Prevalence, Antimicrobial Resistance, and Diversity of Salmonella along the Pig Production Chain in Southern Brazil
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Sampling
3.2. Salmonella spp. Detection and Serotyping
3.3. Antimicrobial Resistance Testing
3.4. Pulsed Field Gel Electrophoresis (PFGE)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Guimarães, D.D.; Amaral, G.F.; Maia, G.B.d.S.; Lemos, M.L.F.; Ito, M.; Custodio, S. Pig farming: Productive chain structure, panorama of the sector in Brazil and in the world and BNDES’ support. BNDES Setorial 2017, 45, 85–136. Available online: https://web.bndes.gov.br/bib/jspui/bitstream/1408/11794/1/BS%2045%20Suinocultura%20-%20estrutura%20da%20cadeia%20produtiva%2C%20panorama%20do%20setor%20no%20Brasil%5B...%5D_P.pdfpage (accessed on 19 May 2019).
- ABPA. Suinocultura. Available online: http://abpa-br.com.br/setores/suinocultura (accessed on 27 June 2017).
- Maertens, M.; Swinnen, J. Agricultural Trade and Development: A Value Chain Perspective; WTO Working Paper ERSD-2015-04; WTO—Economic Research and Statistics Division: Geneva, Switzerland, 2015; p. 38. [Google Scholar]
- Lee, K.-M.; Runyon, M.; Herrman, T.J.; Phillips, R.; Hsieh, J. Review of Salmonella detection and identification methods: Aspects of rapid emergency response and food safety. Food Control 2015, 47, 264–276. [Google Scholar] [CrossRef]
- Baer, A.A.; Miller, M.J.; Dilger, A.C. Pathogens of interest to the pork industry: A review of research on interventions to assure food safety. Compr. Rev. Food Sci. Food Saf. 2013, 12, 183–217. [Google Scholar] [CrossRef]
- Motarjemi, Y.; Käferstein, F. Food safety, Hazard Analysis and Critical Control Point and the increase in foodborne diseases: A paradox? Food Control 1999, 10, 325–333. [Google Scholar] [CrossRef]
- Santini, A.; Novellino, E.; Armini, V.; Ritieni, A. State of the art of Ready-to-Use Therapeutic Food: A tool for nutraceuticals addition to foodstuff. Food Chem. 2013, 140, 843–849. [Google Scholar] [CrossRef]
- Simons, R.R.L.; Hill, A.A.; Swart, A.; Kelly, L.; Snary, E.L. A Transport and lairage model for Salmonella transmission between pigs applicable to EU member States. Risk Anal. 2016, 36, 482–497. [Google Scholar] [CrossRef]
- Pellegrini, D.C.P.; Paim, D.S.; Lima, G.J.M.M.; Pissetti, C.; Kich, J.D.; Cardoso, M.R.I. Distribution of Salmonella clonal groups in four Brazilian feed mills. Food Control 2015, 47, 672–678. [Google Scholar] [CrossRef]
- Lopes, V.; Pissetti, C.; Pellegrini, D.D.C.P.; Silva, L.E.d.; Cardoso, M. Resistance Phenotypes and Genotypes of Salmonella enterica subsp. enterica Isolates from Feed, Pigs, and Carcasses in Brazil. J. Food Prot. 2015, 78, 407–413. [Google Scholar] [CrossRef]
- Yan-Bing, Z.; Li-Gen, X.; Mei-Fang, T.; Hai-Qin, L.; Han, Y.; Li, Z.; De-Feng, Y.; Zhao-Feng, K.; Qi-Peng, W.; Lin-Guang, L. Prevalence and Antimicrobial Resistance of Salmonella in Pork, Chicken, and Duck from Retail Markets of China. Foodborne Pathog. Dis. 2019, 16, 339–345. [Google Scholar] [CrossRef]
- Campos, J.; Mourão, J.; Peixe, L.; Antunes, P. Non-typhoidal Salmonella in the Pig Production Chain: A Comprehensive Analysis of Its Impact on Human Health. Pathogens 2019, 8, 19. [Google Scholar] [CrossRef]
- Tadesse, D.A.; Singh, A.; Zhao, S.; Bartholomew, M.; Womack, N.; Ayers, S.; Fields, P.I.; McDermott, P.F. Antimicrobial Resistance in Salmonella in the United States from 1948 to 1995. Antimicrob. Agents Chemother. 2016, 60, 2567–2571. [Google Scholar] [CrossRef] [PubMed]
- Su, J.-H.; Zhu, Y.-H.; Ren, T.-Y.; Guo, L.; Yang, G.-Y.; Jiao, L.-G.; Wang, J.-F. Distribution and Antimicrobial Resistance of Salmonella Isolated from Pigs with Diarrhea in China. Microorganisms 2018, 6, 117. [Google Scholar] [CrossRef] [PubMed]
- Monte, D.F.; Lincopan, N.; Fedorka-Cray, P.J.; Landgraf, M. Current insights on high priority antibiotic-resistant Salmonella enterica in food and foodstuffs: A review. Curr. Opin. Food Sci. 2019, 26, 35–46. [Google Scholar] [CrossRef]
- Argüello, H.; Guerra, B.; Rodríguez, I.; Rubio, P.; Carvajal, A. Characterization of Antimicrobial Resistance Determinants and Class 1 and Class 2 Integrons in Salmonella enterica spp., Multidrug-Resistant Isolates from Pigs. Genes 2018, 9, 256. [Google Scholar] [CrossRef] [PubMed]
- ANVISA. Ministério da Saúde. Surtos de Doenças Transmitidas por Alimentos no Brasil. Available online: http://portalarquivos2.saude.gov.br/images/pdf/2019/fevereiro/15/Apresenta----o-Surtos-DTA---Fevereiro-2019.pdf (accessed on 24 July 2019).
- CDC. Salmonella. Available online: https://www.cdc.gov/salmonella/ (accessed on 28 June 2019).
- EFSA. Salmonella. Available online: https://www.efsa.europa.eu/en/topics/topic/salmonella (accessed on 28 June 2019).
- Poonsuk, K.; Zimmerman, J. Historical and contemporary aspects of maternal immunity in swine. Anim. Health Res. Rev. 2018, 19, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Proux, K.; Cariolet, R.; Fravalo, P.; Houdayer, C.; Keranflech, A.; Madec, F. Contamination of pigs by nose-to-nose contact or airborne transmission of Salmonella Typhimurium. Vet. Res. 2001, 32, 591–600. [Google Scholar] [CrossRef]
- Kich, J.D.; Coldebella, A.; Morés, N.; Nogueira, M.G.; Cardoso, M.; Fratamico, P.M.; Call, J.E.; Fedorka-Cray, P.; Luchansky, J.B. Prevalence, distribution, and molecular characterization of Salmonella recovered from swine finishing herds and a slaughter facility in Santa Catarina, Brazil. Int. J. Food Microbiol. 2011, 151, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Patterson, S.K.; Kim, H.B.; Borewicz, K.; Isaacson, R.E. Towards an understanding of Salmonella enterica serovar Typhimurium persistence in swine. Anim. Health Res. Rev. 2016, 17, 159–168. [Google Scholar] [CrossRef]
- Berriman, A.D.C.; Clancy, D.; Clough, H.E.; Armstrong, D.; Christley, R.M. Effectiveness of simulated interventions in reducing the estimated prevalence of Salmonella in UK pig herds. PLoS ONE 2013, 8. [Google Scholar] [CrossRef]
- Van Damme, I.; Berkvens, D.; Vanantwerpen, G.; Baré, J.; Houf, K.; Wauters, G.; De Zutter, L. Contamination of freshly slaughtered pig carcasses with enteropathogenic Yersinia spp.: Distribution, quantification and identification of risk factors. Int. J. Food Microbiol. 2015, 204, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Biasino, W.; De Zutter, L.; Mattheus, W.; Bertrand, S.; Uyttendaele, M.; Van Damme, I. Correlation between slaughter practices and the distribution of Salmonella and hygiene indicator bacteria on pig carcasses during slaughter. Food Microbiol. 2018, 70, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa 79, de 14 de dezembro de 2018. Inspeção ante e post mortem de suínos com base em risco. Diário Oficial da União. Diário Oficial da União, 17 de dezembro de 2018. Brasília; 2018. Available online: http://www.in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/55444279/do1-2018-12-17-instrucao-normativa-n-79-de-14-de-dezembro-de-2018-55444116 (accessed on 10 June 2019).
- De Busser, E.V.; Maes, D.; Houf, K.; Dewulf, J.; Imberechts, H.; Bertrand, S.; De Zutter, L. Detection and characterization of Salmonella in lairage, on pig carcasses and intestines in five slaughterhouses. Int. J. Food Microbiol. 2011, 145, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Gomes-Neves, E.; Antunes, P.; Tavares, A.; Themudo, P.; Cardoso, M.F.; Gärtner, F.; Costa, J.M.; Peixe, L. Salmonella cross-contamination in swine abattoirs in Portugal: Carcasses, meat and meat handlers. Int. J. Food Microbiol. 2012, 157, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Marier, E.A.; Snow, L.C.; Floyd, T.; McLaren, I.M.; Bianchini, J.; Cook, A.J.C.; Davies, R.H. Abattoir based survey of Salmonella in finishing pigs in the United Kingdom 2006–2007. Prev. Vet. Med. 2014, 117, 542–553. [Google Scholar] [CrossRef] [PubMed]
- Swanenburg, M.; Van der Wolf, P.J.; Urlings, H.A.P.; Snijders, J.M.A.; van Knapen, F. Salmonella in slaughter pigs: The effect of logistic slaughter procedures of pigs on the prevalence of Salmonella in pork. Int. J. Food Microbiol. 2001, 70, 231–242. [Google Scholar] [CrossRef]
- Fernandes, L.; Centeno, M.M.; Couto, N.; Nunes, T.; Almeida, V.; Alban, L.; Pomba, C. Longitudinal characterization of monophasic Salmonella Typhimurium throughout the pig’s life cycle. Vet. Microbiol. 2016, 192, 231–237. [Google Scholar] [CrossRef]
- Gebreyes, W.A.; Davies, P.R.; Turkson, P.-K.; Morrow, W.E.M.; Funk, J.A.; Altier, C.; Thakur, S. Characterization of antimicrobial-resistant phenotypes and genotypes among Salmonella enterica recovered from pigs on farms, from transport trucks, and from pigs after slaughter. J. Food Prot. 2004, 67, 698–705. [Google Scholar] [CrossRef]
- Magistrali, C.; Dionisi, A.M.; De Curtis, P.; Cucco, L.; Vischi, O.; Scuota, S.; Zicavo, A.; Pezzotti, G. Contamination of Salmonella spp. in a pig finishing herd, from the arrival of the animals to the slaughterhouse. Res. Vet. Sci. 2008, 85, 204–207. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [Green Version]
- Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa n 41, de 23 de outubbro de 2017. Programa Nacional de Prevenção e Controle da Resistência aos Antimicrobianos na Agropecuária. Diário Oficial da União, 09 de novembro de 2017. Brasília; 2017. Available online: http://www.in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/19401380/do1-2017-11-09-instrucao-normativa-n-41-de-23-de-outubro-de-2017-19401312 (accessed on 10 June 2019).
- Zhou, Z.; Jin, X.; Zheng, H.; Li, J.; Meng, C.; Yin, K.; Xie, X.; Huang, C.; Lei, T.; Sun, X.; et al. The prevalence and load of Salmonella, and key risk points of Salmonella contamination in a swine slaughterhouse in Jiangsu province, China. Food Control 2018, 87, 153–160. [Google Scholar] [CrossRef]
- Molla, B.; Sterman, A.; Mathews, J.; Artuso-Ponte, V.; Abley, M.; Farmer, W.; Rajala-Schultz, P.; Morrow, W.E.M.; Gebreyes, W.A. Salmonella enterica in commercial swine feed and subsequent isolation of phenotypically and genotypically related strains from fecal samples. Appl. Environ. Microbiol. 2010, 76, 7188–7193. [Google Scholar] [CrossRef] [PubMed]
- USDA. Isolation and Identification of Salmonella from Meat, Poultry and Egg Products. In Microbiology Laboratory Guidebook; USDA: Washington, DC, USA, 2002; Volume MLG 4.02. [Google Scholar]
- CLSI. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk Susceptibility Tests, 13th ed.; M02; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- CLSI. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Ribot, E.M.; Fair, M.A.; Gautom, R.; Cameron, D.N.; Hunter, S.B.; Swaminathan, B.; Barrett, T.J. Standardization of Pulsed-Field Gel Electrophoresis protocols for the subtyping of Escherichia coli O157:H7, Salmonella, and Shigella for PulseNet. Foodborne Pathog. Dis. 2006, 3, 59–67. [Google Scholar] [CrossRef] [PubMed]
Site | Site Detail | Type of Sample | Sample Size | n | Salmonella spp. Positive Samples (%) |
---|---|---|---|---|---|
nursery | maternity | feed (available) | 250 g | 45 | 0 |
feed (stored) | 250 g | 54 | 1 (1.8) | ||
water (available) | 250 mL | 51 | 0 | ||
water (stored) | 250 mL | 18 | 0 | ||
floor | 100 cm² * | 54 | 0 | ||
feces | 80 g | 63 | 1 (1.6) | ||
piglets barn | feed (available) | 250 g | 69 | 7 (6.1) | |
feed (stored) | 250 g | 69 | 1 (0.8) | ||
water (available) | 250 mL | 69 | 0 | ||
water (stored) | 250 mL | 23 | 0 | ||
floor | 100 cm² | 69 | 10 (8.1) | ||
feces | 80 g | 78 | 12 (8.5) | ||
pig finishing farm | pig barn | feed (available) | 250 g | 99 | 18 (18.2) |
feed (stored) | 250 g | 117 | 2 (1.7) | ||
water (available) | 250 mL | 117 | 1 (0.8) | ||
water (stored) | 250 mL | 38 | 1 (2.6) | ||
floor | 100 cm² | 117 | 18 (15.4) | ||
feces | 80 g | 148 | 48 (35.1) | ||
slaughterhouse | environment | clean lairage floor | 100 cm² | 25 | 4 (16.0) |
feces | 80 g | 25 | 21 (84.0) | ||
scalding water | 250 mL | 5 | 0 | ||
pigs washing water | 250 mL | 5 | 0 | ||
evisceration table | 100 cm² | 15 | 4 (26.7) | ||
carcasses saw | 100 cm² | 15 | 0 | ||
carcasses washing water | 250 mL | 5 | 1 (20.0) | ||
pig carcass | after evisceration | 100 cm² | 30 | 1 (6.7) | |
after final washing | 100 cm² | 50 | 0 | ||
backbone | 100 cm² | 15 | 0 | ||
after chilling | 100 cm² | 50 | 0 | ||
pig jowls | 3 carcasses, 300 g | 15 | 6 (40.0) | ||
mesenteric lymph nodes | 3 carcasses, 50 g | 15 | 3 (20.0) | ||
Total | 1568 | 160 (10.2) |
Serotype | Farms | Slaughterhouse | Total |
---|---|---|---|
Typhimurium | 86 | 15 | 101 |
Mbandaka | 12 | 9 | 21 |
Panama | 11 | 08 | 19 |
Derby | 18 | 0 | 18 |
Agona | 10 | 5 | 15 |
Give | 0 | 3 | 3 |
Worthington | 0 | 1 | 1 |
Meleagridis | 0 | 1 | 1 |
Poona | 1 | 0 | 1 |
Non identified | |||
non-typeable | 8 | 5 | 13 |
Typhimurium monophasic variant 4,5,12:i:- | 6 | 4 | 10 |
Typhimurium monophasic variant 4,5,12:-:1,2 | 4 | 0 | 4 |
rough | 3 | 0 | 3 |
Total | 159 | 51 | 210 |
n ATB | Resistance Profile * | n Isolates | Serotypes |
---|---|---|---|
6 | AMK-FUR-CHL-AMP-TET-SXT | 1 | Panama |
5 | CHL-FOX-AMP-TET-SXT | 2 | Panama, non-typeable |
FUR-CHL-AMP-TET-SXT | 2 | Mbandaka, Panama | |
4 | CHL-AMP-TET-SXT | 9 | Mbandaka |
FUR-CHL-TET-SXT | 1 | Typhimurium | |
AMK-FUR-CHL-TET | 1 | non-typeable | |
FUR-CAZ-AMP-TET | 1 | non-typeable | |
3 | CHL-TET-SXT | 42 | Derby, non-typeable, Meleagridis, Typhimurium |
CHL-FOX-TET | 1 | Typhimurium | |
2 | CHL-TET | 51 | Derby, non-typeable, Typhimurium, rough strain |
CHL-SXT | 3 | Mbandaka | |
TET-SXT | 4 | Typhimurium, Agona | |
AMK-TET | 2 | Typhimurium | |
CTX-TET | 2 | Derby, Typhimurium | |
CTX-SXT | 1 | Worthington | |
FUR-SXT | 1 | Agona | |
FUR-TET | 2 | Typhimurium | |
1 | TET | 55 | Derby, non-typeable, Panama, Typhimurium, rough |
FUR | 5 | Agona, Give, Mbandaka | |
STX | 4 | Derby, Mbandaka | |
AMK | 2 | Mbandaka, Poona | |
CHL | 1 | Mbandaka | |
0 | none | 17 | Agona, Derby, Give, Mbandaka, Panama, Worthington, non-typeable |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos Bersot, L.; Quintana Cavicchioli, V.; Viana, C.; Konrad Burin, R.C.; Camargo, A.C.; de Almeida Nogueira Pinto, J.P.; Nero, L.A.; Destro, M.T. Prevalence, Antimicrobial Resistance, and Diversity of Salmonella along the Pig Production Chain in Southern Brazil. Pathogens 2019, 8, 204. https://doi.org/10.3390/pathogens8040204
dos Santos Bersot L, Quintana Cavicchioli V, Viana C, Konrad Burin RC, Camargo AC, de Almeida Nogueira Pinto JP, Nero LA, Destro MT. Prevalence, Antimicrobial Resistance, and Diversity of Salmonella along the Pig Production Chain in Southern Brazil. Pathogens. 2019; 8(4):204. https://doi.org/10.3390/pathogens8040204
Chicago/Turabian Styledos Santos Bersot, Luciano, Valéria Quintana Cavicchioli, Cibeli Viana, Raquel Cristina Konrad Burin, Anderson Carlos Camargo, José Paes de Almeida Nogueira Pinto, Luís Augusto Nero, and Maria Teresa Destro. 2019. "Prevalence, Antimicrobial Resistance, and Diversity of Salmonella along the Pig Production Chain in Southern Brazil" Pathogens 8, no. 4: 204. https://doi.org/10.3390/pathogens8040204
APA Styledos Santos Bersot, L., Quintana Cavicchioli, V., Viana, C., Konrad Burin, R. C., Camargo, A. C., de Almeida Nogueira Pinto, J. P., Nero, L. A., & Destro, M. T. (2019). Prevalence, Antimicrobial Resistance, and Diversity of Salmonella along the Pig Production Chain in Southern Brazil. Pathogens, 8(4), 204. https://doi.org/10.3390/pathogens8040204