholar]
- Mateer, E.J.; Huang, C.; Shehu, N.Y.; Paessler, S. Lassa fever-induced sensorineural hearing loss: A neglected public health and social burden. PLoS Negl. Trop. Dis. 2018, 12, e0006187. [Google Scholar] [CrossRef]
- Cummins, D.; McCormick, J.B.; Bennett, D.; Samba, J.A.; Farrar, B.; Machin, S.J.; Fisher-Hoch, S.P. Acute sensorineural deafness in Lassa fever. JAMA 1990, 264, 2093–2096. [Google Scholar] [CrossRef]
- Price, M.E.; Fisher-Hoch, S.P.; Craven, R.B.; McCormick, J.B. A prospective study of maternal and fetal outcome in acute Lassa fever infection during pregnancy. BMJ 1988, 297, 584–587. [Google Scholar] [CrossRef] [Green Version]
- Dunmade, A.D.; Segun-Busari, S.; Olajide, T.G.; Ologe, F.E. Profound bilateral sensorineural hearing loss in nigerian children: Any shift in etiology? J. Deaf Stud. Deaf Educ. 2007, 12, 112–118. [Google Scholar] [CrossRef]
- Khan, S.H.; Goba, A.; Chu, M.; Roth, C.; Healing, T.; Marx, A.; Fair, J.; Guttieri, M.C.; Ferro, P.; Imes, T.; et al. New opportunities for field research on the pathogenesis and treatment of Lassa fever. Antiviral. Res. 2008, 78, 103–115. [Google Scholar] [CrossRef]
- Johnson, K.M.; McCormick, J.B.; Webb, P.A.; Smith, E.S.; Elliott, L.H.; King, I.J. Clinical virology of Lassa fever in hospitalized patients. J. Infect. Dis. 1987, 155, 456–464. [Google Scholar] [CrossRef]
- Winn, W.C., Jr.; Walker, D.H. The pathology of human Lassa fever. Bull. World Health Organ. 1975, 52, 535–545. [Google Scholar]
- Walker, D.H.; Wulff, H.; Lange, J.V.; Murphy, F.A. Comparative pathology of Lassa virus infection in monkeys, guinea-pigs, and Mastomys natalensis. Bull. World Health Organ. 1975, 52, 523–534. [Google Scholar] [PubMed]
- Granjon, L.; Duplantier, J.-M.; Catalan, J.; Britton-Davidian, J. Systematics of the genus Mastomys (Thomas, 1915) (Rodentia: Muridae): A review. Belg. J. Zool. 1997, 127, 7–18. [Google Scholar]
- Rieger, T.; Merkler, D.; Gunther, S. Infection of type I interferon receptor-deficient mice with various old world arenaviruses: A model for studying virulence and host species barriers. PLoS One 2013, 8, e72290. [Google Scholar] [CrossRef]
- Yun, N.E.; Seregin, A.V.; Walker, D.H.; Popov, V.L.; Walker, A.G.; Smith, J.N.; Miller, M.; de la Torre, J.C.; Smith, J.K.; Borisevich, V.; et al. Mice lacking functional STAT1 are highly susceptible to lethal infection with Lassa virus. J. Virol. 2013, 87, 10908–10911. [Google Scholar] [CrossRef] [Green Version]
- Oestereich, L.; Lüdtke, A.; Ruibal, P.; Pallasch, E.; Kerber, R.; Rieger, T.; Wurr, S.; Bockholt, S.; Pérez-Girón, J.V.; Krasemann, S.; et al. Chimeric Mice with Competent Hematopoietic Immunity Reproduce Key Features of Severe Lassa Fever. PLoS Pathog. 2016, 12, e1005656. [Google Scholar] [CrossRef]
- Yun, N.E.; Poussard, A.L.; Seregin, A.V.; Walker, A.G.; Smith, J.K.; Aronson, J.F.; Smith, J.N.; Soong, L.; Paessler, S. Functional interferon system is required for clearance of lassa virus. J. Virol. 2012, 86, 3389–3392. [Google Scholar] [CrossRef] [Green Version]
- Oestereich, L.; Rieger, T.; Ludtke, A.; Ruibal, P.; Wurr, S.; Pallasch, E.; Bockholt, S.; Krasemann, S.; Muñoz-Fontela, C.; Gunther, S. Efficacy of Favipiravir Alone and in Combination With Ribavirin in a Lethal, Immunocompetent Mouse Model of Lassa Fever. J. Infect. Dis. 2016, 213, 934–938. [Google Scholar] [CrossRef] [Green Version]
- Uckun, F.M.; Petkevich, A.S.; Vassilev, A.O.; Tibbles, H.E.; Titov, L. Stampidine prevents mortality in an experimental mouse model of viral hemorrhagic fever caused by lassa virus. BMC Infect. Dis. 2004, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Flatz, L.; Rieger, T.; Merkler, D.; Bergthaler, A.; Regen, T.; Schedensack, M.; Bestmann, L.; Verschoor, A.; Kreutzfeldt, M.; Bruck, W.; et al. T cell-dependence of Lassa fever pathogenesis. PLoS Pathog. 2010, 6, e1000836. [Google Scholar] [CrossRef] [Green Version]
- Jahrling, P.B.; Smith, S.; Hesse, R.A.; Rhoderick, J.B. Pathogenesis of Lassa virus infection in guinea pigs. Infect. Immun. 1982, 37, 771–778. [Google Scholar] [CrossRef] [Green Version]
- Bell, T.M.; Shaia, C.I.; Bearss, J.J.; Mattix, M.E.; Koistinen, K.A.; Honnold, S.P.; Zeng, X.; Blancett, C.D.; Donnelly, G.C.; Shamblin, J.D.; et al. Temporal Progression of Lesions in Guinea Pigs Infected With Lassa Virus. Vet. Pathol. 2017, 54, 549–562. [Google Scholar] [CrossRef] [PubMed]
- Gary, J.M.; Welch, S.R.; Ritter, J.M.; Coleman-McCray, J.; Huynh, T.; Kainulainen, M.H.; Bollweg, B.C.; Parihar, V.; Nichol, S.T.; Zaki, S.R.; et al. Lassa Virus Targeting of Anterior Uvea and Endothelium of Cornea and Conjunctiva in Eye of Guinea Pig Model. Emerg. Infect. Dis. 2019, 25, 865–874. [Google Scholar] [CrossRef] [PubMed]
- Cashman, K.A.; Smith, M.A.; Twenhafel, N.A.; Larson, R.A.; Jones, K.F.; Allen, R.D., 3rd; Dai, D.; Chinsangaram, J.; Bolken, T.C.; Hruby, D.E.; et al. Evaluation of Lassa antiviral compound ST-193 in a guinea pig model. Antiviral. Res. 2011, 90, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Safronetz, D.; Mire, C.; Rosenke, K.; Feldmann, F.; Haddock, E.; Geisbert, T.; Feldmann, H. A recombinant vesicular stomatitis virus-based Lassa fever vaccine protects guinea pigs and macaques against challenge with geographically and genetically distinct Lassa viruses. PLoS Negl. Trop. Dis. 2015, 9, e0003736. [Google Scholar] [CrossRef] [PubMed]
- Safronetz, D.; Strong, J.E.; Feldmann, F.; Haddock, E.; Sogoba, N.; Brining, D.; Geisbert, T.W.; Scott, D.P.; Feldmann, H. A recently isolated Lassa virus from Mali demonstrates atypical clinical disease manifestations and decreased virulence in cynomolgus macaques. J. Infect. Dis. 2013, 207, 1316–1327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cross, R.W.; Mire, C.E.; Branco, L.M.; Geisbert, J.B.; Rowland, M.M.; Heinrich, M.L.; Goba, A.; Momoh, M.; Grant, D.S.; Fullah, M.; et al. Treatment of Lassa virus infection in outbred guinea pigs with first-in-class human monoclonal antibodies. Antiviral. Res. 2016, 133, 218–222. [Google Scholar] [CrossRef] [Green Version]
- Safronetz, D.; Rosenke, K.; Westover, J.B.; Martellaro, C.; Okumura, A.; Furuta, Y.; Geisbert, J.; Saturday, G.; Komeno, T.; Geisbert, T.W.; et al. The broad-spectrum antiviral favipiravir protects guinea pigs from lethal Lassa virus infection post-disease onset. Sci. Rep. 2015, 5, 14775. [Google Scholar] [CrossRef]
- Stein, D.R.; Warner, B.M.; Soule, G.; Tierney, K.; Frost, K.L.; Booth, S.; Safronetz, D. A recombinant vesicular stomatitis-based Lassa fever vaccine elicits rapid and long-term protection from lethal Lassa virus infection in guinea pigs. NPJ Vaccines 2019, 4, 8. [Google Scholar] [CrossRef]
- Maruyama, J.; Mateer, E.J.; Manning, J.T.; Sattler, R.; Seregin, A.V.; Bukreyeva, N.; Jones, F.R.; Balint, J.P.; Gabitzsch, E.S.; Huang, C.; et al. Adenoviral vector-based vaccine is fully protective against lethal Lassa fever challenge in Hartley guinea pigs. Vaccine 2019, 37, 6824–6831. [Google Scholar] [CrossRef]
- Walker, D.H.; Johnson, K.M.; Lange, J.V.; Gardner, J.J.; Kiley, M.P.; McCormick, J.B. Experimental infection of rhesus monkeys with Lassa virus and a closely related arenavirus, Mozambique virus. J. Infect. Dis. 1982, 146, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, J.; Manning, J.T.; Mateer, E.J.; Sattler, R.; Bukreyeva, N.; Huang, C.; Paessler, S. Lethal Infection of Lassa Virus Isolated from a Human Clinical Sample in Outbred Guinea Pigs without Adaptation. mSphere 2019, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, D.H.; Wulff, H.; Murphy, F.A. Experimental Lassa virus infection in the squirrel monkey. Am. J. Pathol. 1975, 80, 261–278. [Google Scholar] [PubMed]
- Carrion, R., Jr.; Brasky, K.; Mansfield, K.; Johnson, C.; Gonzales, M.; Ticer, A.; Lukashevich, I.; Tardif, S.; Patterson, J. Lassa virus infection in experimentally infected marmosets: Liver pathology and immunophenotypic alterations in target tissues. J. Virol. 2007, 81, 6482–6490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callis, R.T.; Jahrling, P.B.; DePaoli, A. Pathology of Lassa virus infection in the rhesus monkey. Am. J. Trop. Med. Hyg. 1982, 31, 1038–1045. [Google Scholar] [CrossRef] [PubMed]
- Jahrling, P.B.; Hesse, R.A.; Eddy, G.A.; Johnson, K.M.; Callis, R.T.; Stephen, E.L. Lassa virus infection of rhesus monkeys: Pathogenesis and treatment with ribavirin. J. Infect. Dis. 1980, 141, 580–589. [Google Scholar] [CrossRef]
- Cashman, K.A.; Wilkinson, E.R.; Shaia, C.I.; Facemire, P.R.; Bell, T.M.; Bearss, J.J.; Shamblin, J.D.; Wollen, S.E.; Broderick, K.E.; Sardesai, N.Y.; et al. A DNA vaccine delivered by dermal electroporation fully protects cynomolgus macaques against Lassa fever. Hum. Vaccin. Immunother. 2017, 13, 2902–2911. [Google Scholar] [CrossRef]
- Geisbert, T.W.; Jones, S.; Fritz, E.A.; Shurtleff, A.C.; Geisbert, J.B.; Liebscher, R.; Grolla, A.; Ströher, U.; Fernando, L.; Daddario, K.M.; et al. Development of a new vaccine for the prevention of Lassa fever. PLoS Med. 2005, 2, e183. [Google Scholar] [CrossRef]
- Jiang, J.; Banglore, P.; Cashman, K.A.; Schmaljohn, C.S.; Schultheis, K.; Pugh, H.; Nguyen, J.; Humeau, L.M.; Broderick, K.E.; Ramos, S.J. Immunogenicity of a protective intradermal DNA vaccine against lassa virus in cynomolgus macaques. Hum. Vaccin. Immunother. 2019, 15, 2066–2074. [Google Scholar] [CrossRef] [Green Version]
- Mire, C.E.; Cross, R.W.; Geisbert, J.B.; Borisevich, V.; Agans, K.N.; Deer, D.J.; Heinrich, M.L.; Rowland, M.M.; Goba, A.; Momoh, M.; et al. Human-monoclonal-antibody therapy protects nonhuman primates against advanced Lassa fever. Nat. Med. 2017, 23, 1146–1149. [Google Scholar] [CrossRef] [Green Version]
- Fisher-Hoch, S.P.; Mitchell, S.W.; Sasso, D.R.; Lange, J.V.; Ramsey, R.; McCormick, J.B. Physiological and immunologic disturbances associated with shock in a primate model of Lassa fever. J. Infect. Dis. 1987, 155, 465–474. [Google Scholar] [CrossRef]
- Lange, J.V.; Mitchell, S.W.; McCormick, J.B.; Walker, D.H.; Evatt, B.L.; Ramsey, R.R. Kinetic study of platelets and fibrinogen in Lassa virus-infected monkeys and early pathologic events in Mopeia virus-infected monkeys. Am. J. Trop. Med. Hyg. 1985, 34, 999–1007. [Google Scholar] [CrossRef] [PubMed]
- Cashman, K.A.; Wilkinson, E.R.; Zeng, X.; Cardile, A.P.; Facemire, P.R.; Bell, T.M.; Bearss, J.J.; Shaia, C.I.; Schmaljohn, C.S. Immune-Mediated Systemic Vasculitis as the Proposed Cause of Sudden-Onset Sensorineural Hearing Loss following Lassa Virus Exposure in Cynomolgus Macaques. mBio 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baize, S.; Marianneau, P.; Loth, P.; Reynard, S.; Journeaux, A.; Chevallier, M.; Tordo, N.; Deubel, V.; Contamin, H. Early and strong immune responses are associated with control of viral replication and recovery in lassa virus-infected cynomolgus monkeys. J. Virol. 2009, 83, 5890–5903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hensley, L.E.; Smith, M.A.; Geisbert, J.B.; Fritz, E.A.; Daddario-DiCaprio, K.M.; Larsen, T.; Geisbert, T.W. Pathogenesis of Lassa fever in cynomolgus macaques. Virol. J. 2011, 8, 205. [Google Scholar] [CrossRef] [Green Version]
- Buchmeier, M.; Adam, E.; Rawls, W.E. Serological evidence of infection by Pichindé virus among laboratory workers. Infect. Immun. 1974, 9, 821–823. [Google Scholar] [CrossRef] [Green Version]
- Trapido, H.; Sanmartin, C. Pichindé virus, a new virus of the Tacaribe group from Colombia. Am. J. Trop. Med. Hyg. 1971, 20, 631–641. [Google Scholar] [CrossRef]
- Aronson, J.F.; Herzog, N.K.; Jerrells, T.R. Pathological and virological features of arenavirus disease in guinea pigs. Comparison of two Pichindé virus strains. Am. J. Pathol. 1994, 145, 228–235. [Google Scholar]
- Connolly, B.M.; Jenson, A.B.; Peters, C.J.; Geyer, S.J.; Barth, J.F.; McPherson, R.A. Pathogenesis of Pichindé virus infection in strain 13 guinea pigs: An immunocytochemical, virologic, and clinical chemistry study. Am. J. Trop. Med. Hyg. 1993, 49, 10–24. [Google Scholar] [CrossRef]
- Jahrling, P.B.; Hesse, R.A.; Rhoderick, J.B.; Elwell, M.A.; Moe, J.B. Pathogenesis of a pichindé virus strain adapted to produce lethal infections in guinea pigs. Infect. Immun. 1981, 32, 872–880. [Google Scholar] [CrossRef] [Green Version]
- Cosgriff, T.M.; Jahrling, P.B.; Chen, J.P.; Hodgson, L.A.; Lewis, R.M.; Green, D.E.; Smith, J.I. Studies of the coagulation system in arenaviral hemorrhagic fever: Experimental infection of strain 13 guinea pigs with Pichindé virus. Am. J. Trop. Med. Hyg. 1987, 36, 416–423. [Google Scholar] [CrossRef]
- Zhang, L.; Marriott, K.; Aronson, J.F. Sequence analysis of the small RNA segment of guinea pig-passaged Pichindé virus variants. Am. J. Trop. Med. Hyg. 1999, 61, 220–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lan, S.; McLay Schelde, L.; Wang, J.; Kumar, N.; Ly, H.; Liang, Y. Development of infectious clones for virulent and avirulent pichindé viruses: A model virus to study arenavirus-induced hemorrhagic fevers. J. Virol. 2009, 83, 6357–6362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Marriott, K.A.; Harnish, D.G.; Aronson, J.F. Reassortant analysis of guinea pig virulence of pichindé virus variants. Virology 2001, 290, 30–38. [Google Scholar] [CrossRef] [Green Version]
- Buchmeier, M.J.; Rawls, W.E. Variation between strains of hamsters in the lethality of Pichindé virus infections. Infect. Immun. 1977, 16, 413–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, S.Y.; Zhang, H.; Yang, Y.; Tesh, R.B. Pirital virus (Arenaviridae) infection in the syrian golden hamster, Mesocricetus auratus: A new animal model for arenaviral hemorrhagic fever. Am. J. Trop. Med. Hyg. 2001, 64, 111–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djavani, M.M.; Crasta, O.R.; Zapata, J.C.; Fei, Z.; Folkerts, O.; Sobral, B.; Swindells, M.; Bryant, J.; Davis, H.; Pauza, C.D.; et al. Early blood profiles of virus infection in a monkey model for Lassa fever. J. Virol. 2007, 81, 7960–7973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djavani, M.; Crasta, O.R.; Zhang, Y.; Zapata, J.C.; Sobral, B.; Lechner, M.G.; Bryant, J.; Davis, H.; Salvato, M.S. Gene expression in primate liver during viral hemorrhagic fever. Virol. J. 2009, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Rodas, J.D.; Lukashevich, I.S.; Zapata, J.C.; Cairo, C.; Tikhonov, I.; Djavani, M.; Pauza, C.D.; Salvato, M.S. Mucosal arenavirus infection of primates can protect them from lethal hemorrhagic fever. J. Med. Virol. 2004, 72, 424–435. [Google Scholar] [CrossRef] [Green Version]
- Clarke, E.C.; Bradfute, S.B. The use of mice lacking type I or both type I and type II interferon responses in research on hemorrhagic fever viruses. Part 1: Potential effects on adaptive immunity and response to vaccination. Antiviral. Res. 2020, 174, 104703. [Google Scholar] [CrossRef] [PubMed]
- Zivcec, M.; Spiropoulou, C.F.; Spengler, J.R. The use of mice lacking type I or both type I and type II interferon responses in research on hemorrhagic fever viruses. Part 2: Vaccine efficacy studies. Antiviral. Res. 2020, 174, 104702. [Google Scholar] [CrossRef]
Strain | Lineage | Lethal/Fatal | Host | Isolation Country | Isolation Year | Reference |
---|---|---|---|---|---|---|
Josiah | IV | Yes | Human | Sierra Leone | 1976 | [6] |
AV | V | Yes | Human | Ghana/Ivory Coast | 2000 | [6] |
Ba366 | IV | No | Mastomysnatalensis | Guinea | 2003 | [6] |
LF2384 | IV | Yes | Human | Sierra Leone | 2012 | [6,8] |
LF2450 | IV | No | Human | Sierra Leone | 2012 | [6,8] |
Soromba-R | V | No | Mastomysnatalensis | Soromba, Mali | 2009 | [6] |
Pinneo | I | No | Human | Lassa, Nigeria | 1969 | [6] |
NJ2015 | IV | Yes | Human | Liberia | 2015 | [9] |
Mouse | Virus Strain | Max. Dose | Route | Lethality | Signs of Disease | Affected Organs | Reference |
---|---|---|---|---|---|---|---|
Natal mastomys | Unknown | Not provided | IP d | No | asymptomatic, persistent infection, virus shed in saliva and urine | lung, spleen, liver, kidney, brain, bladder, lymph nodes | [25] |
IFNAR-/- | Josiah, AV, BA366, Nig04-10 | 105 PFU | IV e | No | persistent viremia, bodyweight loss, no fever and neurological signs | lung, liver, spleen brain, kidney, heart | [27,28,29,30] |
Chimeric IFNAR-/-B6 | Ba366, AV, Ba289, Nig04-10, Nig-CSF | 103 FFU | IP | 100% | liver damage, vascular leakage, systemic viral dissemination, weight loss, hypothermia, elevated AST/ALT ratio | liver, lung, spleen, kidney, heart, brain | [29,31] |
IFNαβ/γR-/- | Josiah, LF2384 a LF2450 b | 105 PFU | IP | No | minor and transient weight loss, clearance of virus by 25 dpi, no hearing loss | spleen, lung, liver, brain, kidney | [8,30] |
STAT1-/- | Josiah | 104 PFU | IP | 100% | weight loss, systematic infection | spleen, lung, liver, brain, kidney | [28] |
LF2384 a (fatal) | 105 PFU | IP | 80% | fever, high level viremia, weight loss, increased ALT level, decreased albumin, WBC, and monocyte counts, hearing loss associated with infiltration of CD3+ lymphocytes | brain, liver, spleen, lung, kidney, heart | [8,28] | |
LF2450 b (non-fatal) | 105 PFU | IP | 0–50% | hearing loss | brain, liver, spleen, lung, kidney, heart | [8] | |
CBA | Josiah | 103 PFU | IC f | 70–100% | scruffy fur, seizures, weight loss, immobility, and severe decubitus paralysis | not stated | [32] |
HHD | Ba366 C | 106 PFU | IV | 22% | ruffled fur, lethargy, elevated AST level, high level viremia, severe pneumonitis | liver, lung, spleen, kidney | [33] |
Guinea Pig | Strain | Max. Dose | Route | Lethality | Signs of Disease | Affected Organs | Refences |
---|---|---|---|---|---|---|---|
Strain 13 (inbred) | Josiah | > 2 PFU104 TCID50 | SC c IP | >90% | weight loss, fever, ruffled fur, hunched posture, conjunctivitis, hepatitis, interstitial pneumonia, edema and hemorrhage in lungs | lung, spleen, pancreas, lymph nodes, adrenal and salivary glands, kidneys, liver, heart | [34,36,37] |
Z-132 | 104 TCID50 | IP | 100% | Josiah-like | lung, liver, spleen | [38,39] | |
Soromba-R | 104 TCID50 | IP | 0–57% | survivors only show minor weight loss | liver, lung, spleen | [28,34,35,38,39] | |
Pinneo | 104 TCID50 | IP | No | mild to moderate disease | N.A. * | [38] | |
NJ2015 | 104 FFU | SC | No | weight loss, fever, red and swollen conjunctiva | eye (focus of the study) | [36] | |
Hartley (outbred) | Josiah | >2 PFU103 PFU | SCIP | 30–67% | inapparent infection in survivors | N.A. * | [25,34,35,40,41] |
GPA-Josiah a | 103 TCID50 | IP | 100% | weight loss, fever, lethargy, respiratory distress, hypothermia | spleen, liver, lung | [25,34,35,40,41,42] | |
LF2384 b | 104 PFU | IP | 100% | fever, weight loss, hypothermia, lethargy, thrombocytopenia, neutropenia, and lymphopenia | liver, kidney, spleen, lung, brain | [43] |
NHP | LASV Strain | Max. Dose | Route | Lethality | Signs of Disease | Affected Organs | Reference |
---|---|---|---|---|---|---|---|
squirrel monkeys | Bah | 106.8 TCID50 | IM b | 25% | depression, tremors, drooling, anorexia, lassitude, polydipsia | liver, kidney, lymph nodes, spleen, brain, adrenal gland, heart | [46] |
marmoset | Josiah | 106 PFU | SC | 100% | low fever, rapid weight loss, depression, anorexia, elevated concentrations of AST, ALT, alkaline phosphatase, decreased concentrations of albumin and platelet | liver, spleen, lymph nodes, kidney, lung, adrenal gland | [47] |
rhesus monkey | Josiah | 106.1 PFU | SC | 50–60% | severe petechial rash, hiccups, lethargy, aphagia, huddled posture, constipation, conjunctivitis, anorexia, weight loss, decreased water intake/dehydration, facial and periorbital edema, bleeding from the gums and nares, cough, fever | adrenal glands, liver, lung, pancreas, brain, bone marrow, kidney, lymph nodes, spleen, muscle, heart, thymus, testis, salivary gland, CSF, intestines | [44,48,49] |
“crab-eating” cynomolgus macaques | Josiah | 104 PFU | IM | Up to 100% | fever, weight loss, lethargy, dull appearance, reluctance to move/hypoactivity, anorexia, rashes, facial edema, hunched posture, ruffled fur, piloerection, bleeding from puncture sites, dehydration, epistaxis, acute respiratory syndrome, neurological signs including deafness | lymph nodes, spleen, liver, reproductive organs, kidney, lung, heart, CNS | [38,39,50,51,52,53] |
Z-132 | 104 TCID50 | IM | 100% | Josiah-like | spleen, liver, lung | [38,39] | |
Soromba-R | 104 TCID50 | IM | 66% | less severe than Josiah strain infection, moderate to severe pulmonary lesions | similar to Josiah and Z-132 | [39] |
Animal | Virus/Strain | Max. Dose | Route | Lethality | Signs of Disease | Affected Organs | Reference |
---|---|---|---|---|---|---|---|
Strain 13 (inbred) guinea pig | Pichindé virus | >3 PFU | SC | 100% | hypoactivity, lethargy, ruffled fur, decreased appetite, rapid/shallow breathing, slobbering, weight loss, leukopenia, and transient neutrophilia | liver, spleen, pancreas, lung, gastrointestinal tract, lymphoid tissue, bone marrow | [61,62,63,64] |
Hartley (outbred) guinea pig | Pichindé virus/P18 | 100 PFU | IP | 100% | weight loss and fever | adrenal glands, lung, stomach, liver, brain, heart, spleen, pancreas, intestine, kidney, lymph node | [65,67] |
Pichindé virus/P2 | 104 PFU | IP | <100% | avirulent | none | [66] | |
Pichindé virus/CoAn 4783 | 3000 PFU | IP | 43% | weight loss and fever | cleared in survivors | [65] | |
LVG/Lak outbred golden hamsters | Pichindé virus | 500 PFU | SC | 0–100% | lethal infection up to 8 days post-birth; uncommon afterwards | spleen, liver, kidney | [68] |
MHA/Lak inbred golden hamsters | Pichindé virus | 3.5 × 106 PFU | IP | 100% | lethal infection regardless of age | spleen, liver, kidney | [68] |
Golden hamsters | Pirital virus | 105 TCID50 | IP | >50% | hemorrhage, interstitial pneumonia, multifocal hepatic necrosis, splenic lymphoid depletion and necrosis | lung, liver, spleen | [69] |
Rhesus monkeys | LCMV-WE | 103 PFU | IV | 100% | not listed | not listed | [70,71] |
108 PFU | IG a | 20% | weight loss, elevated AST and ALT, thrombocytopenia, transient neutrophilia | liver | [72] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sattler, R.A.; Paessler, S.; Ly, H.; Huang, C. Animal Models of Lassa Fever. Pathogens 2020, 9, 197. https://doi.org/10.3390/pathogens9030197
Sattler RA, Paessler S, Ly H, Huang C. Animal Models of Lassa Fever. Pathogens. 2020; 9(3):197. https://doi.org/10.3390/pathogens9030197
Chicago/Turabian StyleSattler, Rachel A., Slobodan Paessler, Hinh Ly, and Cheng Huang. 2020. "Animal Models of Lassa Fever" Pathogens 9, no. 3: 197. https://doi.org/10.3390/pathogens9030197
APA StyleSattler, R. A., Paessler, S., Ly, H., & Huang, C. (2020). Animal Models of Lassa Fever. Pathogens, 9(3), 197. https://doi.org/10.3390/pathogens9030197