Identification of 16S rRNA and Virulence-Associated Genes of Arcobacter in Water Samples in the Kathmandu Valley, Nepal
Abstract
:1. Introduction
2. Results
2.1. Detection of 16S rRNA Gene of Arcobacter in Water Samples
2.2. Detection of Arcobacter Virulence Genes in Water Samples
3. Discussion
4. Materials and Methods
4.1. Collection of Water Samples
4.2. Bacterial DNA Extraction
4.3. qPCR of 16S rRNA Gene of Arcobacter and Its Virulence Genes
4.4. Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ghaju Shrestha, R.; Tanaka, Y.; Malla, B.; Bhandari, D.; Tandukar, S.; Inoue, D.; Sei, K.; Sherchand, J.B.; Haramoto, E. Next-generation sequencing identification of pathogenic bacterial genes and their relationship with fecal indicator bacteria in different water sources in the Kathmandu Valley, Nepal. Sci. Total Environ. 2017, 601–602, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Ghaju Shrestha, R.; Tanaka, Y.; Malla, B.; Tandukar, S.; Bhandari, D.; Inoue, D.; Sei, K.; Sherchand, J.B.; Haramoto, E. Development of a quantitative PCR assay for Arcobacter spp. and its application to environmental water samples. Microbes Environ. 2018, 33, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Ghaju Shrestha, R.; Sawada, K.; Inoue, D.; Yoshinaga, H.; Malla, B.; Tandukar, S.; Bhandari, D.; Tanaka, Y.; Sei, K.; Sherchand, J.B.; et al. Comparison of pathogenic bacteria in water and fecal-source samples in the Kathmandu Valley, Nepal, using high-throughput DNA microarray. Biomed. J. Sci. Tech. Res. 2019, 17, 13074–13081. [Google Scholar]
- Haramoto, E.; Yamada, K.; Nishida, K. Prevalence of protozoa, viruses, coliphages and indicator bacteria in groundwater and river water in the Kathmandu Valley, Nepal. Trans. R. Soc. Trop. Med. Hyg. 2011, 105, 711–716. [Google Scholar] [CrossRef] [PubMed]
- Koju, N.K.; Prasai, T.; Shrestha, S.M.; Raut, P. Drinking water quality of Kathmandu Valley. Nepal J. Sci. Tech. 2014, 15, 115–120. [Google Scholar] [CrossRef]
- Malla, B.; Ghaju Shrestha, R.; Tandukar, S.; Bhandari, D.; Inoue, D.; Sei, K.; Tanaka, Y.; Sherchand, J.B.; Haramoto, E. Validation of host-specific Bacteroidales quantitative PCR assays and their application to microbial source tracking of drinking water sources in the Kathmandu Valley, Nepal. J. Appl. Microbiol. 2018, 125, 609–619. [Google Scholar] [CrossRef]
- Malla, B.; Ghaju Shrestha, R.; Tandukar, S.; Sherchand, J.B.; Haramoto, E. Performance evaluation of human-specific viral markers and application of pepper mild mottle virus and crAssphage to environmental water samples as fecal pollution markers in the Kathmandu Valley, Nepal. Food Environ. Virol. 2019, 1–14. [Google Scholar] [CrossRef]
- Malla, B.; Ghaju Shrestha, R.; Tandukar, S.; Bhandari, D.; Inoue, D.; Sei, K.; Tanaka, Y.; Sherchand, J.B.; Haramoto, E. Identification of human and animal fecal contamination in drinking water sources in the Kathmandu Valley, Nepal, using host-associated Bacteroidales quantitative PCR assays. Water 2018, 10, 1796. [Google Scholar] [CrossRef]
- Shrestha, S.; Shrestha, S.; Shindo, J.; Sherchand, J.B.; Haramoto, E. Virological quality of irrigation water sources and pepper mild mottle virus and tobacco mosaic virus as index of pathogenic virus contamination level. Food Environ. Virol. 2018, 10, 107–120. [Google Scholar] [CrossRef]
- Tandukar, S.; Sherchand, J.B.; Bhandari, D.; Sherchan, S.; Malla, B.; Ghaju Shrestha, R.; Haramoto, E. Presence of human enteric viruses, protozoa, and indicators of pathogens in the Bagmati River, Nepal. Pathogens 2018, 7, 38. [Google Scholar] [CrossRef]
- Asian Development Bank. Solid Waste Management in Nepal. Available online: https://www.adb.org/sites/default/files/publication/30366/solid-waste-management-nepal.pdf (accessed on 24 July 2019).
- Li, X.; Harwood, V.J.; Nayak, B.; Staley, C.; Sadowsky, M.J.; Weidhaas, J. A novel microbial source tracking microarray for pathogen detection and fecal source identification in environmental systems. Environ. Sci. Technol. 2015, 49, 7319–7329. [Google Scholar] [CrossRef] [PubMed]
- Šilha, D.; Vacková, B.; Šilhová, L. Occurrence of virulence-associated genes in Arcobacter butzleri and Arcobacter cryaerophilus isolates from foodstuff, water, and clinical samples within the Czech Republic. Folia Microbiol. 2019, 64, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Morita, Y.; Maruyama, S.; Kabeya, H.; Boonmar, S.; Nimsuphan, B.; Nagai, A.; Kozawa, K.; Nakajima, T.; Mikami, T.; Kimura, H. Isolation and phylogenetic analysis of Arcobacter spp. in ground chicken meat and environmental water in Japan and Thailand. Microbiol. Immunol. 2004, 48, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Diergaardt, S.M.; Venter, S.N.; Spreeth, A.; Theron, J.; Brözel, V.S. The occurrence of campylobacters in water sources in South Africa. Water Res. 2004, 38, 2589–2595. [Google Scholar] [CrossRef] [PubMed]
- Collado, L.; Inza, I.; Guarro, J.; Figueras, M.J. Presence of Arcobacter spp. in environmental waters correlates with high levels of fecal pollution. Environ. Microbiol. 2008, 10, 1635–1640. [Google Scholar] [CrossRef] [PubMed]
- Moreno, Y.; Alonso, J.L.; Botella, S.; Ferrús, M.A.; Hernández, J. Survival and injury of Arcobacter after artificial inoculation into drinking water. Res. Microbiol. 2004, 155, 726–730. [Google Scholar] [CrossRef] [PubMed]
- Çelik, E.; Ünver, A. Isolation and Identification of Arcobacter spp. by Multiplex PCR from Water Sources in Kars Region. Curr. Microbiol. 2015, 71, 546–550. [Google Scholar] [CrossRef]
- Talay, F.; Molva, C.; Atabay, H.I. Isolation and identification of Arcobacter species from environmental and drinking water samples. Folia Microbiol. (Praha) 2016, 61, 479–484. [Google Scholar] [CrossRef]
- Ertas, N.; Dogruer, Y.; Gonulalan, Z.; Guner, A.; Ulger, I. Prevalence of Arcobacter species in drinking water, spring water, and raw Milk as determined by multiplex PCR. J. Food Prot. 2010, 73, 2099–2102. [Google Scholar] [CrossRef]
- Rice, E.W.; Rodgers, M.R.; Wesley, I.V.; Johnson, C.H.; Tanner, S.A. Isolation of Arcobacter butzleri from ground water. Lett. Appl. Microbiol. 1999, 28, 31–35. [Google Scholar] [CrossRef]
- Miller, W.G.; Parker, C.T.; Rubenfield, M.; Mendz, G.L.; Wösten, M.M.S.M.; Ussery, D.W.; Stolz, J.F.; Binnewies, T.T.; Hallin, P.F.; Wang, G.; et al. The complete genome sequence and analysis of the Epsilonproteobacterium Arcobacter butzleri. PLoS ONE 2007, 2, e1358. [Google Scholar] [CrossRef] [PubMed]
- Larsen, N.A.; Lin, H.; Wei, R.; Fischbach, M.A.; Walsh, C.T. Structural characterization of enterobactin hydrolase IroE. Biochemistry 2006, 45, 10184–10190. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.R.; Jelacic, S.; Schoening, L.M.; Clabots, C.; Shaikh, N.; Mobley, H.L.T.; Tarr, P.I. The IrgA homologue adhesion Iha is an Escherichia coli virulence factor in murine urinary tract infection. Infect. Immun. 2005, 73, 965–971. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, M.B.; DiRita, V.J.; Calderwood, S.B. Identification of an iron-regulated virulence determinant in Vibrio cholerae, using TnphoA mutagenesis. Infect. Immun. 1990, 58, 55–60. [Google Scholar] [PubMed]
- Rojas, C.M.; Ham, J.H.; Deng, W.-L.; Doyle, J.J.; Collmer, A. HecA, a member of a class of adhesins produced by diverse pathogenic bacteria, contributes to the attachment, aggregation, epidermal cell killing, and virulence phenotypes of Erwinia chrysanthemi EC16 on Nicotiana clevelandii seedlings. Proc. Natl. Acad. Sci. USA 2002, 99, 13142–13147. [Google Scholar] [CrossRef] [PubMed]
- Levican, A.; Alkeskas, A.; Gunter, C.; Forsythe, S.J.; Figueras, M.J. Adherence to and invasion of human intestinal cells by Arcobacter species and their virulence genotypes. Appl. Environ. Microbiol. 2013, 79, 4951–4957. [Google Scholar] [CrossRef] [PubMed]
- Douidah, L.; de Zutter, L.; Bare, J.; De Vos, P.; Vandamme, P.; Vandenberg, O.; Van den Abeele, A.M.; Houf, K. Occurrence of putative virulence genes in Arcobacter species isolated from humans and animals. J. Clin. Microbiol. 2012, 50, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, D.; Alter, T.; Lehmann, L.; Uherkova, S.; Seidler, T.; Gölz, G. Prevalence, virulence gene distribution and genetic diversity of Arcobacter in food samples in Germany. Berl. Munch. Tierarztl. Wochenschr. 2015, 128, 163–168. [Google Scholar] [PubMed]
- Karadas, G.; Sharbati, S.; Hänel, I.; Messelhäußer, U.; Glocker, E.; Alter, T.; Gölz, G. Presence of virulence genes, adhesion and invasion of Arcobacter butzleri. J. Appl. Microbiol. 2013, 115, 583–590. [Google Scholar] [CrossRef]
- Girbau, C.; Guerra, C.; Martínez-Malaxetxebarria, I.; Alonso, R.; Fernández-Astorga, A. Prevalence of ten putative virulence genes in the emerging foodborne pathogen Arcobacter isolated from food products. Food Microbiol. 2015, 52, 146–149. [Google Scholar] [CrossRef] [PubMed]
- Kathmandu Upatyaka Khanepani Limited KUKL 10th Annual Report. Available online: http://kathmanduwater.org/wp-content/uploads/2017/03/Annual-Operating-ReportFY64_65.pdf (accessed on 24 July 2019).
- Shrestha, S.; Aihara, Y.; Kondo, N.; Rajbhandari, S.; Bhattarai, A.P.; Bista, N.; Kazama, F.; Nishida, K.; Timilsina, H.P.; Shindo, J. Household Water Use in the Kathmandu Valley: A Dry Season Survey; WASH-MIA Rapid Report; Interdisciplinary Center for River Basin Environment (ICRE), University of Yamanashi: Yamanashi, Japan, 2016; Available online: http://www.icre.yamanashi.ac.jp/file/WASH-MIA_Rapid_Report.pdf (accessed on 24 July 2019).
- Malla, B.; Ghaju Shrestha, R.; Tandukar, S.; Bhandari, D.; Thakali, O.; Sherchand, J.B.; Haramoto, E. Detection of pathogenic viruses, pathogen indicators, and fecal-source markers within tanker water and their sources in the Kathmandu Valley, Nepal. Pathogens 2019, 8, 81. [Google Scholar] [CrossRef] [PubMed]
- Malla, B.; Ghaju Shrestha, R.; Bhandari, D.; Tandukar, S.; Shrestha, S.; Yoshinaga, H.; Inoue, D.; Sei, K.; Nishida, K.; Tanaka, Y.; et al. Detection of Cryptosporidium, Giardia, fecal indicator bacteria, and total bacteria in commercial jar water in the Kathmandu Valley, Nepal. J. Inst. Med. 2015, 37, 10–15. [Google Scholar]
- Ferreira, S.; Queiroz, J.A.; Oleastro, M.; Domingues, F.C. Insights in the pathogenesis and resistance of Arcobacter: A review. Crit. Rev. Microbiol. 2015, 42, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Ho, H.; Lipman, L.; Gaastra, W. Arcobacter, what is known and unknown about a potential foodborne zoonotic agent! Vet. Microbiol. 2006, 115, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, L.P.; Forsythe, S.J. Arcobacter butzleri, A. skirrowii and A. cryaerophilus—Potential emerging human pathogens. Rev. Med. Microbiol. 2000, 11, 161–170. [Google Scholar]
- Webb, A.L.; Boras, V.F.; Kruczkiewicz, P.; Selinger, L.B.; Taboada, E.N.; Inglis, G.D. Comparative detection and quantification of Arcobacter butzleri in stools from diarrheic and nondiarrheic people in southwestern Alberta, Canada. J. Clin. Microbiol. 2016, 54, 1082–1088. [Google Scholar] [CrossRef] [PubMed]
- Tandukar, S.; Sherchand, J.; Karki, S.; Malla, B.; Ghaju Shrestha, R.; Bhandari, D.; Thakali, O.; Haramoto, E. Co-infection by waterborne enteric viruses in children with gastroenteritis in Nepal. Healthcare 2019, 7, 9. [Google Scholar] [CrossRef] [PubMed]
- Sherchand, J.B.; Schluter, W.W.; Sherchan, J.B.; Tandukar, S.; Dhakwa, J.R. Prevalence of group A genotype human rotavirus among children with diarrhoea in Nepal, 2009–2011. WHO South East Asia J. Public Health 2012, 1, 432–440. [Google Scholar] [CrossRef]
- Lama, C.; Sherchand, J.B. Enteropathogens associated diarrhea in hospitalized patients of children’s hospital, Kathmandu. J. Nepal Health Res. Counc. 2007, 5, 50–57. [Google Scholar]
- Ansari, S.; Sherchand, J.B.; Rijal, B.P.; Parajuli, K.; Mishra, S.K.; Dahal, R.K.; Shrestha, S.; Tandukar, S.; Chaudhary, R.; Kattel, H.P.; et al. Characterization of rotavirus causing acute diarrhoea in children in Kathmandu, Nepal, showing the dominance of serotype G12. J. Med. Microbiol. 2019, 114–120. [Google Scholar] [CrossRef]
- Tabatabaei, M.; Shirzad Aski, H.; Shayegh, H.; Khoshbakht, R. Occurrence of six virulence-associated genes in Arcobacter species isolated from various sources in Shiraz, Southern Iran. Microb. Pathog. 2014, 66, 1–4. [Google Scholar] [CrossRef] [PubMed]
Sources of Water | February–March 2016 (Dry Season) | August 2016 (Wet Season) | ||
---|---|---|---|---|
No. of Positive Samples/No. of Tested Samples (% Positive) | Concentration a (Mean ± SD b) | No. of Positive Samples/No. of Tested Samples (% Positive) | Concentration (Mean ± SD) | |
Deep tube well | 2/5 (20) | 7.6 ± 0.4 | 3/25 (12) | 7.1 ± 0.5 |
Pond | 1/1 (100) | 6.0 | – c | – |
River | 1/1 (100) | 10.2 | 12/13 (92) | 9.3 ± 1.3 |
Shallow dug well | 32/79 (41) | 6.2 ± 0.8 | 37/87 (43) | 6.0 ± 0.6 |
Shallow tube well | 1/11(9) | 7.1 | 2/22 (9) | 5.6 ± 0.1 |
Spring | 1/8 (13) | 5.7 | 3/13 (23) | 6.0 ± 0.2 |
Stone spout | 2/7 (29) | 5.9 | 2/14 (14) | 6.4 ± 0.4 |
Total | 40/112 (36) | 59/174 (34) |
Sources of Water | No. of Samples Positive for Arcobacter 16S rRNA Gene | No. of Positive Samples (Concentration a (Mean ± SD b)) | ||||
---|---|---|---|---|---|---|
cadF | ciaB | mviN | pldA | tlyA | ||
Deep tube well | 2 | 0 | 2 (7.5 ± 0.3) | 0 | 1 (8.1) | 0 |
Pond | 1 | 0 | 1 (6.2) | 0 | 0 | 0 |
River | 1 | 1 (9.0) | 1 (10.1) | 1 (9.0) | 1 (9.0) | 1 (8.4) |
Shallow dug well | 32 | 0 | 27 (6.5 ± 0.7) | 1 (6.9) | 5 (7.8 ± 0.7) | 1 (6.3) |
Shallow tube well | 1 | 0 | 1 (7.0) | 0 | 0 | 0 |
Spring | 1 | 0 | 1 (5.9) | 0 | 0 | 0 |
Stone spout | 2 | 0 | 2 (5.8 ± 0.1) | 0 | 1 (8.2) | 0 |
Total (% Positive) | 40 | 1 (3%) | 35 (88%) | 2 (5%) | 8 (20%) | 2 (5%) |
Sources of Water | No. of Samples Positive for Arcobacter 16S rRNA Gene | No. of Positive Samples (Concentration a (Mean ± SD b)) | ||||
---|---|---|---|---|---|---|
cadF | ciaB | mviN | pldA | tlyA | ||
Deep tube well | 3 | 1 (5.8) | 3 (6.8 ± 0.6) | 0 | 0 | 1 (6.5) |
River | 12 | 8 (9.2 ± 0.4) | 11 (9.4 ± 1.1) | 10 (9.3 ± 0.6) | 8 (9.1 ± 0.5) | 9 (8.6 ± 0.5) |
Shallow dug well | 37 | 7 (6.3 ± 0.7) | 31 (6.3 ± 0.6) | 7 (7.5 ± 0.5) | 5 (6.3 ± 0.7) | 5 (6.7 ± 0.5) |
Shallow tube well | 2 | 0 | 0 | 0 | 1 (7.4) | 0 |
Spring | 3 | 0 | 3 (6.1 ± 0.4) | 0 | 0 | 0 |
Stone spout | 2 | 0 | 1 (6.7) | 0 | 1 (8.6) | 0 |
Total | 59 | 16 (27%) | 49 (83%) | 17 (29%) | 15 (25%) | 15 (15%) |
Concentration of E. coli a (log Most Probable Number/100 mL) | No. of Samples | No. of Samples Positive for Arcobacter 16S rRNA Gene (% Positive) |
---|---|---|
<0 | 58 | 2 (2%) |
0–1.0 | 45 | 10 (10%) |
1.1–2.0 | 69 | 21 (21%) |
2.1–3.0 | 53 | 26 (26%) |
3.1–4.0 | 35 | 16 (16%) |
>4.0 | 26 | 24 (24%) |
Total | 286 | 99 (35%) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghaju Shrestha, R.; Tanaka, Y.; Sherchand, J.B.; Haramoto, E. Identification of 16S rRNA and Virulence-Associated Genes of Arcobacter in Water Samples in the Kathmandu Valley, Nepal. Pathogens 2019, 8, 110. https://doi.org/10.3390/pathogens8030110
Ghaju Shrestha R, Tanaka Y, Sherchand JB, Haramoto E. Identification of 16S rRNA and Virulence-Associated Genes of Arcobacter in Water Samples in the Kathmandu Valley, Nepal. Pathogens. 2019; 8(3):110. https://doi.org/10.3390/pathogens8030110
Chicago/Turabian StyleGhaju Shrestha, Rajani, Yasuhiro Tanaka, Jeevan B. Sherchand, and Eiji Haramoto. 2019. "Identification of 16S rRNA and Virulence-Associated Genes of Arcobacter in Water Samples in the Kathmandu Valley, Nepal" Pathogens 8, no. 3: 110. https://doi.org/10.3390/pathogens8030110
APA StyleGhaju Shrestha, R., Tanaka, Y., Sherchand, J. B., & Haramoto, E. (2019). Identification of 16S rRNA and Virulence-Associated Genes of Arcobacter in Water Samples in the Kathmandu Valley, Nepal. Pathogens, 8(3), 110. https://doi.org/10.3390/pathogens8030110