Separating the Wheat from the Chaff: RNA Editing and Selection of Translatable mRNA in Trypanosome Mitochondria
Abstract
:1. Introduction
2. Kinetoplast DNA and the Discovery of mRNA Editing
3. Enzymology of the Core RNA Editing Reactions
4. The Dynamics of mRNA-gRNA Interactions
5. The Auxiliary Factors Enabling gRNA–mRNA Interactions
6. PAMC and Additional Pre- and Post-Editing Modifications in mRNA
7. Pentatricopeptide Proteins as Specific mRNA Recognition Factors
8. PPR Proteins as Modulators in mRNA Maturation
9. Formation and the Role of 3′ Poly(A/U)-Tails in mRNA
10. The Initiation Codon Recognition Problem
11. Organization of the Mitochondrial Translation Apparatus
12. The Unusual SSU-Like 45S and Ribosome-Like 80S Complexes
13. Two Types of Mitochondrial Ribosomes?
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vickerman, K. The Diversity of the Kinetoplastid Flagellates. In Biology of the Kinetoplastida; Lumsden, W.H.R., Evans, D.A., Eds.; Academic Press: London, UK; New York, NY, USA, 1976; pp. 1–34. [Google Scholar]
- Moreira, D.; Lopez-Garcia, P.; Vickerman, K. An updated view of kinetoplastid phylogeny using environmental sequences and a closer outgroup: Proposal for a new classification of the class Kinetoplastea. Int. J. Syst. Evol. Microbiol. 2004, 54, 1861–1875. [Google Scholar] [CrossRef] [PubMed]
- Doležel, D.; Jirků, M.; Maslov, D.A.; Lukeš, J. Phylogeny of the bodonid flagellates (Kinetoplastida) based on small-subunit rRNA gene sequences. Int. J. Syst. Bacteriol. 2000, 50, 1943–1951. [Google Scholar] [CrossRef] [PubMed]
- Yazaki, E.; Ishikawa, S.A.; Kume, K.; Kumagai, A.; Kamaishi, T.; Tanifuji, G.; Hashimoto, T.; Inagaki, Y. Global Kinetoplastea phylogeny inferred from a large-scale multigene alignment including parasitic species for better understanding transitions from a free-living to a parasitic lifestyle. Genes Genet. Syst. 2017, 92, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Lukeš, J.; Skalicky, T.; Týč, J.; Votýpka, J.; Yurchenko, V. Evolution of parasitism in kinetoplastid flagellates. Mol. Biochem. Parasitol. 2014, 195, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Laveran, A.; Mesnil, F. Sur les flagelles a membrane ondulante des poissons (genres Trypanosoma Gruby et Trypanoplasma n. gen.). Compt. Rend. Acad. Sci. Paris 1901, 133, 670–675. [Google Scholar]
- Alexeieff, A. Sur la fonction glycoplastique du kinétoplaste (= kinétonucleus) chez les flagellés. Compt. Rend. Soc. Biol. 1917, 80, 512–514. [Google Scholar]
- Steinert, M. Mitochondria associated with the kinetonucleus of Trypanos. Mega J. Biophys. Biochem. Cytol. 1960, 8. [Google Scholar]
- Maslov, D.A.; Opperdoes, F.R.; Kostygov, A.Y.; Hashimi, H.; Lukeš, J.; Yurchenko, V. Recent advances in trypanosomatid research: Genome organization, expression, metabolism, taxonomy and evolution. Parasitology 2019, 146, 1–27. [Google Scholar] [CrossRef]
- Lukeš, J.; Butenko, A.; Hashimi, H.; Maslov, D.A.; Votýpka, J.; Yurchenko, V. Trypanosomatids are much more than just trypanosomes: Clues from the expanded family tree. Trends Parasitol 2018, 34, 466–480. [Google Scholar] [CrossRef]
- Hoare, C.A. The Trypanosomes of Mammals. A Zoological Monograph; Blackwell Scientific Publications: Oxford, UK, 1972. [Google Scholar]
- MacGregor, P.; Szoor, B.; Savill, N.J.; Matthews, K.R. Trypanosomal immune evasion, chronicity and transmission: An elegant balancing act. Nat. Rev. Microbiol. 2012, 10, 431–438. [Google Scholar] [CrossRef]
- Horn, D. Antigenic variation in African trypanosomes. Mol. Biochem. Parasitol. 2014, 195, 123–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rotureau, B.; Van Den Abbeele, J. Through the dark continent: African trypanosome development in the tsetse fly. Front. Cell. Infect. Microbiol. 2013, 3, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenn, K.; Matthews, K.R. The cell biology of Trypanosoma brucei differentiation. Curr. Opin. Microbiol. 2007, 10, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Capewell, P.; Cooper, A.; Clucas, C.; Weir, W.; Macleod, A. A co-evolutionary arms race: Trypanosomes shaping the human genome, humans shaping the trypanosome genome. Parasitology 2015, 142 (Suppl. 1), S108–S119. [Google Scholar] [CrossRef]
- Lainson, R.; Shaw, J.J. Evolution, classification and geographical distribution. In The Leishmaniases in Biology and Medicine; Peters, W., Killick-Kendrick, R., Eds.; Academic Press: London, UK, 1987; pp. 1–120. [Google Scholar]
- Akhoundi, M.; Downing, T.; Votýpka, J.; Kuhls, K.; Lukeš, J.; Cannet, A.; Ravel, C.; Marty, P.; Delaunay, P.; Kasbari, M.; et al. Leishmania infections: Molecular targets and diagnosis. Mol. Asp. Med. 2017, 57, 1–29. [Google Scholar] [CrossRef]
- Kostygov, A.Y.; Yurchenko, V. Revised classification of the subfamily Leishmaniinae (Trypanosomatidae). Folia Parasitol. (Praha) 2017, 64, 020. [Google Scholar] [CrossRef]
- Kaufer, A.; Ellis, J.; Stark, D.; Barratt, J. The evolution of trypanosomatid taxonomy. Parasit. Vectors 2017, 10, 287. [Google Scholar] [CrossRef]
- Wallace, F.G. The trypanosomatid parasites of insects and arachnids. Exptl. Parasitol. 1966, 18, 124–193. [Google Scholar] [CrossRef]
- Maslov, D.A.; Votýpka, J.; Yurchenko, V.; Lukeš, J. Diversity and phylogeny of insect trypanosomatids: All that is hidden shall be revealed. Trends Parasitol. 2013, 29, 43–52. [Google Scholar] [CrossRef]
- Camargo, E.P. Phytomonas and other trypanosomatid parasites of plants and fruit. Adv. Parasitol. 1999, 42, 29–112. [Google Scholar]
- Jaskowska, E.; Butler, C.; Preston, G.; Kelly, S. Phytomonas: Trypanosomatids adapted to plant environments. PLoS Pathog. 2015, 11, e1004484. [Google Scholar] [CrossRef] [PubMed]
- Simpson, L.; Thiemann, O.H.; Savill, N.J.; Alfonzo, J.D.; Maslov, D.A. Evolution of RNA editing in trypanosome mitochondria. Proc. Natl. Acad. Sci. USA 2000, 97, 6986–6993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flegontova, O.; Flegontov, P.; Malviya, S.; Poulain, J.; de Vargas, C.; Bowler, C.; Lukeš, J.; Horák, A. Neobodonids are dominant kinetoplastids in the global ocean. Env. Microbiol. 2018, 20, 878–889. [Google Scholar] [CrossRef] [PubMed]
- Simpson, A.G.; Stevens, J.R.; Lukeš, J. The evolution and diversity of kinetoplastid flagellates. Trends Parasitol. 2006, 22, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Lukeš, J.; Guilbride, D.L.; Votýpka, J.; Ziková, A.; Benne, R.; Englund, P.T. Kinetoplast DNA network: Evolution of an improbable structure. Eukaryot. Cell 2002, 1, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Vickerman, K.; Preston, T.M. Comparative Cell Biology of the Kinetoplastid Flagellates. In Biology of the Kinetoplastida; Lumsden, W.H.R., Evans, D.A., Eds.; Academic Press: London, UK, 1976; pp. 35–130. [Google Scholar]
- Schneider, A.; Ochsenreiter, T. Failure is not an option—mitochondrial genome segregation in trypanosomes. J. Cell Sci. 2018, 131, jcs.221820. [Google Scholar] [CrossRef] [PubMed]
- Verner, Z.; Basu, S.; Benz, C.; Dixit, S.; Dobáková, E.; Faktorová, D.; Hashimi, H.; Horáková, E.; Huang, Z.; Paris, Z.; et al. Malleable mitochondrion of Trypanos. Brucei. Int. Rev. Cell Mol. Biol. 2015, 315, 73–151. [Google Scholar]
- Simpson, L.; Maslov, D.A.; Blum, B. RNA Editing in Leishmania Mitochondria. In RNA Editing—the Alteration of Protein Coding Sequences of RNA; Benne, R., Ed.; Ellis Horwood: New York, NY, USA, 1993; pp. 53–85. [Google Scholar]
- Duarte, M.; Tomas, A.M. The mitochondrial complex I of trypanosomatids—an overview of current knowledge. J. Bioenerg. Biomembr. 2014, 46, 299–311. [Google Scholar] [CrossRef]
- Kannan, S.; Burger, G. Unassigned MURF1 of kinetoplastids codes for NADH dehydrogenase subunit 2. BMC Genom. 2008, 9, 455. [Google Scholar] [CrossRef]
- Maslov, D.A.; Sturm, N.R.; Niner, B.M.; Gruszynski, E.S.; Peris, M.; Simpson, L. An intergenic G-rich region in Leishmania tarentolae kinetoplast maxicircle DNA is a pan-edited cryptogene encoding ribosomal protein S12. Mol. Cell. Biol. 1992, 12, 56–67. [Google Scholar] [CrossRef]
- Ramrath, D.J.F.; Niemann, M.; Leibundgut, M.; Bieri, P.; Prange, C.; Horn, E.K.; Leitner, A.; Boehringer, D.; Schneider, A.; Ban, N. Evolutionary shift toward protein-based architecture in trypanosomal mitochondrial ribosomes. Science 2018, 362, aau7735. [Google Scholar] [CrossRef] [PubMed]
- Niemann, M.; Harsman, A.; Mani, J.; Peikert, C.D.; Oeljeklaus, S.; Warscheid, B.; Wagner, R.; Schneider, A. tRNAs and proteins use the same import channel for translocation across the mitochondrial outer membrane of trypanosomes. Proc. Natl. Acad. Sci. USA 2017, 114, E7679–E7687. [Google Scholar] [CrossRef] [Green Version]
- Alfonzo, J.D.; Soll, D. Mitochondrial tRNA import—the challenge to understand has just begun. Biol. Chem. 2009, 390, 717–722. [Google Scholar] [CrossRef]
- Feagin, J.E. Mitochondrial genome diversity in parasites. Int. J. Parasitol. 2000, 30, 371–390. [Google Scholar] [CrossRef]
- Flegontov, P.N.; Strelkova, M.V.; Kolesnikov, A.A. The Leishmania major maxicircle divergent region is variable in different isolates and cell types. Mol. Biochem. Parasitol. 2006, 146, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Maslov, D.A.; Kolesnikov, A.; Zaitseva, G. Conservative and divergent base sequence regions in the maxicircle kinetoplast DNA of several trypanosomatid flagellates. Mol. Biochem. Parasitol. 1984, 12, 351–364. [Google Scholar] [CrossRef]
- Muhich, M.; Neckelmann, N.; Simpson, L. The divergent region of the Leishmania tarentolae kinetoplast maxicircle DNA contains a diverse set of repetitive sequences. Nucl. Acids Res. 1985, 13, 3241–3260. [Google Scholar] [CrossRef]
- de la Cruz, V.; Neckelmann, N.; Simpson, L. Sequences of six structural genes and several open reading frames in the kinetoplast maxicircle DNA of Leishmania tarentolae. J. Biol. Chem. 1984, 259, 15136–15147. [Google Scholar]
- Benne, R. Mitochondrial genes in trypanosomes. Trends Genet. 1985, 117–121. [Google Scholar] [CrossRef]
- Benne, R.; van den Burg, J.; Brakenhoff, J.; Sloof, P.; van Boom, J.; Tromp, M. Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 1986, 46, 819–826. [Google Scholar] [CrossRef]
- Benne, R. RNA editing in trypanosome mitochondria. Biochim. Biophys. Acta 1989, 1007, 131–139. [Google Scholar] [CrossRef]
- Simpson, L.; Shaw, J. RNA editing and the mitochondrial cryptogenes of kinetoplastid protozoa. Cell 1989, 57, 355–366. [Google Scholar] [CrossRef]
- Feagin, J.E.; Abraham, J.; Stuart, K. Extensive editing of the cytochrome c oxidase III transcript in Trypanosoma brucei. Cell 1988, 53, 413–422. [Google Scholar] [CrossRef]
- Koslowsky, D.J.; Bhat, G.J.; Perrollaz, A.L.; Feagin, J.E.; Stuart, K. The MURF3 gene of T. brucei contains multiple domains of extensive editing and is homologous to a subunit of NADH dehydrogenase. Cell 1990, 62, 901–911. [Google Scholar] [CrossRef]
- Bhat, G.J.; Koslowsky, D.J.; Feagin, J.E.; Smiley, B.L.; Stuart, K. An extensively edited mitochondrial transcript in kinetoplastids encodes a protein homologous to ATPase subunit 6. Cell 1990, 61, 885–894. [Google Scholar] [CrossRef]
- Feagin, J.E.; Shaw, J.M.; Simpson, L.; Stuart, K. Creation of AUG initiation codons by addition of uridines within cytochrome b transcripts of kinetoplastids. Proc. Natl. Acad. Sci. USA 1988, 85, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.; Feagin, J.E.; Stuart, K.; Simpson, L. Editing of mitochondrial mRNAs by uridine addition and deletion generates conserved amino acid sequences and AUG initiation codons. Cell 1988, 53, 401–411. [Google Scholar] [CrossRef]
- Simpson, L.; Maslov, D.A. RNA editing and the evolution of parasites. Science 1994, 264, 1870–1871. [Google Scholar] [CrossRef] [PubMed]
- Blum, B.; Bakalara, N.; Simpson, L. A model for RNA editing in kinetoplastid mitochondria: "Guide" RNA molecules transcribed from maxicircle DNA provide the edited information. Cell 1990, 60, 189–198. [Google Scholar] [CrossRef]
- Sturm, N.R.; Simpson, L. Leishmania tarentolae minicircles of different sequence classes encode single guide RNAs located in the variable region approximately 150 bp from the conserved region. Nucl. Acids Res. 1991, 19, 6277–6281. [Google Scholar] [CrossRef]
- Pollard, V.W.; Rohrer, S.P.; Michelotti, E.F.; Hancock, K.; Hajduk, S.L. Organization of minicircle genes for guide RNAs in Trypanosoma brucei. Cell 1990, 63, 783–790. [Google Scholar] [CrossRef]
- Avila, H.A.; Simpson, L. Organization and complexity of minicircle-encoded guide RNAs in Trypanos. Cruzi. RNA 1995, 1, 939–947. [Google Scholar] [PubMed]
- Yasuhira, S.; Simpson, L. Minicircle-encoded guide RNAs from Crithidia fasciculata. RNA 1995, 1, 634–643. [Google Scholar] [PubMed]
- Simpson, L. The genomic organization of guide RNA genes in kinetoplastid protozoa: Several conundrums and their solutions. Mol. Biochem. Parasitol. 1997, 86, 133–141. [Google Scholar] [CrossRef]
- Hong, M.; Simpson, L. Genomic organization of Trypanosoma brucei kinetoplast DNA minicircles. Protist. 2003, 154, 265–279. [Google Scholar] [CrossRef] [PubMed]
- Corell, R.A.; Feagin, J.E.; Riley, G.R.; Strickland, T.; Guderian, J.A.; Myler, P.J.; Stuart, K. Trypanosoma brucei minicircles encode multiple guide RNAs which can direct editing of extensively overlapping sequences. Nucl. Acids Res. 1993, 21, 4313–4320. [Google Scholar] [CrossRef] [PubMed]
- Blum, B.; Simpson, L. Guide RNAs in kinetoplastid mitochondria have a nonencoded 3’ oligo-(U) tail involved in recognition of the pre-edited region. Cell 1990, 62, 391–397. [Google Scholar] [CrossRef]
- Koslowsky, D.J.; Bhat, G.J.; Read, L.K.; Stuart, K. Cycles of progressive realignment of gRNA with mRNA in RNA editing. Cell 1991, 67, 537–546. [Google Scholar] [CrossRef]
- Gerasimov, E.S.; Gasparyan, A.A.; Kaurov, I.; Tichy, B.; Logacheva, M.D.; Kolesnikov, A.A.; Lukeš, J.; Yurchenko, V.; Zimmer, S.L.; Flegontov, P. Trypanosomatid mitochondrial RNA editing: Dramatically complex transcript repertoires revealed with a dedicated mapping tool. Nucl. Acids Res. 2018, 46, 765–781. [Google Scholar] [CrossRef]
- Simpson, R.M.; Bruno, A.E.; Bard, J.E.; Buck, M.J.; Read, L.K. High-throughput sequencing of partially edited trypanosome mRNAs reveals barriers to editing progression and evidence for alternative editing. RNA 2016, 22, 677–695. [Google Scholar] [CrossRef] [Green Version]
- Kirby, L.E.; Sun, Y.; Judah, D.; Nowak, S.; Koslowsky, D. Analysis of the Trypanosoma brucei EATRO 164 bloodstream guide RNA transcriptome. PLoS Negl. Trop. Dis. 2016, 10, e0004793. [Google Scholar] [CrossRef] [PubMed]
- Koslowsky, D.; Sun, Y.; Hindenach, J.; Theisen, T.; Lucas, J. The insect-phase gRNA transcriptome in Trypanosoma brucei. Nucleic Acids Res. 2014, 42, 1873–1886. [Google Scholar] [CrossRef] [PubMed]
- Aphasizheva, I.; Aphasizhev, R. U-insertion/deletion mRNA-editing holoenzyme: Definition in sight. Trends Parasitol. 2015. [Google Scholar] [CrossRef] [PubMed]
- Hashimi, H.; Zimmer, S.L.; Ammerman, M.L.; Read, L.K.; Lukeš, J. Dual core processing: MRB1 is an emerging kinetoplast RNA editing complex. Trends Parasitol. 2013, 29, 91–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Read, L.K.; Lukeš, J.; Hashimi, H. Trypanosome RNA editing: The complexity of getting U in and taking U out. Wiley Interdiscip. Rev. RNA 2016, 7, 33–51. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Reyes, J.; Mooers, B.H.M.; Doharey, P.K.; Meehan, J.; Gulati, S. Dynamic RNA holo-editosomes with subcomplex variants: Insights into the control of trypanosome editing. Wiley Interdiscip. Rev. RNA 2018, 9, e1502. [Google Scholar] [CrossRef] [PubMed]
- Göringer, H.U. ’Gestalt’, composition and function of the Trypanosoma brucei editosome. Annu. Rev. Microbiol. 2012, 66, 65–82. [Google Scholar] [CrossRef] [PubMed]
- Rusche, L.N.; Cruz-Reyes, J.; Piller, K.J.; Sollner-Webb, B. Purification of a functional enzymatic editing complex from Trypanosoma brucei mitochondria. Embo J. 1997, 16, 4069–4081. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Ge, P.; Hui, W.H.; Atanasov, I.; Rogers, K.; Guo, Q.; Osato, D.; Falick, A.M.; Zhou, Z.H.; Simpson, L. Structure of the core editing complex (L-complex) involved in uridine insertion/deletion RNA editing in trypanosomatid mitochondria. Proc. Natl. Acad. Sci. USA 2009, 106, 12306–12310. [Google Scholar] [CrossRef] [Green Version]
- Carnes, J.; Trotter, J.R.; Peltan, A.; Fleck, M.; Stuart, K. RNA editing in Trypanosoma brucei requires three different editosomes. Mol. Cell. Biol. 2008, 28, 122–130. [Google Scholar] [CrossRef]
- Carnes, J.; Soares, C.Z.; Wickham, C.; Stuart, K. Endonuclease associations with three distinct editosomes in Trypanosoma brucei. J. Biol. Chem. 2011, 286, 19320–19330. [Google Scholar] [CrossRef] [PubMed]
- Carnes, J.; Ernst, N.L.; Wickham, C.; Panicucci, B.; Stuart, K. KREX2 is not essential for either procyclic or bloodstream form Trypanosoma brucei. PLoS One 2012, 7, e33405. [Google Scholar] [CrossRef] [PubMed]
- Rogers, K.; Gao, G.; Simpson, L. Uridylate-specific 3’-5’-exoribonucleases involved in uridylate-deletion RNA editing in trypanosomatid mitochondria. J. Biol. Chem. 2007, 282, 29073–29080. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Simpson, L. Is the Trypanosoma brucei REL1 RNA ligase specific for U-deletion RNA editing, and is the REL2 RNA ligase specific for U-insertion editing? J. Biol. Chem. 2003, 278, 27570–27574. [Google Scholar] [CrossRef] [PubMed]
- Schnaufer, A.; Ernst, N.L.; Palazzo, S.S.; O’Rear, J.; Salavati, R.; Stuart, K. Separate insertion and deletion subcomplexes of the Trypanosoma brucei RNA editing complex. Mol. Cell 2003, 12, 307–319. [Google Scholar] [CrossRef]
- Sturm, N.R.; Simpson, L. Kinetoplast DNA minicircles encode guide RNAs for editing of cytochrome oxidase subunit III mRNA. Cell 1990, 61, 879–884. [Google Scholar] [CrossRef]
- Maslov, D.A.; Simpson, L. The polarity of editing within a multiple gRNA-mediated domain is due to formation of anchors for upstream gRNAs by downstream editing. Cell 1992, 70, 459–467. [Google Scholar] [CrossRef]
- Gao, G.G.; Kapushoc, S.T.; Simpson, A.M.; Thiemann, O.H.; Simpson, L. Guide RNAs of the recently isolated LEM125 strain of Leishmania tarentolae: An unexpected complexity. RNA 2001, 7, 1335–1347. [Google Scholar] [CrossRef]
- Simpson, L.; Douglass, S.M.; Lake, J.A.; Pellegrini, M.; Li, F. Comparison of the mitochondrial genomes and steady state transcriptomes of two strains of the trypanosomatid parasite, Leishmania tarentolae. PLoS Negl. Trop Dis. 2015, 9, e0003841. [Google Scholar] [CrossRef]
- Thiemann, O.H.; Maslov, D.A.; Simpson, L. Disruption of RNA editing in Leishmania tarentolae by the loss of minicircle-encoded guide RNA genes. Embo J. 1994, 13, 5689–5700. [Google Scholar] [CrossRef]
- Riley, G.R.; Corell, R.A.; Stuart, K. Multiple guide RNAs for identical editing of Trypanosoma brucei apocytochrome b mRNA have an unusual minicircle location and are developmentally regulated. J. Biol. Chem. 1994, 269, 6101–6108. [Google Scholar] [PubMed]
- Decker, C.J.; Sollner-Webb, B. RNA editing involves indiscriminate U changes throughout precisely defined editing domains. Cell 1990, 61, 1001–1011. [Google Scholar] [CrossRef]
- Sturm, N.R.; Simpson, L. Partially edited mRNAs for cytochrome b and subunit III of cytochrome oxidase from Leishmania tarentolae mitochondria: RNA editing intermediates. Cell 1990, 61, 871–878. [Google Scholar] [CrossRef]
- Sturm, N.R.; Maslov, D.A.; Blum, B.; Simpson, L. Generation of unexpected editing patterns in Leishmania tarentolae mitochondrial mRNAs: Misediting produced by misguiding. Cell 1992, 70, 469–476. [Google Scholar] [CrossRef]
- Maslov, D.A.; Thiemann, O.; Simpson, L. Editing and misediting of transcripts of the kinetoplast maxicircle G5 (ND3) cryptogene in an old laboratory strain of Leishmania tarentolae. Mol. Biochem. Parasitol. 1994, 68, 155–159. [Google Scholar] [CrossRef]
- Maslov, D.A.; Hollar, L.; Haghighat, P.; Nawathean, P. Demonstration of mRNA editing and localization of guide RNA genes in kinetoplast-mitochondria of the plant trypanosomatid Phytomonas serpens. Mol. Biochem. Parasitol. 1998, 93, 225–236. [Google Scholar] [CrossRef]
- Neboháčová, M.; Kim, C.E.; Simpson, L.; Maslov, D.A. RNA editing and mitochondrial activity in promastigotes and amastigotes of Leishmania donovani. Int. J. Parasitol. 2009, 39, 635–644. [Google Scholar] [CrossRef]
- Speijer, D.; Breek, C.K.D.; Muijsers, A.O.; Hartog, A.F.; Berden, J.A.; Albracht, S.P.J.; Samyn, B.; Van Beeumen, J.; Benne, R. Characterization of the respiratory chain from cultured Crithidia fasciculata. Mol. Biochem. Parasitol. 1997, 85, 171–186. [Google Scholar] [CrossRef]
- Kirby, L.E.; Koslowsky, D. Mitochondrial dual-coding genes in Trypanosoma brucei. PLoS Negl. Trop. Dis. 2017, 11, e0005989. [Google Scholar] [CrossRef]
- Read, L.K.; Myler, P.J.; Stuart, K. Extensive editing of both processed and preprocessed maxicircle CR6 transcripts in Trypanosoma brucei. J. Biol. Chem. 1992, 267, 1123–1128. [Google Scholar]
- Corell, R.A.; Myler, P.; Stuart, K. Trypanosoma brucei mitochondrial CR4 gene encodes an extensively edited mRNA with completely edited sequence only in bloodstream forms. Mol. Biochem. Parasitol. 1994, 64, 65–74. [Google Scholar] [CrossRef]
- Maslov, D.A.; Nawathean, P.; Scheel, J. Partial kinetoplast-mitochondrial gene organization and expression in the respiratory deficient plant trypanosomatid Phytomonas serpens. Mol. Biochem. Parasitol. 1999, 99, 207–221. [Google Scholar] [CrossRef]
- Nawathean, P.; Maslov, D.A. The absence of genes for cytochrome c oxidase and reductase subunits in maxicircle kinetoplast DNA of the respiration-deficient plant trypanosomatid Phytomonas Serpens. Curr. Genet. 2000, 38, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Maslov, D.A. Complete set of mitochondrial pan-edited mRNAs in Leishmania mexicana amazonensis LV78. Mol. Biochem. Parasitol. 2010, 173, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Ochsenreiter, T.; Hajduk, S.L. Alternative editing of cytochrome c oxidase III mRNA in trypanosome mitochondria generates protein diversity. Embo Rep. 2006, 7, 1128–1133. [Google Scholar] [CrossRef] [PubMed]
- Feagin, J.; Jasmer, D.; Stuart, K. Developmentally regulated addition of nucleotides within apocytochrome b transcripts in Trypanosoma brucei. Cell 1987, 49, 337–345. [Google Scholar] [CrossRef]
- Souza, A.E.; Myler, P.J.; Stuart, K. Maxicircle CR1 transcripts of Trypanosoma brucei are edited, developmentally regulated, and encode a putative iron-sulfur protein homologous to an NADH dehydrogenase subunit. Mol. Cell. Biol. 1992, 12, 2100–2107. [Google Scholar] [CrossRef] [PubMed]
- Koslowsky, D.J.; Riley, G.R.; Feagin, J.E.; Stuart, K. Guide RNAs for transcripts with developmentally regulated RNA editing are present in both life cycle stages of Trypanos. Brucei. Mol. Cell. Biol. 1992, 12, 2043–2049. [Google Scholar] [CrossRef] [PubMed]
- Osato, D.; Rogers, K.; Guo, Q.; Li, F.; Richmond, G.; Klug, F.; Simpson, L. Uridine insertion/deletion RNA editing in trypanosomatid mitochondria: In search of the editosome. RNA 2009, 15, 1338–1344. [Google Scholar] [CrossRef] [Green Version]
- Aphasizheva, I.; Zhang, L.; Wang, X.; Kaake, R.M.; Huang, L.; Monti, S.; Aphasizhev, R. RNA binding and core complexes constitute the U-insertion/deletion editosome. Mol. Cell. Biol. 2014, 34, 4329–4342. [Google Scholar] [CrossRef]
- Madina, B.R.; Kumar, V.; Mooers, B.H.; Cruz-Reyes, J. Native variants of the MRB1 complex exhibit specialized functions in kinetoplastid RNA editing. PLoS One 2015, 10, e0123441. [Google Scholar] [CrossRef] [PubMed]
- Aphasizhev, R.; Aphasizheva, I.; Nelson, R.E.; Simpson, L. A 100-kD complex of two RNA-binding proteins from mitochondria of Leishmania tarentolae catalyzes RNA annealing and interacts with several RNA editing components. RNA 2003, 9, 62–76. [Google Scholar] [CrossRef] [PubMed]
- Weng, J.; Aphasizheva, I.; Etheridge, R.D.; Huang, L.; Wang, X.; Falick, A.M.; Aphasizhev, R. Guide RNA-binding complex from mitochondria of trypanosomatids. Mol. Cell 2008, 32, 198–209. [Google Scholar] [CrossRef]
- Hashimi, H.; Čičová, Z.; Novotná, L.; Wen, Y.Z.; Lukeš, J. Kinetoplastid guide RNA biogenesis is dependent on subunits of the mitochondrial RNA binding complex 1 and mitochondrial RNA polymerase. RNA 2009, 15, 588–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ammerman, M.L.; Tomasello, D.L.; Faktorová, D.; Kafková, L.; Hashimi, H.; Lukeš, J.; Read, L.K. A core MRB1 complex component is indispensable for RNA editing in insect and human infective stages of Trypanosoma brucei. PLoS One 2013, 8, e78015. [Google Scholar] [CrossRef] [PubMed]
- Fisk, J.C.; Ammerman, M.L.; Presnyak, V.; Read, L.K. TbRGG2, an essential RNA editing accessory factor in two Trypanosoma brucei life cycle stages. J. Biol. Chem. 2008, 283, 23016–23025. [Google Scholar] [CrossRef] [PubMed]
- Kafková, L.; Ammerman, M.L.; Faktorová, D.; Fisk, J.C.; Zimmer, S.L.; Sobotka, R.; Read, L.K.; Lukeš, J.; Hashimi, H. Functional characterization of two paralogs that are novel RNA binding proteins influencing mitochondrial transcripts of Trypanosoma brucei. RNA 2012, 18, 1846–1861. [Google Scholar] [CrossRef] [PubMed]
- Ammerman, M.L.; Presnyak, V.; Fisk, J.C.; Foda, B.M.; Read, L.K. TbRGG2 facilitates kinetoplastid RNA editing initiation and progression past intrinsic pause sites. RNA 2010, 16, 2239–2251. [Google Scholar] [CrossRef] [Green Version]
- Etheridge, R.D.; Aphasizheva, I.; Gershon, P.D.; Aphasizhev, R. 3’ adenylation determines mRNA abundance and monitors completion of RNA editing in T. brucei mitochondria. Embo J. 2008, 27, 1596–1608. [Google Scholar] [CrossRef]
- Kao, C.Y.; Read, L.K. Opposing effects of polyadenylation on the stability of edited and unedited mitochondrial RNAs in Trypanosoma brucei. Mol. Cell. Biol. 2005, 25, 1634–1644. [Google Scholar] [CrossRef]
- Aphasizheva, I.; Maslov, D.A.; Wang, X.; Huang, L.; Aphasizhev, R. Pentatricopeptide repeat proteins stimulate mRNA adenylation/uridylation to activate mitochondrial translation in trypanosomes. Mol. Cell 2011, 42, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Aphasizhev, R.; Aphasizheva, I. Emerging roles of PPR proteins in trypanosomes: Switches, blocks, and triggers. RNA Biol. 2013, 10, 1495–1500. [Google Scholar] [CrossRef] [PubMed]
- Delannoy, E.; Stanley, W.A.; Bond, C.S.; Small, I.D. Pentatricopeptide repeat (PPR) proteins as sequence-specificity factors in post-transcriptional processes in organelles. Biochem. Soc. Trans. 2007, 35, 1643–1647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitz-Linneweber, C.; Small, I. Pentatricopeptide repeat proteins: A socket set for organelle gene expression. Trends Plant Sci. 2008, 13, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Barkan, A.; Small, I. Pentatricopeptide repeat proteins in plants. Annu. Rev. Plant Biol. 2014, 65, 415–442. [Google Scholar] [CrossRef] [PubMed]
- Rackham, O.; Filipovska, A. The role of mammalian PPR domain proteins in the regulation of mitochondrial gene expression. Biochim. Biophys. Acta 2012, 1819, 1008–1016. [Google Scholar] [CrossRef] [PubMed]
- Filipovska, A.; Rackham, O. Pentatricopeptide repeats: Modular blocks for building RNA-binding proteins. RNA Biol. 2013, 10, 1426–1432. [Google Scholar] [CrossRef]
- Manna, S. An overview of pentatricopeptide repeat proteins and their applications. Biochimie 2015, 113, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Lurin, C.; Andres, C.; Aubourg, S.; Bellaoui, M.; Bitton, F.; Bruyere, C.; Caboche, M.; Debast, C.; Gualberto, J.; Hoffmann, B.; et al. Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 2004, 16, 2089–2103. [Google Scholar] [CrossRef]
- Yin, P.; Li, Q.; Yan, C.; Liu, Y.; Liu, J.; Yu, F.; Wang, Z.; Long, J.; He, J.; Wang, H.W.; et al. Structural basis for the modular recognition of single-stranded RNA by PPR proteins. Nature 2013, 504, 168–171. [Google Scholar] [CrossRef]
- Shen, C.; Zhang, D.; Guan, Z.; Liu, Y.; Yang, Z.; Yang, Y.; Wang, X.; Wang, Q.; Zhang, Q.; Fan, S.; et al. Structural basis for specific single-stranded RNA recognition by designer pentatricopeptide repeat proteins. Nat. Commun. 2016, 7, 11285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, J.; Yao, Y.; Hong, S.; Yang, Y.; Shen, C.; Zhang, Q.; Zhang, D.; Zou, T.; Yin, P. Delineation of pentatricopeptide repeat codes for target RNA prediction. Nucl. Acids Res. 2019, 10, 1093. [Google Scholar] [CrossRef] [PubMed]
- Mingler, M.K.; Hingst, A.M.; Clement, S.L.; Yu, L.E.; Reifur, L.; Koslowsky, D.J. Identification of pentatricopeptide repeat proteins in Trypanosoma brucei. Mol. Biochem. Parasitol. 2006, 150, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Pusnik, M.; Small, I.; Read, L.K.; Fabbro, T.; Schneider, A. Pentatricopeptide repeat proteins in Trypanosoma brucei function in mitochondrial ribosomes. Mol. Cell Biol. 2007, 27, 6876–6888. [Google Scholar] [CrossRef] [PubMed]
- Maslov, D.A.; Spremulli, L.L.; Sharma, M.R.; Bhargava, K.; Grasso, D.; Falick, A.M.; Agrawal, R.K.; Parker, C.E.; Simpson, L. Proteomics and electron microscopic characterization of the unusual mitochondrial ribosome-related 45S complex in Leishmania tarentolae. Mol. Biochem. Parasitol. 2007, 152, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Ziková, A.; Panigrahi, A.K.; Dalley, R.A.; Acestor, N.; Anupama, A.; Ogata, Y.; Myler, P.J.; Stuart, K.D. Trypanosoma brucei mitochondrial ribosomes: Affinity purification and component identification by mass spectrometry. Mol. Cell. Proteom. 2008, 7, 1286–1296. [Google Scholar] [CrossRef]
- Ridlon, L.; Škodová, I.; Pan, S.; Lukeš, J.; Maslov, D.A. The importance of the 45 S ribosomal small subunit-related complex for mitochondrial translation in Trypanosoma brucei. J. Biol. Chem. 2013, 288, 32963–32978. [Google Scholar] [CrossRef] [PubMed]
- Kamba, P.F.; Dickson, D.A.; White, N.A.; Ekstrom, J.L.; Koslowsky, D.J.; Hoogstraten, C.G. The 27 kDa Trypanosoma brucei pentatricopeptide repeat protein is a G-tract specific RNA binding protein. Sci. Rep. 2018, 8, 16989. [Google Scholar] [CrossRef]
- Millevoi, S.; Moine, H.; Vagner, S. G-quadruplexes in RNA biology. Wiley Interdiscip. Rev. RNA 2012, 3, 495–507. [Google Scholar] [CrossRef]
- Leeder, W.M.; Hummel, N.F.; Göringer, H.U. Multiple G-quartet structures in pre-edited mRNAs suggest evolutionary driving force for RNA editing in trypanosomes. Sci. Rep. 2016, 6, 29810. [Google Scholar] [CrossRef] [Green Version]
- Pusnik, M.; Schneider, A. A trypanosomal pentatricopeptide repeat protein stabilizes the mitochondrial mRNAs of cytochrome oxidase subunits 1 and 2. Eukaryot. Cell 2012, 11, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Michelotti, E.F.; Harris, M.E.; Adler, B.; Torri, A.F.; Hajduk, S.L. Trypanosoma brucei mitochondrial ribosomal RNA synthesis, processing and developmentally regulated expression. Mol. Biochem. Parasitol. 1992, 54, 31–42. [Google Scholar] [CrossRef]
- Sement, F.M.; Suematsu, T.; Zhang, L.; Yu, T.; Huang, L.; Aphasizheva, I.; Aphasizhev, R. Transcription initiation defines kinetoplast RNA boundaries. Proc. Natl. Acad. Sci. USA 2018, 115, E10323–E10332. [Google Scholar] [CrossRef] [PubMed]
- Aphasizheva, I.; Aphasizhev, R. RET1-catalyzed uridylylation shapes the mitochondrial transcriptome in Trypanosoma brucei. Mol. Cell. Biol. 2010, 30, 1555–1567. [Google Scholar] [CrossRef] [PubMed]
- Suematsu, T.; Zhang, L.; Aphasizheva, I.; Monti, S.; Huang, L.; Wang, Q.; Costello, C.E.; Aphasizhev, R. Antisense transcripts delimit exonucleolytic activity of the mitochondrial 3’-processome to generate guide RNAs. Mol. Cell 2016, 61, 364–378. [Google Scholar] [CrossRef]
- Mattiacio, J.L.; Read, L.K. Roles for TbDSS-1 in RNA surveillance and decay of maturation by-products from the 12S rRNA locus. Nucl. Acids Res. 2008, 36, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Sement, F.M.; Suematsu, T.; Yu, T.; Monti, S.; Huang, L.; Aphasizhev, R.; Aphasizheva, I. PPR polyadenylation factor defines mitochondrial mRNA identity and stability in trypanosomes. Embo J. 2017, 36, 2435–2454. [Google Scholar] [CrossRef]
- Mattiacio, J.L.; Read, L.K. Evidence for a degradosome-like complex in the mitochondria of Trypanosoma brucei. Febs Lett. 2009, 583, 2333–2338. [Google Scholar] [CrossRef]
- Mesitov, M.V.; Yu, T.; Suematsu, T.; Sement, F.M.; Zhang, L.; Yu, C.; Huang, L.; Aphasizheva, I. Pentatricopeptide repeat poly(A)-binding protein KPAF4 stabilizes mitochondrial mRNAs in Trypanosoma brucei. Nat. Commun. 2019, 10, 146. [Google Scholar] [CrossRef]
- Bhat, G.J.; Myler, P.J.; Stuart, K. The two ATPase 6 mRNAs of Leishmania tarentolae differ at their 3’ ends. Mol. Biochem. Parasitol. 1991, 48, 139–150. [Google Scholar] [CrossRef]
- Aphasizheva, I.; Maslov, D.A.; Qian, Y.; Huang, L.; Wnag, Q.; Costello, C.; Aphasizhev, R. Ribosome-associated PPR proteins function as translational activators in mitochondria of trypanosomes. Mol. Microbiol. 2016, 99, 1043–1058. [Google Scholar] [CrossRef] [PubMed]
- Aphasizheva, I.; Maslov, D.A.; Aphasizhev, R. Kinetoplast DNA-encoded ribosomal protein S12: A possible functional link between mitochondrial RNA editing and translation in Trypanosoma brucei. RNA Biol. 2013, 10, 1679–1688. [Google Scholar] [CrossRef] [PubMed]
- Bhat, G.J.; Souza, A.E.; Feagin, J.E.; Stuart, K. Transcript-specific developmental regulation of polyadenylation in Trypanosoma brucei mitochondria. Mol. Biochem. Parasitol. 1992, 52, 231–240. [Google Scholar] [CrossRef]
- Bringaud, F.; Riviere, L.; Coustou, V. Energy metabolism of trypanosomatids: Adaptation to available carbon sources. Mol. Biochem. Parasitol. 2006, 149, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.K.; Bringaud, F.; Nolan, D.P.; Figueiredo, L.M. Metabolic reprogramming during the Trypanosoma brucei life cycle. F1000Res 2017, 6, 683. [Google Scholar] [CrossRef]
- Cristodero, M.; Seebeck, T.; Schneider, A. Mitochondrial translation is essential in bloodstream forms of Trypanosoma brucei. Mol. Microbiol. 2010, 78, 757–769. [Google Scholar] [CrossRef]
- Souza, A.E.; Shu, H.H.; Read, L.K.; Myler, P.J.; Stuart, K.D. Extensive editing of CR2 maxicircle transcripts of Trypanosoma brucei predicts a protein with homology to a subunit of NADH dehydrogenase. Mol. Cell. Biol. 1993, 13, 6832–6840. [Google Scholar] [CrossRef]
- Read, L.K.; Wilson, K.D.; Myler, P.J.; Stuart, K. Editing of Trypanosoma brucei maxicircle CR5 mRNA generates variable carboxy terminal predicted protein sequences. Nucl. Acids Res. 1994, 22, 1489–1495. [Google Scholar] [CrossRef]
- Christian, B.E.; Spremulli, L.L. Mechanism of protein biosynthesis in mammalian mitochondria. Biochim. Biophys. Acta 2012, 1819, 1035–1054. [Google Scholar] [CrossRef]
- Herrmann, J.M.; Woellhaf, M.W.; Bonnefoy, N. Control of protein synthesis in yeast mitochondria: The concept of translational activators. Biochim. Biophys. Acta 2013, 1833, 286–294. [Google Scholar] [CrossRef] [Green Version]
- Wong, R.G.; Kazane, K.; Maslov, D.A.; Rogers, K.; Aphasizhev, R.; Simpson, L. U-insertion/deletion RNA editing multiprotein complexes and mitochondrial ribosomes in Leishmania tarentolae are located in antipodal nodes adjacent to the kinetoplast DNA. Mitochondrion 2015, 25, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Herrera, J.; Zhou, S.; Maslov, D.A.; Simpson, L. Trypanosome REH1 is an RNA helicase involved with the 3’-5’ polarity of multiple gRNA-guided uridine insertion/deletion RNA editing. Proc. Natl. Acad. Sci. Usa 2011, 108, 3542–3547. [Google Scholar] [CrossRef] [PubMed]
- Horváth, A.; Neboháčová, M.; Lukeš, J.; Maslov, D.A. Unusual polypeptide synthesis in the kinetoplast-mitochondria from Leishmania tarentolae. Identification of individual de novo translation products. J. Biol. Chem. 2002, 277, 7222–7230. [Google Scholar] [CrossRef] [PubMed]
- Horváth, A.; Kingan, T.G.; Maslov, D.A. Detection of the mitochondrially encoded cytochrome c oxidase subunit I in the trypanosomatid protozoan Leishmania tarentolae. J. Biol. Chem. 2000, 275, 17160–17165. [Google Scholar] [CrossRef] [PubMed]
- Maslov, D.A.; Agrawal, R.K. Kinetoplast-mitochondrial translation system in trypanosomatids. In Translation in Mitochondria and Other Organelles; Duchêne, A.-M., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 133–157. [Google Scholar]
- Maslov, D.A.; Agrawal, R.K. Mitochondrial translation in trypanosomatids. In RNA Metabolism in Trypanosomes; Bindereif, A., Ed.; Nucleic Acids and Molecular Biology; Springer: Berlin/Heidelberg, Germany, 2012; Volume 28, pp. 215–236. [Google Scholar]
- Maslov, D.A.; Sharma, M.R.; Butler, E.; Falick, A.M.; Gingery, M.; Agrawal, R.K.; Spremulli, L.L.; Simpson, L. Isolation and characterization of mitochondrial ribosomes and ribosomal subunits from Leishmania Tarentolae. Mol. Biochem. Parasitol. 2006, 148, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.R.; Booth, T.M.; Simpson, L.; Maslov, D.A.; Agrawal, R.K. Structure of a mitochondrial ribosome with minimal RNA. Proc. Natl. Acad. Sci. USA 2009, 106, 9637–9642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrawal, R.K.; Sharma, M.R.; Yassin, A.S.; Lahiri, I.; Spremulli, L. Structure and function of organellar ribosomes as revealed by cryo-EM. In Ribosomes: Structure, Function, and Dynamics; Rodnina, M., Wintermeyer, W., Green, R., Eds.; Springer: Wien, New York, NY, USA, 2011; pp. 83–96. [Google Scholar]
- De la Cruz, V.F.; Lake, J.A.; Simpson, A.M.; Simpson, L. A minimal ribosomal RNA: Sequence and secondary structure of the 9S kinetoplast ribosomal RNA from Leishmania tarentolae. Proc. Natl. Acad. Sci. USA 1985, 82, 1401–1405. [Google Scholar] [CrossRef] [PubMed]
- Eperon, I.; Janssen, J.; Hoeijmakers, J.; Borst, P. The major transcripts of the kinetoplast DNA of T. brucei are very small ribosomal RNAs. Nucl. Acids Res. 1983, 11, 105–125. [Google Scholar] [CrossRef]
- Mohan, S.; Donohue, J.P.; Noller, H.F. Molecular mechanics of 30S subunit head rotation. Proc. Natl. Acad. Sci. USA 2014, 111, 13325–13330. [Google Scholar] [CrossRef] [Green Version]
- Pfeffer, S.; Woellhaf, M.W.; Herrmann, J.M.; Forster, F. Organization of the mitochondrial translation machinery studied in situ by cryoelectron tomography. Nat. Commun. 2015, 6, 6019. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maslov, D.A. Separating the Wheat from the Chaff: RNA Editing and Selection of Translatable mRNA in Trypanosome Mitochondria. Pathogens 2019, 8, 105. https://doi.org/10.3390/pathogens8030105
Maslov DA. Separating the Wheat from the Chaff: RNA Editing and Selection of Translatable mRNA in Trypanosome Mitochondria. Pathogens. 2019; 8(3):105. https://doi.org/10.3390/pathogens8030105
Chicago/Turabian StyleMaslov, Dmitri A. 2019. "Separating the Wheat from the Chaff: RNA Editing and Selection of Translatable mRNA in Trypanosome Mitochondria" Pathogens 8, no. 3: 105. https://doi.org/10.3390/pathogens8030105
APA StyleMaslov, D. A. (2019). Separating the Wheat from the Chaff: RNA Editing and Selection of Translatable mRNA in Trypanosome Mitochondria. Pathogens, 8(3), 105. https://doi.org/10.3390/pathogens8030105