Separating the Wheat from the Chaff: RNA Editing and Selection of Translatable mRNA in Trypanosome Mitochondria
Abstract
1. Introduction
2. Kinetoplast DNA and the Discovery of mRNA Editing
3. Enzymology of the Core RNA Editing Reactions
4. The Dynamics of mRNA-gRNA Interactions
5. The Auxiliary Factors Enabling gRNA–mRNA Interactions
6. PAMC and Additional Pre- and Post-Editing Modifications in mRNA
7. Pentatricopeptide Proteins as Specific mRNA Recognition Factors
8. PPR Proteins as Modulators in mRNA Maturation
9. Formation and the Role of 3′ Poly(A/U)-Tails in mRNA
10. The Initiation Codon Recognition Problem
11. Organization of the Mitochondrial Translation Apparatus
12. The Unusual SSU-Like 45S and Ribosome-Like 80S Complexes
13. Two Types of Mitochondrial Ribosomes?
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vickerman, K. The Diversity of the Kinetoplastid Flagellates. In Biology of the Kinetoplastida; Lumsden, W.H.R., Evans, D.A., Eds.; Academic Press: London, UK; New York, NY, USA, 1976; pp. 1–34. [Google Scholar]
- Moreira, D.; Lopez-Garcia, P.; Vickerman, K. An updated view of kinetoplastid phylogeny using environmental sequences and a closer outgroup: Proposal for a new classification of the class Kinetoplastea. Int. J. Syst. Evol. Microbiol. 2004, 54, 1861–1875. [Google Scholar] [CrossRef] [PubMed]
- Doležel, D.; Jirků, M.; Maslov, D.A.; Lukeš, J. Phylogeny of the bodonid flagellates (Kinetoplastida) based on small-subunit rRNA gene sequences. Int. J. Syst. Bacteriol. 2000, 50, 1943–1951. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yazaki, E.; Ishikawa, S.A.; Kume, K.; Kumagai, A.; Kamaishi, T.; Tanifuji, G.; Hashimoto, T.; Inagaki, Y. Global Kinetoplastea phylogeny inferred from a large-scale multigene alignment including parasitic species for better understanding transitions from a free-living to a parasitic lifestyle. Genes Genet. Syst. 2017, 92, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Lukeš, J.; Skalicky, T.; Týč, J.; Votýpka, J.; Yurchenko, V. Evolution of parasitism in kinetoplastid flagellates. Mol. Biochem. Parasitol. 2014, 195, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Laveran, A.; Mesnil, F. Sur les flagelles a membrane ondulante des poissons (genres Trypanosoma Gruby et Trypanoplasma n. gen.). Compt. Rend. Acad. Sci. Paris 1901, 133, 670–675. [Google Scholar]
- Alexeieff, A. Sur la fonction glycoplastique du kinétoplaste (= kinétonucleus) chez les flagellés. Compt. Rend. Soc. Biol. 1917, 80, 512–514. [Google Scholar]
- Steinert, M. Mitochondria associated with the kinetonucleus of Trypanos. Mega J. Biophys. Biochem. Cytol. 1960, 8. [Google Scholar]
- Maslov, D.A.; Opperdoes, F.R.; Kostygov, A.Y.; Hashimi, H.; Lukeš, J.; Yurchenko, V. Recent advances in trypanosomatid research: Genome organization, expression, metabolism, taxonomy and evolution. Parasitology 2019, 146, 1–27. [Google Scholar] [CrossRef]
- Lukeš, J.; Butenko, A.; Hashimi, H.; Maslov, D.A.; Votýpka, J.; Yurchenko, V. Trypanosomatids are much more than just trypanosomes: Clues from the expanded family tree. Trends Parasitol 2018, 34, 466–480. [Google Scholar] [CrossRef]
- Hoare, C.A. The Trypanosomes of Mammals. A Zoological Monograph; Blackwell Scientific Publications: Oxford, UK, 1972. [Google Scholar]
- MacGregor, P.; Szoor, B.; Savill, N.J.; Matthews, K.R. Trypanosomal immune evasion, chronicity and transmission: An elegant balancing act. Nat. Rev. Microbiol. 2012, 10, 431–438. [Google Scholar] [CrossRef]
- Horn, D. Antigenic variation in African trypanosomes. Mol. Biochem. Parasitol. 2014, 195, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Rotureau, B.; Van Den Abbeele, J. Through the dark continent: African trypanosome development in the tsetse fly. Front. Cell. Infect. Microbiol. 2013, 3, 53. [Google Scholar] [CrossRef] [PubMed]
- Fenn, K.; Matthews, K.R. The cell biology of Trypanosoma brucei differentiation. Curr. Opin. Microbiol. 2007, 10, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Capewell, P.; Cooper, A.; Clucas, C.; Weir, W.; Macleod, A. A co-evolutionary arms race: Trypanosomes shaping the human genome, humans shaping the trypanosome genome. Parasitology 2015, 142 (Suppl. 1), S108–S119. [Google Scholar] [CrossRef]
- Lainson, R.; Shaw, J.J. Evolution, classification and geographical distribution. In The Leishmaniases in Biology and Medicine; Peters, W., Killick-Kendrick, R., Eds.; Academic Press: London, UK, 1987; pp. 1–120. [Google Scholar]
- Akhoundi, M.; Downing, T.; Votýpka, J.; Kuhls, K.; Lukeš, J.; Cannet, A.; Ravel, C.; Marty, P.; Delaunay, P.; Kasbari, M.; et al. Leishmania infections: Molecular targets and diagnosis. Mol. Asp. Med. 2017, 57, 1–29. [Google Scholar] [CrossRef]
- Kostygov, A.Y.; Yurchenko, V. Revised classification of the subfamily Leishmaniinae (Trypanosomatidae). Folia Parasitol. (Praha) 2017, 64, 020. [Google Scholar] [CrossRef]
- Kaufer, A.; Ellis, J.; Stark, D.; Barratt, J. The evolution of trypanosomatid taxonomy. Parasit. Vectors 2017, 10, 287. [Google Scholar] [CrossRef]
- Wallace, F.G. The trypanosomatid parasites of insects and arachnids. Exptl. Parasitol. 1966, 18, 124–193. [Google Scholar] [CrossRef]
- Maslov, D.A.; Votýpka, J.; Yurchenko, V.; Lukeš, J. Diversity and phylogeny of insect trypanosomatids: All that is hidden shall be revealed. Trends Parasitol. 2013, 29, 43–52. [Google Scholar] [CrossRef]
- Camargo, E.P. Phytomonas and other trypanosomatid parasites of plants and fruit. Adv. Parasitol. 1999, 42, 29–112. [Google Scholar]
- Jaskowska, E.; Butler, C.; Preston, G.; Kelly, S. Phytomonas: Trypanosomatids adapted to plant environments. PLoS Pathog. 2015, 11, e1004484. [Google Scholar] [CrossRef] [PubMed]
- Simpson, L.; Thiemann, O.H.; Savill, N.J.; Alfonzo, J.D.; Maslov, D.A. Evolution of RNA editing in trypanosome mitochondria. Proc. Natl. Acad. Sci. USA 2000, 97, 6986–6993. [Google Scholar] [CrossRef] [PubMed]
- Flegontova, O.; Flegontov, P.; Malviya, S.; Poulain, J.; de Vargas, C.; Bowler, C.; Lukeš, J.; Horák, A. Neobodonids are dominant kinetoplastids in the global ocean. Env. Microbiol. 2018, 20, 878–889. [Google Scholar] [CrossRef] [PubMed]
- Simpson, A.G.; Stevens, J.R.; Lukeš, J. The evolution and diversity of kinetoplastid flagellates. Trends Parasitol. 2006, 22, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Lukeš, J.; Guilbride, D.L.; Votýpka, J.; Ziková, A.; Benne, R.; Englund, P.T. Kinetoplast DNA network: Evolution of an improbable structure. Eukaryot. Cell 2002, 1, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Vickerman, K.; Preston, T.M. Comparative Cell Biology of the Kinetoplastid Flagellates. In Biology of the Kinetoplastida; Lumsden, W.H.R., Evans, D.A., Eds.; Academic Press: London, UK, 1976; pp. 35–130. [Google Scholar]
- Schneider, A.; Ochsenreiter, T. Failure is not an option—mitochondrial genome segregation in trypanosomes. J. Cell Sci. 2018, 131, jcs.221820. [Google Scholar] [CrossRef] [PubMed]
- Verner, Z.; Basu, S.; Benz, C.; Dixit, S.; Dobáková, E.; Faktorová, D.; Hashimi, H.; Horáková, E.; Huang, Z.; Paris, Z.; et al. Malleable mitochondrion of Trypanos. Brucei. Int. Rev. Cell Mol. Biol. 2015, 315, 73–151. [Google Scholar]
- Simpson, L.; Maslov, D.A.; Blum, B. RNA Editing in Leishmania Mitochondria. In RNA Editing—the Alteration of Protein Coding Sequences of RNA; Benne, R., Ed.; Ellis Horwood: New York, NY, USA, 1993; pp. 53–85. [Google Scholar]
- Duarte, M.; Tomas, A.M. The mitochondrial complex I of trypanosomatids—an overview of current knowledge. J. Bioenerg. Biomembr. 2014, 46, 299–311. [Google Scholar] [CrossRef]
- Kannan, S.; Burger, G. Unassigned MURF1 of kinetoplastids codes for NADH dehydrogenase subunit 2. BMC Genom. 2008, 9, 455. [Google Scholar] [CrossRef]
- Maslov, D.A.; Sturm, N.R.; Niner, B.M.; Gruszynski, E.S.; Peris, M.; Simpson, L. An intergenic G-rich region in Leishmania tarentolae kinetoplast maxicircle DNA is a pan-edited cryptogene encoding ribosomal protein S12. Mol. Cell. Biol. 1992, 12, 56–67. [Google Scholar] [CrossRef]
- Ramrath, D.J.F.; Niemann, M.; Leibundgut, M.; Bieri, P.; Prange, C.; Horn, E.K.; Leitner, A.; Boehringer, D.; Schneider, A.; Ban, N. Evolutionary shift toward protein-based architecture in trypanosomal mitochondrial ribosomes. Science 2018, 362, aau7735. [Google Scholar] [CrossRef] [PubMed]
- Niemann, M.; Harsman, A.; Mani, J.; Peikert, C.D.; Oeljeklaus, S.; Warscheid, B.; Wagner, R.; Schneider, A. tRNAs and proteins use the same import channel for translocation across the mitochondrial outer membrane of trypanosomes. Proc. Natl. Acad. Sci. USA 2017, 114, E7679–E7687. [Google Scholar] [CrossRef]
- Alfonzo, J.D.; Soll, D. Mitochondrial tRNA import—the challenge to understand has just begun. Biol. Chem. 2009, 390, 717–722. [Google Scholar] [CrossRef]
- Feagin, J.E. Mitochondrial genome diversity in parasites. Int. J. Parasitol. 2000, 30, 371–390. [Google Scholar] [CrossRef]
- Flegontov, P.N.; Strelkova, M.V.; Kolesnikov, A.A. The Leishmania major maxicircle divergent region is variable in different isolates and cell types. Mol. Biochem. Parasitol. 2006, 146, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Maslov, D.A.; Kolesnikov, A.; Zaitseva, G. Conservative and divergent base sequence regions in the maxicircle kinetoplast DNA of several trypanosomatid flagellates. Mol. Biochem. Parasitol. 1984, 12, 351–364. [Google Scholar] [CrossRef]
- Muhich, M.; Neckelmann, N.; Simpson, L. The divergent region of the Leishmania tarentolae kinetoplast maxicircle DNA contains a diverse set of repetitive sequences. Nucl. Acids Res. 1985, 13, 3241–3260. [Google Scholar] [CrossRef][Green Version]
- de la Cruz, V.; Neckelmann, N.; Simpson, L. Sequences of six structural genes and several open reading frames in the kinetoplast maxicircle DNA of Leishmania tarentolae. J. Biol. Chem. 1984, 259, 15136–15147. [Google Scholar]
- Benne, R. Mitochondrial genes in trypanosomes. Trends Genet. 1985, 117–121. [Google Scholar] [CrossRef]
- Benne, R.; van den Burg, J.; Brakenhoff, J.; Sloof, P.; van Boom, J.; Tromp, M. Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 1986, 46, 819–826. [Google Scholar] [CrossRef]
- Benne, R. RNA editing in trypanosome mitochondria. Biochim. Biophys. Acta 1989, 1007, 131–139. [Google Scholar] [CrossRef]
- Simpson, L.; Shaw, J. RNA editing and the mitochondrial cryptogenes of kinetoplastid protozoa. Cell 1989, 57, 355–366. [Google Scholar] [CrossRef]
- Feagin, J.E.; Abraham, J.; Stuart, K. Extensive editing of the cytochrome c oxidase III transcript in Trypanosoma brucei. Cell 1988, 53, 413–422. [Google Scholar] [CrossRef]
- Koslowsky, D.J.; Bhat, G.J.; Perrollaz, A.L.; Feagin, J.E.; Stuart, K. The MURF3 gene of T. brucei contains multiple domains of extensive editing and is homologous to a subunit of NADH dehydrogenase. Cell 1990, 62, 901–911. [Google Scholar] [CrossRef]
- Bhat, G.J.; Koslowsky, D.J.; Feagin, J.E.; Smiley, B.L.; Stuart, K. An extensively edited mitochondrial transcript in kinetoplastids encodes a protein homologous to ATPase subunit 6. Cell 1990, 61, 885–894. [Google Scholar] [CrossRef]
- Feagin, J.E.; Shaw, J.M.; Simpson, L.; Stuart, K. Creation of AUG initiation codons by addition of uridines within cytochrome b transcripts of kinetoplastids. Proc. Natl. Acad. Sci. USA 1988, 85, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.; Feagin, J.E.; Stuart, K.; Simpson, L. Editing of mitochondrial mRNAs by uridine addition and deletion generates conserved amino acid sequences and AUG initiation codons. Cell 1988, 53, 401–411. [Google Scholar] [CrossRef]
- Simpson, L.; Maslov, D.A. RNA editing and the evolution of parasites. Science 1994, 264, 1870–1871. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Blum, B.; Bakalara, N.; Simpson, L. A model for RNA editing in kinetoplastid mitochondria: "Guide" RNA molecules transcribed from maxicircle DNA provide the edited information. Cell 1990, 60, 189–198. [Google Scholar] [CrossRef]
- Sturm, N.R.; Simpson, L. Leishmania tarentolae minicircles of different sequence classes encode single guide RNAs located in the variable region approximately 150 bp from the conserved region. Nucl. Acids Res. 1991, 19, 6277–6281. [Google Scholar] [CrossRef]
- Pollard, V.W.; Rohrer, S.P.; Michelotti, E.F.; Hancock, K.; Hajduk, S.L. Organization of minicircle genes for guide RNAs in Trypanosoma brucei. Cell 1990, 63, 783–790. [Google Scholar] [CrossRef]
- Avila, H.A.; Simpson, L. Organization and complexity of minicircle-encoded guide RNAs in Trypanos. Cruzi. RNA 1995, 1, 939–947. [Google Scholar] [PubMed]
- Yasuhira, S.; Simpson, L. Minicircle-encoded guide RNAs from Crithidia fasciculata. RNA 1995, 1, 634–643. [Google Scholar] [PubMed]
- Simpson, L. The genomic organization of guide RNA genes in kinetoplastid protozoa: Several conundrums and their solutions. Mol. Biochem. Parasitol. 1997, 86, 133–141. [Google Scholar] [CrossRef]
- Hong, M.; Simpson, L. Genomic organization of Trypanosoma brucei kinetoplast DNA minicircles. Protist. 2003, 154, 265–279. [Google Scholar] [CrossRef] [PubMed]
- Corell, R.A.; Feagin, J.E.; Riley, G.R.; Strickland, T.; Guderian, J.A.; Myler, P.J.; Stuart, K. Trypanosoma brucei minicircles encode multiple guide RNAs which can direct editing of extensively overlapping sequences. Nucl. Acids Res. 1993, 21, 4313–4320. [Google Scholar] [CrossRef] [PubMed]
- Blum, B.; Simpson, L. Guide RNAs in kinetoplastid mitochondria have a nonencoded 3’ oligo-(U) tail involved in recognition of the pre-edited region. Cell 1990, 62, 391–397. [Google Scholar] [CrossRef]
- Koslowsky, D.J.; Bhat, G.J.; Read, L.K.; Stuart, K. Cycles of progressive realignment of gRNA with mRNA in RNA editing. Cell 1991, 67, 537–546. [Google Scholar] [CrossRef]
- Gerasimov, E.S.; Gasparyan, A.A.; Kaurov, I.; Tichy, B.; Logacheva, M.D.; Kolesnikov, A.A.; Lukeš, J.; Yurchenko, V.; Zimmer, S.L.; Flegontov, P. Trypanosomatid mitochondrial RNA editing: Dramatically complex transcript repertoires revealed with a dedicated mapping tool. Nucl. Acids Res. 2018, 46, 765–781. [Google Scholar] [CrossRef]
- Simpson, R.M.; Bruno, A.E.; Bard, J.E.; Buck, M.J.; Read, L.K. High-throughput sequencing of partially edited trypanosome mRNAs reveals barriers to editing progression and evidence for alternative editing. RNA 2016, 22, 677–695. [Google Scholar] [CrossRef]
- Kirby, L.E.; Sun, Y.; Judah, D.; Nowak, S.; Koslowsky, D. Analysis of the Trypanosoma brucei EATRO 164 bloodstream guide RNA transcriptome. PLoS Negl. Trop. Dis. 2016, 10, e0004793. [Google Scholar] [CrossRef] [PubMed]
- Koslowsky, D.; Sun, Y.; Hindenach, J.; Theisen, T.; Lucas, J. The insect-phase gRNA transcriptome in Trypanosoma brucei. Nucleic Acids Res. 2014, 42, 1873–1886. [Google Scholar] [CrossRef] [PubMed]
- Aphasizheva, I.; Aphasizhev, R. U-insertion/deletion mRNA-editing holoenzyme: Definition in sight. Trends Parasitol. 2015. [Google Scholar] [CrossRef] [PubMed]
- Hashimi, H.; Zimmer, S.L.; Ammerman, M.L.; Read, L.K.; Lukeš, J. Dual core processing: MRB1 is an emerging kinetoplast RNA editing complex. Trends Parasitol. 2013, 29, 91–99. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Read, L.K.; Lukeš, J.; Hashimi, H. Trypanosome RNA editing: The complexity of getting U in and taking U out. Wiley Interdiscip. Rev. RNA 2016, 7, 33–51. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Reyes, J.; Mooers, B.H.M.; Doharey, P.K.; Meehan, J.; Gulati, S. Dynamic RNA holo-editosomes with subcomplex variants: Insights into the control of trypanosome editing. Wiley Interdiscip. Rev. RNA 2018, 9, e1502. [Google Scholar] [CrossRef] [PubMed]
- Göringer, H.U. ’Gestalt’, composition and function of the Trypanosoma brucei editosome. Annu. Rev. Microbiol. 2012, 66, 65–82. [Google Scholar] [CrossRef] [PubMed]
- Rusche, L.N.; Cruz-Reyes, J.; Piller, K.J.; Sollner-Webb, B. Purification of a functional enzymatic editing complex from Trypanosoma brucei mitochondria. Embo J. 1997, 16, 4069–4081. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Ge, P.; Hui, W.H.; Atanasov, I.; Rogers, K.; Guo, Q.; Osato, D.; Falick, A.M.; Zhou, Z.H.; Simpson, L. Structure of the core editing complex (L-complex) involved in uridine insertion/deletion RNA editing in trypanosomatid mitochondria. Proc. Natl. Acad. Sci. USA 2009, 106, 12306–12310. [Google Scholar] [CrossRef]
- Carnes, J.; Trotter, J.R.; Peltan, A.; Fleck, M.; Stuart, K. RNA editing in Trypanosoma brucei requires three different editosomes. Mol. Cell. Biol. 2008, 28, 122–130. [Google Scholar] [CrossRef]
- Carnes, J.; Soares, C.Z.; Wickham, C.; Stuart, K. Endonuclease associations with three distinct editosomes in Trypanosoma brucei. J. Biol. Chem. 2011, 286, 19320–19330. [Google Scholar] [CrossRef] [PubMed]
- Carnes, J.; Ernst, N.L.; Wickham, C.; Panicucci, B.; Stuart, K. KREX2 is not essential for either procyclic or bloodstream form Trypanosoma brucei. PLoS One 2012, 7, e33405. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rogers, K.; Gao, G.; Simpson, L. Uridylate-specific 3’-5’-exoribonucleases involved in uridylate-deletion RNA editing in trypanosomatid mitochondria. J. Biol. Chem. 2007, 282, 29073–29080. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Simpson, L. Is the Trypanosoma brucei REL1 RNA ligase specific for U-deletion RNA editing, and is the REL2 RNA ligase specific for U-insertion editing? J. Biol. Chem. 2003, 278, 27570–27574. [Google Scholar] [CrossRef] [PubMed]
- Schnaufer, A.; Ernst, N.L.; Palazzo, S.S.; O’Rear, J.; Salavati, R.; Stuart, K. Separate insertion and deletion subcomplexes of the Trypanosoma brucei RNA editing complex. Mol. Cell 2003, 12, 307–319. [Google Scholar] [CrossRef]
- Sturm, N.R.; Simpson, L. Kinetoplast DNA minicircles encode guide RNAs for editing of cytochrome oxidase subunit III mRNA. Cell 1990, 61, 879–884. [Google Scholar] [CrossRef]
- Maslov, D.A.; Simpson, L. The polarity of editing within a multiple gRNA-mediated domain is due to formation of anchors for upstream gRNAs by downstream editing. Cell 1992, 70, 459–467. [Google Scholar] [CrossRef]
- Gao, G.G.; Kapushoc, S.T.; Simpson, A.M.; Thiemann, O.H.; Simpson, L. Guide RNAs of the recently isolated LEM125 strain of Leishmania tarentolae: An unexpected complexity. RNA 2001, 7, 1335–1347. [Google Scholar] [CrossRef]
- Simpson, L.; Douglass, S.M.; Lake, J.A.; Pellegrini, M.; Li, F. Comparison of the mitochondrial genomes and steady state transcriptomes of two strains of the trypanosomatid parasite, Leishmania tarentolae. PLoS Negl. Trop Dis. 2015, 9, e0003841. [Google Scholar] [CrossRef]
- Thiemann, O.H.; Maslov, D.A.; Simpson, L. Disruption of RNA editing in Leishmania tarentolae by the loss of minicircle-encoded guide RNA genes. Embo J. 1994, 13, 5689–5700. [Google Scholar] [CrossRef]
- Riley, G.R.; Corell, R.A.; Stuart, K. Multiple guide RNAs for identical editing of Trypanosoma brucei apocytochrome b mRNA have an unusual minicircle location and are developmentally regulated. J. Biol. Chem. 1994, 269, 6101–6108. [Google Scholar] [PubMed]
- Decker, C.J.; Sollner-Webb, B. RNA editing involves indiscriminate U changes throughout precisely defined editing domains. Cell 1990, 61, 1001–1011. [Google Scholar] [CrossRef]
- Sturm, N.R.; Simpson, L. Partially edited mRNAs for cytochrome b and subunit III of cytochrome oxidase from Leishmania tarentolae mitochondria: RNA editing intermediates. Cell 1990, 61, 871–878. [Google Scholar] [CrossRef]
- Sturm, N.R.; Maslov, D.A.; Blum, B.; Simpson, L. Generation of unexpected editing patterns in Leishmania tarentolae mitochondrial mRNAs: Misediting produced by misguiding. Cell 1992, 70, 469–476. [Google Scholar] [CrossRef]
- Maslov, D.A.; Thiemann, O.; Simpson, L. Editing and misediting of transcripts of the kinetoplast maxicircle G5 (ND3) cryptogene in an old laboratory strain of Leishmania tarentolae. Mol. Biochem. Parasitol. 1994, 68, 155–159. [Google Scholar] [CrossRef]
- Maslov, D.A.; Hollar, L.; Haghighat, P.; Nawathean, P. Demonstration of mRNA editing and localization of guide RNA genes in kinetoplast-mitochondria of the plant trypanosomatid Phytomonas serpens. Mol. Biochem. Parasitol. 1998, 93, 225–236. [Google Scholar] [CrossRef]
- Neboháčová, M.; Kim, C.E.; Simpson, L.; Maslov, D.A. RNA editing and mitochondrial activity in promastigotes and amastigotes of Leishmania donovani. Int. J. Parasitol. 2009, 39, 635–644. [Google Scholar] [CrossRef]
- Speijer, D.; Breek, C.K.D.; Muijsers, A.O.; Hartog, A.F.; Berden, J.A.; Albracht, S.P.J.; Samyn, B.; Van Beeumen, J.; Benne, R. Characterization of the respiratory chain from cultured Crithidia fasciculata. Mol. Biochem. Parasitol. 1997, 85, 171–186. [Google Scholar] [CrossRef]
- Kirby, L.E.; Koslowsky, D. Mitochondrial dual-coding genes in Trypanosoma brucei. PLoS Negl. Trop. Dis. 2017, 11, e0005989. [Google Scholar] [CrossRef]
- Read, L.K.; Myler, P.J.; Stuart, K. Extensive editing of both processed and preprocessed maxicircle CR6 transcripts in Trypanosoma brucei. J. Biol. Chem. 1992, 267, 1123–1128. [Google Scholar]
- Corell, R.A.; Myler, P.; Stuart, K. Trypanosoma brucei mitochondrial CR4 gene encodes an extensively edited mRNA with completely edited sequence only in bloodstream forms. Mol. Biochem. Parasitol. 1994, 64, 65–74. [Google Scholar] [CrossRef]
- Maslov, D.A.; Nawathean, P.; Scheel, J. Partial kinetoplast-mitochondrial gene organization and expression in the respiratory deficient plant trypanosomatid Phytomonas serpens. Mol. Biochem. Parasitol. 1999, 99, 207–221. [Google Scholar] [CrossRef]
- Nawathean, P.; Maslov, D.A. The absence of genes for cytochrome c oxidase and reductase subunits in maxicircle kinetoplast DNA of the respiration-deficient plant trypanosomatid Phytomonas Serpens. Curr. Genet. 2000, 38, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Maslov, D.A. Complete set of mitochondrial pan-edited mRNAs in Leishmania mexicana amazonensis LV78. Mol. Biochem. Parasitol. 2010, 173, 107–114. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ochsenreiter, T.; Hajduk, S.L. Alternative editing of cytochrome c oxidase III mRNA in trypanosome mitochondria generates protein diversity. Embo Rep. 2006, 7, 1128–1133. [Google Scholar] [CrossRef] [PubMed]
- Feagin, J.; Jasmer, D.; Stuart, K. Developmentally regulated addition of nucleotides within apocytochrome b transcripts in Trypanosoma brucei. Cell 1987, 49, 337–345. [Google Scholar] [CrossRef]
- Souza, A.E.; Myler, P.J.; Stuart, K. Maxicircle CR1 transcripts of Trypanosoma brucei are edited, developmentally regulated, and encode a putative iron-sulfur protein homologous to an NADH dehydrogenase subunit. Mol. Cell. Biol. 1992, 12, 2100–2107. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Koslowsky, D.J.; Riley, G.R.; Feagin, J.E.; Stuart, K. Guide RNAs for transcripts with developmentally regulated RNA editing are present in both life cycle stages of Trypanos. Brucei. Mol. Cell. Biol. 1992, 12, 2043–2049. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Osato, D.; Rogers, K.; Guo, Q.; Li, F.; Richmond, G.; Klug, F.; Simpson, L. Uridine insertion/deletion RNA editing in trypanosomatid mitochondria: In search of the editosome. RNA 2009, 15, 1338–1344. [Google Scholar] [CrossRef][Green Version]
- Aphasizheva, I.; Zhang, L.; Wang, X.; Kaake, R.M.; Huang, L.; Monti, S.; Aphasizhev, R. RNA binding and core complexes constitute the U-insertion/deletion editosome. Mol. Cell. Biol. 2014, 34, 4329–4342. [Google Scholar] [CrossRef]
- Madina, B.R.; Kumar, V.; Mooers, B.H.; Cruz-Reyes, J. Native variants of the MRB1 complex exhibit specialized functions in kinetoplastid RNA editing. PLoS One 2015, 10, e0123441. [Google Scholar] [CrossRef] [PubMed]
- Aphasizhev, R.; Aphasizheva, I.; Nelson, R.E.; Simpson, L. A 100-kD complex of two RNA-binding proteins from mitochondria of Leishmania tarentolae catalyzes RNA annealing and interacts with several RNA editing components. RNA 2003, 9, 62–76. [Google Scholar] [CrossRef] [PubMed]
- Weng, J.; Aphasizheva, I.; Etheridge, R.D.; Huang, L.; Wang, X.; Falick, A.M.; Aphasizhev, R. Guide RNA-binding complex from mitochondria of trypanosomatids. Mol. Cell 2008, 32, 198–209. [Google Scholar] [CrossRef][Green Version]
- Hashimi, H.; Čičová, Z.; Novotná, L.; Wen, Y.Z.; Lukeš, J. Kinetoplastid guide RNA biogenesis is dependent on subunits of the mitochondrial RNA binding complex 1 and mitochondrial RNA polymerase. RNA 2009, 15, 588–599. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ammerman, M.L.; Tomasello, D.L.; Faktorová, D.; Kafková, L.; Hashimi, H.; Lukeš, J.; Read, L.K. A core MRB1 complex component is indispensable for RNA editing in insect and human infective stages of Trypanosoma brucei. PLoS One 2013, 8, e78015. [Google Scholar] [CrossRef] [PubMed]
- Fisk, J.C.; Ammerman, M.L.; Presnyak, V.; Read, L.K. TbRGG2, an essential RNA editing accessory factor in two Trypanosoma brucei life cycle stages. J. Biol. Chem. 2008, 283, 23016–23025. [Google Scholar] [CrossRef] [PubMed]
- Kafková, L.; Ammerman, M.L.; Faktorová, D.; Fisk, J.C.; Zimmer, S.L.; Sobotka, R.; Read, L.K.; Lukeš, J.; Hashimi, H. Functional characterization of two paralogs that are novel RNA binding proteins influencing mitochondrial transcripts of Trypanosoma brucei. RNA 2012, 18, 1846–1861. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ammerman, M.L.; Presnyak, V.; Fisk, J.C.; Foda, B.M.; Read, L.K. TbRGG2 facilitates kinetoplastid RNA editing initiation and progression past intrinsic pause sites. RNA 2010, 16, 2239–2251. [Google Scholar] [CrossRef]
- Etheridge, R.D.; Aphasizheva, I.; Gershon, P.D.; Aphasizhev, R. 3’ adenylation determines mRNA abundance and monitors completion of RNA editing in T. brucei mitochondria. Embo J. 2008, 27, 1596–1608. [Google Scholar] [CrossRef]
- Kao, C.Y.; Read, L.K. Opposing effects of polyadenylation on the stability of edited and unedited mitochondrial RNAs in Trypanosoma brucei. Mol. Cell. Biol. 2005, 25, 1634–1644. [Google Scholar] [CrossRef]
- Aphasizheva, I.; Maslov, D.A.; Wang, X.; Huang, L.; Aphasizhev, R. Pentatricopeptide repeat proteins stimulate mRNA adenylation/uridylation to activate mitochondrial translation in trypanosomes. Mol. Cell 2011, 42, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Aphasizhev, R.; Aphasizheva, I. Emerging roles of PPR proteins in trypanosomes: Switches, blocks, and triggers. RNA Biol. 2013, 10, 1495–1500. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Delannoy, E.; Stanley, W.A.; Bond, C.S.; Small, I.D. Pentatricopeptide repeat (PPR) proteins as sequence-specificity factors in post-transcriptional processes in organelles. Biochem. Soc. Trans. 2007, 35, 1643–1647. [Google Scholar] [CrossRef] [PubMed]
- Schmitz-Linneweber, C.; Small, I. Pentatricopeptide repeat proteins: A socket set for organelle gene expression. Trends Plant Sci. 2008, 13, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Barkan, A.; Small, I. Pentatricopeptide repeat proteins in plants. Annu. Rev. Plant Biol. 2014, 65, 415–442. [Google Scholar] [CrossRef] [PubMed]
- Rackham, O.; Filipovska, A. The role of mammalian PPR domain proteins in the regulation of mitochondrial gene expression. Biochim. Biophys. Acta 2012, 1819, 1008–1016. [Google Scholar] [CrossRef] [PubMed]
- Filipovska, A.; Rackham, O. Pentatricopeptide repeats: Modular blocks for building RNA-binding proteins. RNA Biol. 2013, 10, 1426–1432. [Google Scholar] [CrossRef]
- Manna, S. An overview of pentatricopeptide repeat proteins and their applications. Biochimie 2015, 113, 93–99. [Google Scholar] [CrossRef]
- Lurin, C.; Andres, C.; Aubourg, S.; Bellaoui, M.; Bitton, F.; Bruyere, C.; Caboche, M.; Debast, C.; Gualberto, J.; Hoffmann, B.; et al. Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 2004, 16, 2089–2103. [Google Scholar] [CrossRef]
- Yin, P.; Li, Q.; Yan, C.; Liu, Y.; Liu, J.; Yu, F.; Wang, Z.; Long, J.; He, J.; Wang, H.W.; et al. Structural basis for the modular recognition of single-stranded RNA by PPR proteins. Nature 2013, 504, 168–171. [Google Scholar] [CrossRef]
- Shen, C.; Zhang, D.; Guan, Z.; Liu, Y.; Yang, Z.; Yang, Y.; Wang, X.; Wang, Q.; Zhang, Q.; Fan, S.; et al. Structural basis for specific single-stranded RNA recognition by designer pentatricopeptide repeat proteins. Nat. Commun. 2016, 7, 11285. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Yao, Y.; Hong, S.; Yang, Y.; Shen, C.; Zhang, Q.; Zhang, D.; Zou, T.; Yin, P. Delineation of pentatricopeptide repeat codes for target RNA prediction. Nucl. Acids Res. 2019, 10, 1093. [Google Scholar] [CrossRef] [PubMed]
- Mingler, M.K.; Hingst, A.M.; Clement, S.L.; Yu, L.E.; Reifur, L.; Koslowsky, D.J. Identification of pentatricopeptide repeat proteins in Trypanosoma brucei. Mol. Biochem. Parasitol. 2006, 150, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Pusnik, M.; Small, I.; Read, L.K.; Fabbro, T.; Schneider, A. Pentatricopeptide repeat proteins in Trypanosoma brucei function in mitochondrial ribosomes. Mol. Cell Biol. 2007, 27, 6876–6888. [Google Scholar] [CrossRef] [PubMed]
- Maslov, D.A.; Spremulli, L.L.; Sharma, M.R.; Bhargava, K.; Grasso, D.; Falick, A.M.; Agrawal, R.K.; Parker, C.E.; Simpson, L. Proteomics and electron microscopic characterization of the unusual mitochondrial ribosome-related 45S complex in Leishmania tarentolae. Mol. Biochem. Parasitol. 2007, 152, 203–212. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ziková, A.; Panigrahi, A.K.; Dalley, R.A.; Acestor, N.; Anupama, A.; Ogata, Y.; Myler, P.J.; Stuart, K.D. Trypanosoma brucei mitochondrial ribosomes: Affinity purification and component identification by mass spectrometry. Mol. Cell. Proteom. 2008, 7, 1286–1296. [Google Scholar] [CrossRef]
- Ridlon, L.; Škodová, I.; Pan, S.; Lukeš, J.; Maslov, D.A. The importance of the 45 S ribosomal small subunit-related complex for mitochondrial translation in Trypanosoma brucei. J. Biol. Chem. 2013, 288, 32963–32978. [Google Scholar] [CrossRef] [PubMed]
- Kamba, P.F.; Dickson, D.A.; White, N.A.; Ekstrom, J.L.; Koslowsky, D.J.; Hoogstraten, C.G. The 27 kDa Trypanosoma brucei pentatricopeptide repeat protein is a G-tract specific RNA binding protein. Sci. Rep. 2018, 8, 16989. [Google Scholar] [CrossRef]
- Millevoi, S.; Moine, H.; Vagner, S. G-quadruplexes in RNA biology. Wiley Interdiscip. Rev. RNA 2012, 3, 495–507. [Google Scholar] [CrossRef]
- Leeder, W.M.; Hummel, N.F.; Göringer, H.U. Multiple G-quartet structures in pre-edited mRNAs suggest evolutionary driving force for RNA editing in trypanosomes. Sci. Rep. 2016, 6, 29810. [Google Scholar] [CrossRef]
- Pusnik, M.; Schneider, A. A trypanosomal pentatricopeptide repeat protein stabilizes the mitochondrial mRNAs of cytochrome oxidase subunits 1 and 2. Eukaryot. Cell 2012, 11, 79–87. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Michelotti, E.F.; Harris, M.E.; Adler, B.; Torri, A.F.; Hajduk, S.L. Trypanosoma brucei mitochondrial ribosomal RNA synthesis, processing and developmentally regulated expression. Mol. Biochem. Parasitol. 1992, 54, 31–42. [Google Scholar] [CrossRef]
- Sement, F.M.; Suematsu, T.; Zhang, L.; Yu, T.; Huang, L.; Aphasizheva, I.; Aphasizhev, R. Transcription initiation defines kinetoplast RNA boundaries. Proc. Natl. Acad. Sci. USA 2018, 115, E10323–E10332. [Google Scholar] [CrossRef] [PubMed]
- Aphasizheva, I.; Aphasizhev, R. RET1-catalyzed uridylylation shapes the mitochondrial transcriptome in Trypanosoma brucei. Mol. Cell. Biol. 2010, 30, 1555–1567. [Google Scholar] [CrossRef] [PubMed]
- Suematsu, T.; Zhang, L.; Aphasizheva, I.; Monti, S.; Huang, L.; Wang, Q.; Costello, C.E.; Aphasizhev, R. Antisense transcripts delimit exonucleolytic activity of the mitochondrial 3’-processome to generate guide RNAs. Mol. Cell 2016, 61, 364–378. [Google Scholar] [CrossRef]
- Mattiacio, J.L.; Read, L.K. Roles for TbDSS-1 in RNA surveillance and decay of maturation by-products from the 12S rRNA locus. Nucl. Acids Res. 2008, 36, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Sement, F.M.; Suematsu, T.; Yu, T.; Monti, S.; Huang, L.; Aphasizhev, R.; Aphasizheva, I. PPR polyadenylation factor defines mitochondrial mRNA identity and stability in trypanosomes. Embo J. 2017, 36, 2435–2454. [Google Scholar] [CrossRef]
- Mattiacio, J.L.; Read, L.K. Evidence for a degradosome-like complex in the mitochondria of Trypanosoma brucei. Febs Lett. 2009, 583, 2333–2338. [Google Scholar] [CrossRef]
- Mesitov, M.V.; Yu, T.; Suematsu, T.; Sement, F.M.; Zhang, L.; Yu, C.; Huang, L.; Aphasizheva, I. Pentatricopeptide repeat poly(A)-binding protein KPAF4 stabilizes mitochondrial mRNAs in Trypanosoma brucei. Nat. Commun. 2019, 10, 146. [Google Scholar] [CrossRef]
- Bhat, G.J.; Myler, P.J.; Stuart, K. The two ATPase 6 mRNAs of Leishmania tarentolae differ at their 3’ ends. Mol. Biochem. Parasitol. 1991, 48, 139–150. [Google Scholar] [CrossRef]
- Aphasizheva, I.; Maslov, D.A.; Qian, Y.; Huang, L.; Wnag, Q.; Costello, C.; Aphasizhev, R. Ribosome-associated PPR proteins function as translational activators in mitochondria of trypanosomes. Mol. Microbiol. 2016, 99, 1043–1058. [Google Scholar] [CrossRef] [PubMed]
- Aphasizheva, I.; Maslov, D.A.; Aphasizhev, R. Kinetoplast DNA-encoded ribosomal protein S12: A possible functional link between mitochondrial RNA editing and translation in Trypanosoma brucei. RNA Biol. 2013, 10, 1679–1688. [Google Scholar] [CrossRef] [PubMed]
- Bhat, G.J.; Souza, A.E.; Feagin, J.E.; Stuart, K. Transcript-specific developmental regulation of polyadenylation in Trypanosoma brucei mitochondria. Mol. Biochem. Parasitol. 1992, 52, 231–240. [Google Scholar] [CrossRef]
- Bringaud, F.; Riviere, L.; Coustou, V. Energy metabolism of trypanosomatids: Adaptation to available carbon sources. Mol. Biochem. Parasitol. 2006, 149, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.K.; Bringaud, F.; Nolan, D.P.; Figueiredo, L.M. Metabolic reprogramming during the Trypanosoma brucei life cycle. F1000Res 2017, 6, 683. [Google Scholar] [CrossRef]
- Cristodero, M.; Seebeck, T.; Schneider, A. Mitochondrial translation is essential in bloodstream forms of Trypanosoma brucei. Mol. Microbiol. 2010, 78, 757–769. [Google Scholar] [CrossRef]
- Souza, A.E.; Shu, H.H.; Read, L.K.; Myler, P.J.; Stuart, K.D. Extensive editing of CR2 maxicircle transcripts of Trypanosoma brucei predicts a protein with homology to a subunit of NADH dehydrogenase. Mol. Cell. Biol. 1993, 13, 6832–6840. [Google Scholar] [CrossRef]
- Read, L.K.; Wilson, K.D.; Myler, P.J.; Stuart, K. Editing of Trypanosoma brucei maxicircle CR5 mRNA generates variable carboxy terminal predicted protein sequences. Nucl. Acids Res. 1994, 22, 1489–1495. [Google Scholar] [CrossRef][Green Version]
- Christian, B.E.; Spremulli, L.L. Mechanism of protein biosynthesis in mammalian mitochondria. Biochim. Biophys. Acta 2012, 1819, 1035–1054. [Google Scholar] [CrossRef]
- Herrmann, J.M.; Woellhaf, M.W.; Bonnefoy, N. Control of protein synthesis in yeast mitochondria: The concept of translational activators. Biochim. Biophys. Acta 2013, 1833, 286–294. [Google Scholar] [CrossRef]
- Wong, R.G.; Kazane, K.; Maslov, D.A.; Rogers, K.; Aphasizhev, R.; Simpson, L. U-insertion/deletion RNA editing multiprotein complexes and mitochondrial ribosomes in Leishmania tarentolae are located in antipodal nodes adjacent to the kinetoplast DNA. Mitochondrion 2015, 25, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Herrera, J.; Zhou, S.; Maslov, D.A.; Simpson, L. Trypanosome REH1 is an RNA helicase involved with the 3’-5’ polarity of multiple gRNA-guided uridine insertion/deletion RNA editing. Proc. Natl. Acad. Sci. Usa 2011, 108, 3542–3547. [Google Scholar] [CrossRef] [PubMed]
- Horváth, A.; Neboháčová, M.; Lukeš, J.; Maslov, D.A. Unusual polypeptide synthesis in the kinetoplast-mitochondria from Leishmania tarentolae. Identification of individual de novo translation products. J. Biol. Chem. 2002, 277, 7222–7230. [Google Scholar] [CrossRef] [PubMed]
- Horváth, A.; Kingan, T.G.; Maslov, D.A. Detection of the mitochondrially encoded cytochrome c oxidase subunit I in the trypanosomatid protozoan Leishmania tarentolae. J. Biol. Chem. 2000, 275, 17160–17165. [Google Scholar] [CrossRef] [PubMed]
- Maslov, D.A.; Agrawal, R.K. Kinetoplast-mitochondrial translation system in trypanosomatids. In Translation in Mitochondria and Other Organelles; Duchêne, A.-M., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 133–157. [Google Scholar]
- Maslov, D.A.; Agrawal, R.K. Mitochondrial translation in trypanosomatids. In RNA Metabolism in Trypanosomes; Bindereif, A., Ed.; Nucleic Acids and Molecular Biology; Springer: Berlin/Heidelberg, Germany, 2012; Volume 28, pp. 215–236. [Google Scholar]
- Maslov, D.A.; Sharma, M.R.; Butler, E.; Falick, A.M.; Gingery, M.; Agrawal, R.K.; Spremulli, L.L.; Simpson, L. Isolation and characterization of mitochondrial ribosomes and ribosomal subunits from Leishmania Tarentolae. Mol. Biochem. Parasitol. 2006, 148, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.R.; Booth, T.M.; Simpson, L.; Maslov, D.A.; Agrawal, R.K. Structure of a mitochondrial ribosome with minimal RNA. Proc. Natl. Acad. Sci. USA 2009, 106, 9637–9642. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, R.K.; Sharma, M.R.; Yassin, A.S.; Lahiri, I.; Spremulli, L. Structure and function of organellar ribosomes as revealed by cryo-EM. In Ribosomes: Structure, Function, and Dynamics; Rodnina, M., Wintermeyer, W., Green, R., Eds.; Springer: Wien, New York, NY, USA, 2011; pp. 83–96. [Google Scholar]
- De la Cruz, V.F.; Lake, J.A.; Simpson, A.M.; Simpson, L. A minimal ribosomal RNA: Sequence and secondary structure of the 9S kinetoplast ribosomal RNA from Leishmania tarentolae. Proc. Natl. Acad. Sci. USA 1985, 82, 1401–1405. [Google Scholar] [CrossRef] [PubMed]
- Eperon, I.; Janssen, J.; Hoeijmakers, J.; Borst, P. The major transcripts of the kinetoplast DNA of T. brucei are very small ribosomal RNAs. Nucl. Acids Res. 1983, 11, 105–125. [Google Scholar] [CrossRef]
- Mohan, S.; Donohue, J.P.; Noller, H.F. Molecular mechanics of 30S subunit head rotation. Proc. Natl. Acad. Sci. USA 2014, 111, 13325–13330. [Google Scholar] [CrossRef]
- Pfeffer, S.; Woellhaf, M.W.; Herrmann, J.M.; Forster, F. Organization of the mitochondrial translation machinery studied in situ by cryoelectron tomography. Nat. Commun. 2015, 6, 6019. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maslov, D.A. Separating the Wheat from the Chaff: RNA Editing and Selection of Translatable mRNA in Trypanosome Mitochondria. Pathogens 2019, 8, 105. https://doi.org/10.3390/pathogens8030105
Maslov DA. Separating the Wheat from the Chaff: RNA Editing and Selection of Translatable mRNA in Trypanosome Mitochondria. Pathogens. 2019; 8(3):105. https://doi.org/10.3390/pathogens8030105
Chicago/Turabian StyleMaslov, Dmitri A. 2019. "Separating the Wheat from the Chaff: RNA Editing and Selection of Translatable mRNA in Trypanosome Mitochondria" Pathogens 8, no. 3: 105. https://doi.org/10.3390/pathogens8030105
APA StyleMaslov, D. A. (2019). Separating the Wheat from the Chaff: RNA Editing and Selection of Translatable mRNA in Trypanosome Mitochondria. Pathogens, 8(3), 105. https://doi.org/10.3390/pathogens8030105