Effectiveness of Chemical Compounds Used against African Swine Fever Virus in Commercial Available Disinfectants
Abstract
:1. Introduction
- Formaldehyde;
- Sodium hypochlorite;
- Caustic soda solution;
- Glutaraldehyde;
- Phenol;
- Chemical compounds based on lipid solvents, e.g., benzalkonium chloride;
- Multi-constituent compounds, e.g., potassium peroxymonosulfate;
- Organic acids, e.g., acetic acid, etc.
2. Materials and Methods
2.1. Cells and Viruses
2.2. Virus Stock Preparation
2.3. Disinfectants
2.4. Diluent and Interfering Substances
2.5. Test Conditions
2.6. Cytotoxicity Reduction
2.7. Test Controls
2.8. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gallardo, C.; Sánchez, E.G.; Pérez-Núñez, D.; Nogal, M.; De León, P.; Carrascosa, A.L.; Nieto, R.; Soler, A.; Arias, M.L.; Revilla, Y. African swine fever virus (ASFV) protection mediated by NH/P68 and NH/P68 recombinant live-attenuated viruses. Vaccine 2018, 36, 2694–2704. [Google Scholar] [CrossRef] [PubMed]
- Arias, M.; De La Torre, A.; Dixon, L.K.; Gallardo, C.; Jori, F.; Laddomada, A.; Martins, C.; Parkhouse, R.M.; Revilla, Y.; Rodriguez, F.A.J.-M.; et al. Approaches and Perspectives for Development of African Swine Fever Virus Vaccines. Vaccines 2017, 5, 35. [Google Scholar] [CrossRef] [PubMed]
- Mazur-Panasiuk, N.; Żmudzki, J.; Woźniakowski, G. African swine fever virus—Persistence in different environmental conditions and the possibility of its indirect transmission. J. Vet. Res. 2019, 63, 303–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Tian, K. African swine fever in China. Vet. Rec. 2018, 183, 300.2–301. [Google Scholar] [CrossRef]
- Pejsak, Z.; Niemczuk, K.; Frant, M.; Mazur, M.; Pomorska-Mól, M.; Ziętek-Barszcz, A.; Bocian, Ł.; Łyjak, M.; Borowska, D.; Woźniakowski, G. Four years of African swine fever in Poland. New insights into epidemiology and prognosis of future disease spread. Pol. J. Vet. Sci. 2018, 21, 835–841. [Google Scholar]
- OIE. Global Situation of ASF, 2019. African Swine Fever. Available online: https://www.oie.int/fileadmin/Home/eng/Animal_Health_in_the_World/docs/pdf/Disease_cards/ASF/Report_17._Global_situation_of_ASF.pdf (accessed on 13 August 2020).
- European Commission. Short-Term Outlook for EU Agricultural Markets in 2020; European Commission, DG Agriculture and Rural Development: Brussels, Belgium, 2020. [Google Scholar]
- Gallardo, C.; De La Torre, A.; Fernández, J.; Iglesias, I.; Muñoz, M.J.; Arias, M. African swine fever: A global view of the current challenge. Porc. Heal. Manag. 2015, 1, 21. [Google Scholar] [CrossRef] [Green Version]
- EFSA AHAW Panel. Scientific Opinion on African swine fever. EFSA J. 2014, 12, 3628. [Google Scholar]
- Mur, L.; Martínez-López, B.; Sánchez-Vizcaíno, J.M. Risk of African swine fever introduction into the European Union through transport-associated routes: Returning trucks and waste from international ships and planes. BMC Vet. Res. 2012, 8, 149. [Google Scholar] [CrossRef] [Green Version]
- Walczak, M.; Frant, M.; Juszkiewicz, M.; Mazur-Panasiuk, N.; Szymankiewicz, K.; Bruczyńska, M.; Woźniakowski, G. Vertical transmission of anti-ASFV antibodies as one of potential causes of seropositive results among young wild boar population in Poland. Pol. J. Vet. Sci. 2020, 23, 21–25. [Google Scholar]
- Fasina, F.O.; Lazarus, D.D.; Spencer, B.; Brian, T.; Makinde, A.A.; Bastos, A.D. Cost Implications of African Swine Fever in Smallholder Farrow-to-Finish Units: Economic Benefits of Disease Prevention Through Biosecurity. Transbound. Emerg. Dis. 2011, 59, 244–255. [Google Scholar] [CrossRef] [Green Version]
- Woźniakowski, G.; Kozak, E.; Kowalczyk, A.; Łyjak, M.; Pomorska-Mól, M.; Niemczuk, K.; Pejsak, Z. Current status of African swine fever virus in a population of wild boar in eastern Poland (2014–2015). Arch. Virol. 2015, 161, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Pejsak, Z.; Truszczyński, M.; Niemczuk, K.; Kozak, E.; Markowska-Daniel, I. Epidemiology of African Swine Fever in Poland since the detection of the first case. Pol. J. Vet. Sci. 2014, 17, 665–672. [Google Scholar] [CrossRef]
- EFSA AHAW Panel. Scientific Opinion on African Swine Fever. EFSA J. 2010, 8, 1556. [Google Scholar]
- FAD-PREP/NAHEMS. NAHEMS Guidelines: Biosecurity; Iowa State University of Science and Technology: Ames, IA, USA, June 2016; pp. 1–59. [Google Scholar]
- Stone, S.S.; Hess, W.R. Effects of Some Disinfectants on African Swine Fever Virus. Appl. Microbiol. 1973, 25, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Sattar, S. Cleaning, Disinfection, and Sterilisastion. In IFIC Basic Concepts of Infection Control; International Federation of Infection Control: Portadown, Northern Ireland, UK, 2016; pp. 1–12. [Google Scholar]
- Juszkiewicz, M.; Walczak, M.; Mazur-Panasiuk, N.; Woźniakowski, G. Virucidal effect of chosen disinfectants against African swine fever virus (ASFV)—Preliminary studies. Pol. J. Vet. Sci. 2019, 22, 777–780. [Google Scholar] [CrossRef] [PubMed]
- Shirai, J.; Kanno, T.; Tsuchiya, Y.; Mitsubayashi, S.; Seki, R. Effects of Chlorine, Iodine, and Quaternary Ammonium Compound Disinfectants on Several Exotic Disease Viruses. J. Vet. Med Sci. 2000, 62, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Gallina, L.; Scagliarini, A. Virucidal efficacy of common disinfectants against orf virus. Vet. Rec. 2010, 166, 725. [Google Scholar] [CrossRef]
- Jeffrey, D. Chemicals used as disinfectants: Active ingredients and enhancing additives. Rev. Sci. et Tech. de l’OIE 1995, 14, 57–74. [Google Scholar] [CrossRef]
- Krug, P.W.; Lee, L.J.; Eslami, A.C.; Larson, C.R.; Rodriguez, L. Chemical disinfection of high-consequence transboundary animal disease viruses on nonporous surfaces. Biologicals 2011, 39, 231–235. [Google Scholar] [CrossRef]
- Krug, P.W.; Larson, C.R.; Eslami, A.C.; Rodriguez, L.L. Disinfection of foot-and-mouth disease and African swine fever viruses with citric acid and sodium hypochlorite on birch wood carriers. Vet. Microbiol. 2012, 156, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Krug, P.W.; Davis, T.; O’Brien, C.; Larocco, M.; Rodriguez, L.L. Disinfection of transboundary animal disease viruses on surfaces used in pork packing plants. Vet. Microbiol. 2018, 219, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Turner, C.; Williams, S.M. Laboratory-scale inactivation of African swine fever virus and swine vesicular disease virus in pig slurry. J. Appl. Microbiol. 1999, 87, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Gabbert, L.R.; Neilan, J.G.; Rasmussen, M. Recovery and chemical disinfection of foot-and-mouth disease and African swine fever viruses from porous concrete surfaces. J. Appl. Microbiol. 2020, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Reybrouck, G. The testing of disinfectants. Int. Biodeterior. Biodegrad. 1998, 41, 269–272. [Google Scholar] [CrossRef]
- Hierholzer, J.; Killington, R. Virus isolation and quantitation. Virol. Methods Man. 1996, 25–46. [Google Scholar] [CrossRef]
- OIE. African Swiene Fever. Aetiology. World Organ. Anim. Health. June 2019, pp. 1–5. Available online: https://www.oie.int/fileadmin/Home/eng/Animal_Health_in_the_World/docs/pdf/Disease_cards/AFRICAN_SWINE_FEVER.pdf (accessed on 15 August 2020).
- Becker, B.; Henningsen, L.; Paulmann, D.; Bischoff, B.; Todt, D.; Steinmann, E.; Steinmann, J.; Brill, F.H.H.; Steinmann, J. Evaluation of the virucidal efficacy of disinfectant wipes with a test method simulating practical conditions. Antimicrob. Resist. Infect. Control 2019, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Eterpi, M.; McDonnell, G.; Thomas, V. Virucidal Activity of Disinfectants against Parvoviruses and Reference Viruses. Appl. Biosaf. 2010, 15, 165–171. [Google Scholar] [CrossRef]
- Morin, T.; Martin, H.; Soumet, C.; Fresnel, R.; Lamaudière, S.; Le Sauvage, A.; Deleurme, K.; Maris, P. Comparison of the virucidal efficacy of peracetic acid, potassium monopersulphate and sodium hypochlorite on bacteriophages P001 and MS2. J. Appl. Microbiol. 2015, 119, 655–665. [Google Scholar] [CrossRef]
- Maillard, J.-Y.; Hann, A.; Baubet, V.; Perrin, R. Efficacy and mechanisms of action of sodium hypochlorite on Pseudomonas aeruginosa PAO1 phage F116. J. Appl. Microbiol. 1998, 85, 925–932. [Google Scholar] [CrossRef]
- OIE. Report of the Meeting of the OIE Aquatic Animal Health Standards Commission. Presented at the OIE Headquarters, Paris, France, 11–15 October 2010. [Google Scholar]
- United States Department of Agriculture. Disinfectants approved for use against African swine fever virus in farm settings. 2020. Available online: https://www.aphis.usda.gov/animal_health/emergency_management/downloads/asf-virus-disinfectants.pdf (accessed on 15 August 2020).
- Plowright, W.; Parker, J. The stability of African swine fever virus with particular reference to heat and pH inactivation. Arch. Virol. 1967, 21, 383–402. [Google Scholar] [CrossRef] [PubMed]
- Maris, P. Modes of action of disinfectants. Rev. Sci. et Tech. de l’OIE 1995, 14, 47–55. [Google Scholar] [CrossRef]
Active Substance | Tested Concentration | Log10 Difference ** (±SD) (TCID50/mL) | Virucidal Effect (Difference ≥ 4 Log10) | ||
---|---|---|---|---|---|
BSA | BSA + YE | BSA | BSA + YE | ||
Sodium Hypochlorite | 1.5% | 5.3 (±0.35) | 4.58 (±0.47) | Yes | Yes |
1% | 5.3 (±0.35) | 5.58 (±0.47) | Yes | Yes | |
0.3% | 5.3 (±0.35) | 4.17 (±0.31) | Yes | No | |
Caustic Soda | 3% | 4.67 * (±0.77) | 4.67 * (±0.51) | N/A | Yes |
2% | 4.91 (±0.59) | 5.17 (±0.24) | Yes | Yes | |
1% | 4.83 (±0.67) | 4.17 (±0.31) | Yes | No | |
Phenol | 2% | 3.42 * (±0.24) | 3.75 * (±0.20) | N/A | N/A |
1% | 4.42 (±0.24) | 4.75 (±0.20) | Yes | Yes | |
0.5% | 0.08 (±0.12) | 0.08 (±0.12) | No | No | |
Potassium Peroxymonosulfate | 2% | 3.75 *(±0.20) | 4.17 *(±0.24) | N/A | N/A |
1% | 4.75 (±0.20) | 5.17 (±0.24) | Yes | Yes | |
0.5% | 4.75 (±0.20) | 5.17 (±0.24) | Yes | Yes | |
Acetic Acid c | 3% | 4.33 (±0.23) | 5 (±0.2) | Yes | Yes |
2% | 4.33 (±0.23) | 3 (±0.2) | Yes | No | |
1% | 3.92 (±0.12) | 1.42 (±0.12) | N/A | No | |
Glutaraldehyde c | 1% | 4.33 (±0.31) | 4 * (±0) | Yes | Yes |
0.5% | 4.33 (±0.31) | 4 * (±0) | Yes | Yes | |
0.1% | 4.33 (±0.31) | 5 (±0) | Yes | Yes | |
Formaldehyde c | 1.6% | 2.08 * (±0.31) | 1.67 * (±0.24) | N/A | N/A |
0.8% | 1.83 * (±0.31) | 2.5 * (±0.0) | N/A | N/A | |
0.4% | 2.83 *(±0.31) | 2.67 * (±0.24) | N/A | N/A | |
Benzalkonium Chloride c | 2% | 2.25 * (±0) | 2.67 * (±0.12) | N/A | N/A |
1% | 4.25 (±0) | 3.75 * (±0) | Yes | N/A | |
0,5% | 4.08 (±0.11) | 3.75 * (±0) | No | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juszkiewicz, M.; Walczak, M.; Mazur-Panasiuk, N.; Woźniakowski, G. Effectiveness of Chemical Compounds Used against African Swine Fever Virus in Commercial Available Disinfectants. Pathogens 2020, 9, 878. https://doi.org/10.3390/pathogens9110878
Juszkiewicz M, Walczak M, Mazur-Panasiuk N, Woźniakowski G. Effectiveness of Chemical Compounds Used against African Swine Fever Virus in Commercial Available Disinfectants. Pathogens. 2020; 9(11):878. https://doi.org/10.3390/pathogens9110878
Chicago/Turabian StyleJuszkiewicz, Małgorzata, Marek Walczak, Natalia Mazur-Panasiuk, and Grzegorz Woźniakowski. 2020. "Effectiveness of Chemical Compounds Used against African Swine Fever Virus in Commercial Available Disinfectants" Pathogens 9, no. 11: 878. https://doi.org/10.3390/pathogens9110878