An Overview of the Most Significant Zoonotic Viral Pathogens Transmitted from Animal to Human in Saudi Arabia
Abstract
:1. Introduction
2. Viral Zoonoses
2.1. Rabies
2.2. Middle East Respiratory Syndrome
2.3. Influenza
2.4. Alkhurma Hemorrhagic Fever Virus
2.5. CCHF
2.6. RVF
2.7. Dengue Hemorrhagic Fever
2.8. West Nile Fever
3. Prevention and Control
4. Summary and Conclusions
- A zoonotic pathogen outbreak could be dramatically decreased among the annual Saudi pilgrims if we take into account the fact that: Jeddah Governorate, the main seaport in Saudi Arabia is considered to be the main entry point for over 2 million pilgrims coming for Hajj or Umrah annually. All these numbers of pilgrims arrive through the Jeddah Islamic Port before going on to Makkah, for the start of their Umrah and/or Hajj. Surprisingly, the current review showed that during an outbreak, each of these eight most zoonotic viruses (rabies, MERS-CoV, influenza, AHFV, CCHFV, RVFV, DHFV, and WNV) which occurred and/or cases confirmed in Saudi Arabia particularly from (Jeddah and/or Makkah) areas with at least one or all of these eight zoonotic viral pathogenic diseases [33,44,46,78,96,97,98,99,121,130,156,171].
- The spread could also have been due to the fact that Jeddah is the main port for animal importation to Saudi Arabia. At the same time, it is the closest area to several countries where some zoonotic outbreaks were reported. To enhance this spread, the role of the active circulation of zoonotic viruses, during their natural transmission cycle, has been reported, however, an importation might increase risk of disease introduction to Saudi Arabia.
- Almost annually, from the more than 7 million pilgrims who come to Makkah and Madinah from different countries worldwide during Hajj and Umrah, the Kingdom’s revenue in 2012 was put at more than 62 billion Saudi Riyals (~ about 16.5 billion US Dollars), 10% up from the 2011 figures. This Hajj revenue accounted for 3% of the gross domestic product for the Kingdom of Saudi Arabia. To avert all that number of health hazards from zoonotic diseases in view of economic facts, the global community and particularly the pilgrims need more gift items made in Saudi Arabia to control and prevent the spread of zoonotic diseases which could be transmitted among Hajj and Umrah pilgrims.
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MERS-CoV | Middle East respiratory syndrome coronavirus |
AHFV | Alkhurma hemorrhagic fever virus |
CCHV | Crimean-Congo hemorrhagic fever virus |
RVFV | Rift Valley fever virus |
DHFV | Dengue hemorrhagic fever virus |
WNV | West Nile virus |
References
- Walter, E.; Mike Scott, M. The life and work of Rudolf Virchow 1821–1902: Cell theory, thrombosis and the sausage duel. J. Intensive Care Soc. 2017, 18, 234–235. [Google Scholar] [CrossRef] [PubMed]
- Schultz, M. Rudolf Virchow. Emerg. Infect. Dis. 2008, 14, 1480–1481. [Google Scholar] [CrossRef]
- World Health Organization. Joint WHO/FAO Expert Committee on Zoonoses, 2nd Report; WHO Technical Report Series No. 169; WHO: Geneva, Switzerland, 1959. [Google Scholar]
- Venkatesan, G.; Balamurugan, V.; Gandhale, P.; Singh, P.; Bhanuprakash, V. Viral Zoonosis: A Comprehensive Review. Asian J. Anim. Vet. Adv. 2010, 5, 77–92. [Google Scholar] [CrossRef]
- Ermias, D.; Belay, E.D.; Kile, J.C.; Hall, A.; Barton-Behravesh, C.; Parsons, M.; Salyer, S.; Walke, H. Zoonotic Disease Programs for Enhancing Global Health Security. Emerg. Infect. Dis. 2017, 23, S65–S70. [Google Scholar]
- Gracey, J.F.; Collins, O.; Huey, R.J. Meat Hygiene, 10th ed.; Bailliere Tindall: London, UK, 1999; pp. 223–260. [Google Scholar]
- Taylor, L.; Latham, S.; Woolhouse, M.E. Risk factors for human disease emergence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2001, 356, 983–989. [Google Scholar] [CrossRef] [PubMed]
- Daszak, P.; Cunningham, A.; Hyatt, A.D. Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop. 2001, 78, 103–116. [Google Scholar] [CrossRef]
- Woolhouse, M.; Gowtage-Sequeria, S. Host range and emerging and reemerging pathogens. Emerg. Infect. Dis. 2005, 11, 1842–1847. [Google Scholar] [CrossRef]
- Wilke, I.G.; Haas, L. Emerging of new viral zoonoses. Dtsch. Tierarztl. Wochenschr. 1999, 106, 332–338. [Google Scholar]
- Woolhouse, M.E.; Haydon, D.T.; Antia, R. Emerging pathogens: The epidemiology and evolution of species jumps. Trends Ecol. Evol. 2005, 20, 238–244. [Google Scholar] [CrossRef]
- Jones, K.E.; Patel, N.G.; Levy, M.; Storeygard, A.; Balk, D.; Gittleman, J.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef]
- Stephen, C.; Artsob, H.; Bowie, W.; Drebot, M.; Fraser, E.; Leighton, T.; Morshed, M.; Ong, C.; Patrick, D. Perspectives on emerging zoonotic disease research and capacity building in Canada. Can. J. Infect. Dis. Med. Microbiol. 2004, 15, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Wiwanitkit, V. Emerging zoonotic diseases: Can it be the case of bioterrorism. J. Bioterr. Biodef. 2015, S14, e101. [Google Scholar] [CrossRef]
- Dahal, R.; Kahn, L. Zoonotic diseases and one health approach. Epidemiology 2014, 4, e115. [Google Scholar]
- World Health Organization. Zoonoses and Veterinary Public Health (VPH); WHO: Geneva, Switzerland, 2017; Available online: http://www.who.int/zoonoses/vph/en/ (accessed on 26 June 2017).
- Coulibaly, N.D.; Yameogo, K.R. Prevalence and control of zoonotic diseases: Collaboration between public health workers and veterinarians in Burkina Faso. Acta Trop. 2000, 76, 53–57. [Google Scholar] [CrossRef]
- Metzgar, D.; Baynes, D.; Myers, C.; Kammerer, P.; Unabia, M.; Faix, D.; Blair, P. Initial identification and characterization of an emerging zoonotic influenza virus prior to pandemic spread. J. Clin. Microbiol. 2010, 48, 4228–4234. [Google Scholar] [CrossRef] [PubMed]
- Leslie, M.J.; McQuiston, J. Emerging infections: Microbial threats to health in the United States. Washington. In Infectious Disease Surveillance; Blackwell Publishing: Hoboken, NJ, USA, 1992. [Google Scholar]
- Glaser, C.; Angulo, F.; Rooney, J.A. Animal-associated opportunistic infections among persons infected with the human immunodeficiency virus. Clin. Infect. Dis. 1994, 18, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Tauxe, R.V. Emerging foodborne diseases: An evolving public health challenge. Emerg. Infect. Dis. 1997, 3, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Palmer, S.; Soulsby, L.; Torgerson, P.; Brown, D. Zoonoses: Biology, Clinical Practice and Public Health Control, 2nd ed.; Oxford University Press: New York, NY, USA, 2011; pp. 224–231. [Google Scholar]
- Wernery, U. Zoonoses in the Arabian Peninsula. Saudi Med. J. 2014, 35, 1455–1462. [Google Scholar] [PubMed]
- Razavi, S.M.; Sabouri-Kashani, A.; Ziaee-Ardakani, H.; Tabatabaei, A.; Karbakhsh, M.; Sadeghipour, H.; Mortazavi-Tabatabaei, S.; Salamati, P. Trend of diseases among Iranian pilgrims during five consecutive years based on a Syndromic Surveillance System in Hajj. Med. J. Islam Repub. Iran. 2013, 27, 179–185. [Google Scholar] [PubMed]
- Bianchi, R.R. Reimagining the Hajj. Soc. Sci. 2017, 6, 36. [Google Scholar] [CrossRef]
- Memish, Z.A.; venkatesh, S.; Ahmed, Q. Travel Epidemiology: The Saudi perspective. Int. J. Antimicr. Agents 2003, 2, 96–101. [Google Scholar] [CrossRef]
- Al-Mazrou, Y.Y. Food poisoning in Saudi Arabia, potential for prevention. Saudi Med. J. 2004, 25, 11–14. [Google Scholar] [PubMed]
- Arab News: One Million Animals Sacrificed over Three Days. Available online: www.arabnews.com/node/278842 (accessed on 13 January 2018).
- Arab News: 800 Vets to Oversee Slaughter of over 1 m Animals during Hajj. Available online: www.arabnews.com/node/278842 (accessed on 13 January 2018).
- Al-Tayib, O. A puppy with Toxocara canis in pets shop from Saudi Arabia. Sci. J. Vet. Adv. 2013, 2, 172–177. [Google Scholar]
- Al-Tayib, O.A. Zoonotic balantidiasis in camel from Saudi Arabia. Sch. Acad. J. Biosci. 2014, 2, 445–447. [Google Scholar]
- Pet Project. Having Domesticated Animals at Home on the Rise. Available online: https://saudigazette.com.sa/article/514923/SAUDI-ARABIA/Pet (accessed on 12 August 2017).
- Qattan, I.; Akbar, N.; Afif, H.; Abu Azmah, S.; Al-Khateeb, T.; Zaki, A. Division of Vector-Borne Infectious Disease, National Center for Infectious Disease, Centers for Disease Control and Prevention; in Al-Hamdan N, Fontaine RE: A Novel Flavivirus: Makkah Region 1994–1996. Saudi Epidemiol. Bull. 1996, 3, 1–3. [Google Scholar]
- Zaki, A.M.; van Boheemen, S.; Bestebroer, T.; Osterhaus, A.; Fouchier, R. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 2012, 367, 1814–1820. [Google Scholar] [CrossRef] [PubMed]
- Al-Dubaib, M.A. Rabies in camels at Qassim region of central Saudi Arabia. J. Camel Pract. Res. 2007, 14, 101–103. [Google Scholar]
- Memish, Z.A.; Assiri, A.M.; Gautret, P. Rabies in Saudi Arabia: A need for epidemiological data. Inter. J. Infect. Dis. 2015, 34, 99–101. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Expert Consultation on Rabies: Second Report; No. 982; WHO: Geneva, Switzerland, 2013. [Google Scholar]
- Giesen, A.; Gniel, D.; Malerczyk, C. 30 Years of rabies vaccination with Rabipur: A summary of clinical data and global experience. Expert. Rev. Vaccines 2015, 14, 351–367. [Google Scholar] [CrossRef] [PubMed]
- Naghavi, M.; Wang, H.; Lozano, R.; Davis, A.; Liang, X.; Zhou, M. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015, 385, 117–171. [Google Scholar]
- Carrara, P.; Parola, P.; Brouqui, P.; Gautret, P. Imported human rabies cases worldwide, 1990–2012. PLoS Negl. Trop. Dis. 2013, 7, e2209. [Google Scholar] [CrossRef] [PubMed]
- Alknawy, M.; Mohammed, I.; Ulla, S.N.; Al Aboud, A. First confirmed case of human rabies in Saudi Arabia. IDCases 2018, 12, 29–31. [Google Scholar] [CrossRef] [PubMed]
- Hampson, K.; Coudeville, L.; Lembo, T.; Sambo, M.; Kieffer, A.; Attlan, M.; Barrat, J.; Blanton, J.; Briggs, D.; Cleaveland, S.; et al. Estimating the global burden of endemic canine rabies. PLoS Negl. Trop. Dis. 2015, 9, e0003709. [Google Scholar]
- Knobel, D.L.; Cleaveland, S.; Coleman, P.G.; Fèvre, E.; Meltzer, M.; Miranda, M.; Shaw, A.; Zinsstag, J.; Meslin, F. Re-evaluating the burden of rabies in Africa and Asia. Bull. World Health Organ. 2005, 83, 360–368. [Google Scholar] [PubMed]
- Kasem, S.B.; Hussein, R.; Al-Doweriej, A.; Qasim, I.; Abu-Obeida, A.; Almulhim, I.; Alfarhan, H.; Hodhod, A.; Abel-Latif, M.; Hashim, O.; et al. Rabies among animals in Saudi Arabia. J. Infect. Pub. Health. 2018, in press. [Google Scholar] [CrossRef]
- World Health Organization. Report on the First Consultation on Wildlife Rabies in the Arabian Peninsula. Al-Ain, United Arabian Emirates, 18–19 October 1992; WHO: Geneva, Switzerland, 1993; Available online: http://whqlibdoc.who.int/emro/-1993/VPH-13-E_R.pdf (accessed on 4 March 2015).
- Badawi, A.; Ryoo, S.G. Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERS-CoV): A systematic review and meta-analysis. Int. J. Infect. Dis. 2016, 49, 129–133. [Google Scholar] [CrossRef]
- Hawkes, N. MERS coronavirus has probably been present in bats for many years, research shows. BMJ 2013, 347, f6141. [Google Scholar] [CrossRef] [PubMed]
- Memish, Z.; Mishra, N.; Olival, K.J.; Fagbo, S.; Kapoor, V.; Epstein, J.; Alhakeem, R.; Durosinloun, A.; Al Asmari, M.; Islam, A.; et al. Middle East respiratory syndrome coronavirus in bats, Saudi Arabia. Emerg. Infect. Dis. 2013, 19, 1819–1823. [Google Scholar] [CrossRef] [PubMed]
- To, K.; Ng, K.H.; Que, T.L.; Chan, J.; Tsang, K.; Tsang, A.; Chen, H.; Yuen, K. Avian influenza A H5N1 virus: A continuous threat to humans. Emerg. Microbes Infect. 2012, 1, e25. [Google Scholar] [CrossRef]
- Chan, J.F.; Lau, S.; To, K.; Cheng, V.C.; Woo, P.C.; Yuen, K.Y. Middle East respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease. Clin. Microbiol. Rev. 2015, 28, 465–522. [Google Scholar] [CrossRef] [PubMed]
- Seddiq, N.; Al-Qahtani, M.; Al-Tawfiq, J.A.; Bukamal, N. First Confirmed Case of Middle East Respiratory Syndrome Coronavirus Infection in the Kingdom of Bahrain: In a Saudi Gentleman after Cardiac Bypass Surgery. Infect. Dis. 2017. [Google Scholar] [CrossRef] [PubMed]
- Alagaili, A.; Briese, T.; Mishra, N.; Kapoor, V.; Sameroff, S.; Burbelo, P. Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia. mBio 2014, 5, e00884-14. [Google Scholar] [CrossRef] [PubMed]
- Zumla, A.; Hui, D. Infection control and MERS-CoV in health-care workers. Lancet 2014, 383, 1869–1871. [Google Scholar] [CrossRef]
- Muller, M.; Corman, V.; Jores, J.; Meyer, B.; Younan, M.; Liljander, A.; Bosch, B.J.; Lattwein, E.; Hilali, M.; Musa, B.E.; et al. MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983–1997. Emerg. Infect. Dis. 2014, 20, 2093–2095. [Google Scholar] [CrossRef] [PubMed]
- Memish, Z.; Cotton, M.; Meyer, B.; Watson, S.; Alsahafi, A.; Al Rabeeah, A. Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013. Emerg. Infect. Dis. 2014, 20, 1012–1015. [Google Scholar] [CrossRef] [PubMed]
- Le Duc, J.W.; Nathanson, N. Emerging Viral Diseases: Why We Need to Worry about Bats, Camels, and Airplanes. Viral Pathogenesis (3rd Edition). 2016, pp. 215–231. Available online: https://doi.org/10.1016/B978-0-12-800964-2.00016-1 (accessed on 12 February 2016).
- Han, H.; Yu, H.; Yu, X. Evidence for zoonotic origins of Middle East respiratory syndrome coronavirus. J. Gen. Virol. 2016, 97, 274–280. [Google Scholar] [CrossRef]
- Li, Y.; Khalafalla, A.; Paden, C.; Yusof, M.; Eltahir, Y.; Al Hammadi, Z.; Tao, Y.; Queen, K.; Al Hosani, F.; Gerber, S.; et al. Identification of diverse viruses in upper respiratory samples in dromedary camels from United Arab Emirates. PLoS ONE 2017, 12, e0184718. [Google Scholar] [CrossRef] [PubMed]
- Aly, M.; Elrobh, M.; Alzayer, M.; Aljuhani, S.; Balkhy, H. Occurrence of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) across the Gulf Corporation Council countries: Four years update. PLoS ONE 2017, 12, e0183850. [Google Scholar] [CrossRef]
- Shapiro, M.; London, B.; Nigri, D.; Shoss, A.; Zilber, E.; Fogel, I. Middle East respiratory syndrome coronavirus: A review of the current situation in the world. Disas. Milit. Med. 2016, 2, 9. [Google Scholar] [CrossRef]
- Banik, G.R.; Alqahtani, A.; Booy, R.; Rashid, H. Risk factors for severity and mortality in patients with MERS-CoV: Analysis of publicly available data from Saudi Arabia. Virol. Sin. 2016, 31, 81–84. [Google Scholar] [CrossRef]
- Sherbini, N.; Iskandrani, A.; Kharaba, A.; Khalid, G.; Abduljawad, M.; Hamdan, A. Middle East respiratory syndrome coronavirus in Medinah City, Saudi Arabia: Demographic, clinical and survival data. J. Epidemiol. Glob. Health. 2017, 7, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Al Ghamdi, M.; Alghamdi, K.; Ghandoora, Y.; Alzahrani, A.; Salah, F.; Alsulami, A.; Bawayan, M.; Vaidya, D.; Perl, T.; Sood, G. Treatment outcomes for patients with Middle Eastern Respiratory Syndrome Coronavirus (MERS CoV) infection at a coronavirus referral center in the Kingdom of Saudi Arabia. BMC Infect. Dis. 2016, 16, 1. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.E. The predictors of 3- and 30-day mortality in 660 MERS-CoV patients. BMC Infect. Dis. 2017, 17, 615. [Google Scholar] [CrossRef] [PubMed]
- MOH. Middle East Respiratory Syndrome Coronavirus-MERS-CoV|DynaMed. 2018. Available online: https://health.ebsco.com/dynamed-content/mers (accessed on 2 March 2018).
- Malik, M.; Elkholy, A.; Khan, W.; Hassounah, S.; Abubakar, A.; Minh, N.; Mala, P. Middle East respiratory syndrome coronavirus: Current knowledge and future considerations. East Mediterr. Health J. 2016, 22, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Buliva, E.; Elhakim, M.; Tran Minh, N.; Elkholy, A.; Mala, P.; Abubakar, A.; Malik, M. Emerging and Reemerging Diseases in the World Health Organization (WHO) Eastern Mediterranean Region-Progress, Challenges, and WHO Initiatives. Front. Public Health. 2017, 5, 276. [Google Scholar] [CrossRef]
- Kayali, G.; Webby, R.; Samhouri, D.; Mafi, A.R.; Bassili, A. Influenza research in the Eastern Mediterranean Region: The current state and the way forward. Influenza Other Respir. Viruses 2013, 7, 914–921. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Swine influenza A (H1N1) infection in two children-Southern California, March-April 2009. Morb. Mortal. Wkly. Rep. 2009, 58, 400–402. [Google Scholar]
- Kim, S.M.; Kim, Y.; Pascua, P.; Choi, Y.K. Avian influenza A viruses: Evolution and zoonotic infection. Semin. Respir. Crit. Care Med. 2016, 37, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Khan, W.; El Rifay, A.; Malik, M.; Kayali, G. Influenza Research in the Eastern Mediterranean Region: A Review. Oman Med. J. 2017, 32, 359–364. [Google Scholar] [CrossRef]
- AlMazroa, M.A.; Memish, Z.; AlWadey, A.M. Pandemic influenza A (H1N1) in Saudi Arabia: Description of the first one hundred cases. Ann. Saudi Med. 2010, 30, 11–14. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. Highly Pathogenic Avian Influenza (H5N1 HPAI) Spread in the Middle East: Risk Assessment; EMPRES Watch; FAO: Rome, Italy, 2017; Available online: http://www.fao.org/3/a-i6155e (accessed on 15 April 2017).
- Kahn, L. Stirring up “swine flu” hysteria. Bull. At. Sci. 2009. Available online: http://thebulletin.org/web- edition/columnists/laura-h-kahn/stirring-swine-flu-hysteria (accessed on 11 May 2009).
- Gambotto, A.; Barratt-Boyes, S.M.; de Jong, M.D.; Neumann, G.; Kawaoka, Y. Human infection with highly pathogenic H5N1 influenza virus. Lancet 2008, 371, 1464–1475. [Google Scholar] [CrossRef]
- Abdelwhab, E.M.; Abdel-Moneim, A.S. Epidemiology, ecology and gene pool of influenza A virus in Egypt: Will Egypt be the epicenter of the next influenza pandemic? Virulence 2015, 6, 6–18. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. H1N1 in Post-Pandemic Period 2010; WHO: Geneva, Switzerland, 2010; Available online: http://www.who.int/mediacentre/news/statements/2010/h1n1-.vpc-20100810/en/ (accessed on 10 August 2010).
- Tolah, A.M.; Azhar, E.; Hashem, A. Susceptibility of influenza viruses circulating in Western Saudi Arabia to neuraminidase inhibitors. Saudi Med. J. 2016, 37, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Kuiken, T.; Fouchier, R.; Rimmelzwaan, G.; van den Brand, J.; van Riel, D.; Osterhaus, A. Pigs, poultry, and pandemic influenza: How zoonotic pathogens threaten human health. Adv. Exp. Med. Biol. 2011, 719, 59–66. [Google Scholar] [PubMed]
- Abdelwhab, E.M.; Hafez, H. An overview of the epidemic of highly pathogenic H5N1 avian influenza virus in Egypt: Epidemiology and control challenges. Epidemiol. Infect. 2011, 139, 647–657. [Google Scholar] [CrossRef]
- Saad, M.D.; Ahmed, L.; Gamal-Eldein, M.; Fouda, M.; Khalil, F.; Yingst, S.; Parker, M.; Montevillel, M. Possible Avian Influenza (H5N1) from Migratory Bird, Egypt. Emerg. Infect. Dis. 2007, 13, 1120–1121. [Google Scholar] [CrossRef]
- Graitcer, S.; Gubareva, L.; Kamimoto, L.; Doshi, S.; Vandermeer, M.; Louie, J.; Louie, J.; Waters, C.; Moore, Z.; Sleeman, K.; et al. Characteristics of patients with oseltamivir-resistant pandemic (H1N1) 2009, United States. Emerg. Infect. Dis. 2011, 17, 255–257. [Google Scholar] [CrossRef]
- Lackenby, A.; Gilad, J.M.; Pebody, R.; Miah, S.; Calatayud, L.; Bolotin, S.; Vipond, I.; Muir, P.; Guiver, M.; McMenamin, J.; et al. Continued emergence and changing epidemiology of oseltamivir-resistant influenza A(H1N1) 2009 virus, United Kingdom, winter 2010/11. Eurosurveillance 2011, 16, 19784–19789. [Google Scholar]
- Muthuri, S.; Venkatesan, S.; Myles, P.; Leonardi-Bee, J.; Al Khuwaitir, T.; Al Mamun, A.; Anovadiya, A.P.; Azziz-Baumgartner, E.; Báez, C.; Bassetti, M.; et al. Effectiveness of neuraminidase inhibitors in reducing mortality in patients admitted to hospital with influenza A H1N1pdm09 virus infection: A meta-analysis of individual participant data. Lancet Respir. Med. 2014, 2, 395–404. [Google Scholar] [CrossRef]
- Hashem, A.; Doyle, T.; Van Domselaar, G.; Farnsworth, A.; Li, C.; Wang He, R.; Li, X. Recent developments in bioinformatics analyses of influenza A virus surface glycoproteins and their biological relevance. Curr. Bioinform. 2011, 6, 415–426. [Google Scholar] [CrossRef]
- Sheu, T.G.; Fry, A.M.; Garten, R.J.; Deyde, V.M.; Shwe, T.; Bullion, L.; Peebles, P.J.; Li, Y.; Klimov, A.I.; Gubareva, L.V. Dual resistance to adamantanes and oseltamivir among seasonal influenza A (H1N1) viruses: 2008–2010. J. Infect. Dis. 2011, 203, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Helmy, Y.; El-Adawy, H.; Abdelwhab, E.M. A Comprehensive Review of Common Bacterial, Parasitic and Viral Zoonoses at the Human-Animal Interface in Egypt. Pathogens 2017, 6, 33. [Google Scholar] [CrossRef] [PubMed]
- Ashshi, A.; Azhar, E.; Johargy, A.; Asghar, A.; Momenah, A.; Turkestani, A.; Alghamdi, S.; Memish, Z.; Al-Ghamdi, A.; Alawi, M.; et al. Demographic distribution and transmission potential of influenza A and 2009 pandemic influenza A H1N1 in pilgrims. J. Infect. Dev. Ctries 2014, 8, 1169–1175. [Google Scholar] [CrossRef] [PubMed]
- Benkouiten, S.; Charrel, R.; Belhouchat, K.; Drali, T.; Salez, N.; Nougairede, A.; Zandotti, C.; Memish, Z.A.; Al Masri, M.; Gaillard, C.; et al. Respiratory viruses and bacteria among pilgrims during the 2013 Hajj. Emerg. Infect. Dis. 2014, 20, 1821–1827. [Google Scholar] [CrossRef]
- Alsaleem, M.A. Acceptance of H1N1 vaccine among healthcare workers at primary healthcare centers in Abha, KSA. J. Egypt Public Health Assoc. 2013, 88, 32–39. [Google Scholar] [CrossRef]
- Williams, A. Avian Flu Hits Saudi Arabia with Two New Cases. Available online: https://www.globalmeatnews.com/Article/Avian/-flu-hits-Saudi-Arabia/ (accessed on 5 April 2018).
- Song, D.; Kang, B.; Lee, C.; Jung, K.; Ha, G.; Kang, D.; Park, S.; Park, B.; Oh, J. Transmission of avian influenza virus (H3N2) to dogs. Emerg. Infect. Dis. 2008, 14, 741–746. [Google Scholar] [CrossRef]
- Pigott, A.M.; Haak, C.E.; Breshears, M.A.; Linklater, A.K.J. Acute bronchointerstitial pneumonia in two indoor cats exposed to the H1N1 influenza virus. J. Vet Emerg. Crit Care. 2014, 24, 715–723. [Google Scholar] [CrossRef]
- Brett, A.; Strait, E.; Jergens, A.; Trujillo, J.; Harmon, K. Influenza A Pandemic (H1N1) 2009 Virus Infection in Domestic Cat. Emerg. Infect. Dis. 2010, 16, e1603. Available online: www.cdc.gov/eid (accessed on 3 March 2010).
- AL-Tayib, O. Lung infection and severe anemia secondary to Balantidiasis in hamadryas baboons. Sch. Acad. J. Biosci. 2014, 2, 393–397. [Google Scholar]
- Zaki, A.M. Isolation of a flavivirus related to the tick-borne encephalitis complex from human cases in Saudi Arabia. Trans. R. Soc. Trop. Med. Hyg. 1997, 91, 179–181. [Google Scholar] [CrossRef]
- Madani, T.; Azhar, E.; El-Tayeb, M.; Abuelzein, E.; Kao, M.; Al-Bar, H.; Niedrig, M.; Ksiazek, T. Alkhumra, not Alkhurma, is the correct name of the new hemorrhagic fever flavivirus identified in Saudi Arabia. Intervirology 2012, 55, 75–76. [Google Scholar] [CrossRef] [PubMed]
- Madani, T.; Kao, M.; Abuelzein, E.; Azhar, E.; Al-Bar, H.; AbuAraki, H.; Bokhary, R.Y.; Ksiazek, T.G. Propagation and titration of Alkhumra hemorrhagic fever virus in the brains of newborn Wistar rats. J. Virol. Methods 2014, 199, 39–45. [Google Scholar] [CrossRef] [PubMed]
- King, A.M.Q.; Adams, M.J.; Carstens, E.B.; Lefkowitz, E.J. Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses; Academic Press: London, UK; Waltham, MA, USA, 2012; Available online: http://www.elsevierdirect.com (accessed on 25 October 2011).
- Al-Tawfiq, J.A.; Memish, Z.A. Alkhurma hemorrhagic fever virus. Microbes Infect. 2017, 19, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, A.; Al Shaiban, H.; AlMazroa, M.; Al-Hayani, O.; MacNeil, A.; Rollin, P.; Memish, Z. Alkhurma Hemorrhagic Fever in Humans, Najran, Saudi Arabia. Emerg. Infect. Dis. 2010, 16, 1882–1888. [Google Scholar] [CrossRef] [PubMed]
- Madani, T.A. Alkhumra virus infection, a new viral hemorrhagic fever in Saudi Arabia. J. Infect. 2005, 51, 91–97. [Google Scholar] [CrossRef]
- Charrel, R.; Fagbo, S.; Moureau, G.; Alqahtani, M.; Temmam, S.; de Lamballerie, X. Alkhurma hemorrhagic fever virus in Ornithodoros savignyi ticks. Emerg. Infect. Dis. 2007, 13, 153–155. [Google Scholar] [CrossRef]
- Mahdi, M.; Erickson, B.R.; Comer, J.A.; Nichol, S.T.; Rollin, P.; AlMazroa, M.A.; Memish, Z.A. Kyasanur forest disease virus Alkhurma subtype in ticks, Najran province, Saudi Arabia. Emerg. Infect. Dis. 2011, 17, 945e7. [Google Scholar] [CrossRef]
- Charrel, R.; de Lamballerie, X. The Alkhurma virus (family Flaviviridae, genus Flavivirus): An emerging pathogen responsible for hemorrhage fever in the Middle East. Med. Trop. 2003, 63, 296–299. [Google Scholar]
- Charrel, R.; Zaki, A.; Attoui, H.; Fakeeh, M.; Billoir, F.; Yousef, A.; de Chesse, R.; De Micco, P.; Gould, E.A.; de Lamballerie, X. Complete coding sequence of the Alkhurma virus, a tick-borne flavivirus causing severe hemorrhagic fever in humans in Saudi Arabia. Biochem. Biophys. Res. Commun. 2001, 287, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Charrel, R.; Zaki, A.; Fakeeh, M.; Yousef, A.; de Chesse, R.; Attoui, H.; de Lamballerie, X. Low diversity of Alkhurma hemorrhagic fever virus, Saudi Arabia, 1994–1999. Emerg. Infect. Dis. 2005, 11, 683–688. [Google Scholar] [CrossRef] [PubMed]
- Memish, Z.; Fagbo, S.; Osman, A.; AlHakeem, R.; Elnagi, F.; Bamgboye, E. Is the epidemiology of Alkhurma hemorrhagic fever changing: A three-year overview in Saudi Arabia. PLoS ONE 2014, 9, e85564. [Google Scholar] [CrossRef] [PubMed]
- Dodd, K.; Bird, B.; Jones, M.; Nichol, S.; Spiropoulou, C. Kyasanur forest disease virus infection in mice is Associated with higher Morbidity and mortality than infection with the closely related Alkhurma hemorrhagic fever virus. PLoS ONE 2014, 9, e100301. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, G.; Buzgan, T.; Torunglu, M.; Safran, A.; Irmak, H.; Com, S. A preliminary report on CCHF in Turkey, March-June 2008. Ecosurveillance 2008, 13, 1. [Google Scholar]
- World Health Organization. Crimean-Congo Haemorrhagic Fever; WHO: Geneva, Switzerland, 2013; Available online: http://www.who.int/mediacentre/factsheets/fs208/en/ (accessed on 31 January 2013).
- Agravat, V.J.; Agarwal, S.; Piparvav, K.G. Crimean-Congo haemorrhagic fever: An overview. Int. J. Res. Med. Sci. 2014, 2, 392–397. [Google Scholar] [CrossRef]
- Casals, J. Antigenic similarity between the virus causing Crimean hemorrhagic fever and Congo virus. Proc. Soc. Exper. Biol. Med. 1969, 131, 233–236. [Google Scholar] [CrossRef]
- Saijo, M.; Morikawa, S.; Kurane, I. Recent Progress in the Treatment of Crimean–Congo Hemorrhagic Fever and Future Perspectives. Future Virol. 2010, 5, 801–809. [Google Scholar] [CrossRef]
- Bente, D.A.; Forrester, N.; Watts, D.; McAuley, A.; Whitehouse, C.; Bray, M. Crimean-Congo hemorrhagic fever: History, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antivir. Res. 2013, 100, 159–189. [Google Scholar] [CrossRef]
- Vincent, M.J.; Sanchez, A.J.; Erickson, B.R.; Basak, A.; Chretien, M.; Seidah, N.G.; Nichol, S.T. Crimean–Congo hemorrhagic fever virus glycoprotein proteolytic processing by subtilase SKI-1. J. Virol. 2003, 77, 8640–8649. [Google Scholar] [CrossRef]
- Flick, R.; Whitehouse, C.A. Crimean–Congo hemorrhagic fever virus. Curr. Mol. Med. 2005, 5, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Schmaljohn, C.S.; Nichol, S.T. Bunyaviruses. In Fields Virology; Knipe, D.M., Howley, P.M., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2007; pp. 1741–1790. [Google Scholar]
- Darwish, M.A.; Imam, I.Z.; Omar, F.M.; Hoogstraal, H. Results of a preliminary seroepidemiological survey for Crimean-Congo hemorrhagic fever virus in Egypt. Acta Virol. 1978, 22, 77. [Google Scholar] [PubMed]
- El-Azazy, O.M.; Scrimgeour, E.M. Crimean-Congo haemorrhagic fever virus infection in the western province of Saudi Arabia. Trans. R. Soc. Trop. Med. Hyg. 1997, 91, 275–278. [Google Scholar] [CrossRef]
- Hassanein, K.; El-Azazy, O.; Yousef, H. Detection of Crimean-Congo haemorrhagic fever virus antibodies in humans and imported livestock in Saudi Arabia. Trans. R. Soc. Trop. Med. Hyg. 1997, 91, 536–537. [Google Scholar] [CrossRef]
- Ahmad, K. Outbreak of Crimean-Congo haemorrhagic fever in Pakistan. Lancet 2000, 356, 1254. [Google Scholar] [CrossRef]
- Estrada-Pena, A.; Venzal, J.M. Climate niches of tick species in the Mediterranean region: Modeling of occurrence data, distributional constraints, and impact of climate change. J. Med. Entomol. 2007, 44, 1130–1138. [Google Scholar] [CrossRef] [PubMed]
- Memish, Z.; Albarrak, A.; Almazroa, M.; Al-Omar, I.; Alhakeem, R.; Assiri, A.; Fagbo, S.; MacNeil, A.; Rollin, P.; Abdullah, N.; et al. Seroprevalence of Alkhurma and Other Hemorrhagic Fever Viruses, Saudi Arabia. Emerg. Infect. Dis. 2011, 17, 2316–2318. [Google Scholar] [CrossRef]
- Stordy, R.J. Annual Report Department of Agriculture, British East Africa: 1912–1913; HMSO: London, UK, 1913. [Google Scholar]
- Daubney, R.; Hudson, J.; Garnham, P. Enzootic hepatitis or Rift Valley fever. An undescribed virus disease of sheep cattle and man from East Africa. J. Pathol. Bacteriol. 1931, 34, 545–579. [Google Scholar] [CrossRef]
- Baba, M.; Masiga, D.K.; Sang, R.; Villinger, J. Has Rift Valley fever virus evolved with increasing severity in human populations in East Africa? Emerg. Microbes Infect. 2016, 5, e58. [Google Scholar] [CrossRef]
- Khater, E.I.; Sowilem, M.M.; Sallam, M.F.; Alahmed, A.M. Ecology and habitat characterization of mosquitoes in Saudi Arabia. Trop. Biomed. 2013, 30, 409–427. [Google Scholar]
- Blaustein, L.; Chase, J.M. Interactions between mosquito larvae and species that share the same trophic level. Ann. Rev. Entomol. 2007, 52, 489–507. [Google Scholar] [CrossRef] [PubMed]
- Juliano, S.A. Species interactions among larval mosquitoes: Context dependence across habitat gradients. Ann. Rev. Entomol. 2009, 54, 37–56. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, M.A.; Merdan, A.I. Distribution and ecology of the mosquito fauna in the southwestern Saudi Arabia. J. Egypt. Soc. Parasitol. 1995, 25, 815–837. [Google Scholar] [PubMed]
- Abdoon, A.M.; Alshahrani, A.M. Prevalence and distribution of anopheline mosquitoes in malaria endemic areas of Asir region, Saudi Arabia. East. Mediterr. Health J. 2003, 9, 240–247. [Google Scholar] [PubMed]
- Al-Ghamdi, K.; Alikhan, M.; Mayhoub, J.; Afifi, Z.I. Studies of identification and population dynamics of anopheline mosquitoes from Jeddah Province of Saudi Arabia. Biosci. Biotechnol. Res. Commun. 2008, 1, 19–24. [Google Scholar]
- Alahmed, A.M.; Al Kuriji, M.A.; Kheir, S.M.; Alahmedi, S.A.; Al Hatabbi, M.J.; Al Gashmari, M.A. Mosquito fauna (Diptera: Culicidae) and seasonal activity in Makka Al Mukarramah Region, Saudi Arabia. J. Egypt. Soc. Parasitol. 2009, 39, 991–1013. [Google Scholar] [PubMed]
- Kheir, S.M.; Alahmed, A.M.; Al Kuriji, M.A.; Al Zubyani, S.F. Distribution and seasonal activity of mosquitoes in Al Madinah Al Munwwrah, Saudi Arabia. J. Egypt. Soc. Parasitol. 2010, 40, 215–227. [Google Scholar]
- El-Badry, A.A.; Al-Ali, H.H. Prevalence and seasonal distribution of dengue mosquito Aedes aegypti (Diptera: Culicidae) in Al-Madinah Al-Munawara, Saudi Arabia. J. Entomol. 2010, 7, 80–88. [Google Scholar] [CrossRef]
- Alahmed, A.M.; Kheir, S.M.; Al Kuriji, M.A.; Sallam, M.F. Breeding habitats characterization of Anopheles mosquito (Diptera: Culicidae) in Najran Province, Saudi Arabia. J. Egypt. Soc Parasitol. 2011, 41, 275–288. [Google Scholar]
- Al-Sheik, A.A. Larval habitat, ecology, seasonal abundance and vectorial role in malaria transmission of Anopheles arabiensis in Jazan Region of Saudi Arabia. J. Egypt. Soc. Parasitol. 2011, 41, 615–634. [Google Scholar]
- Aziz, A.; Dieng, H.; Ahmad, A.; Mahyoub, J.A.; Turkistani, A.M.; Mesed, H.; Koshike, S.; Satho, T.; Salmah, M.; Ahmad, H.; et al. Household survey of containerbreeding mosquitoes and climatic factors influencing the prevalence of Aedes aegypti (Diptera: Culicidae) in Makkah City, Saudi Arabia. Asian Pac. J. Trop. Biomed. 2012, 2, 849–857. [Google Scholar] [CrossRef]
- Wills, W.M.; Jakob, W.L.; Francy, D.B. Sindbis virus isolations from Saudi Arabian Mosquitoes. Trans. R. Soc. Trop. Med. Hyg. 1985, 79, 63–66. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Shaalan, E.A.; Aboul-Soud, M.A.; Tripet, F.; Al-Khedhairy, A.A. Mosquito vectors survey in the AL-Ahsaa district of eastern Saudi Arabia. J. Insect Sci. 2011, 11, 176. [Google Scholar] [CrossRef] [PubMed]
- Alahmed, A.; Kheir, S. Seasonal activity of some haematophagous insects in the Riyadh region, Saudi Arabia. J. Saudi Soc. Agric. Sci. 2005, 4, 95–105. [Google Scholar]
- Alahmed, A.; Al Kheriji, M.; Kheir, S. Distribution of habitats of mosquito larvae (Diptera: Culicidae) in Riyadh Region, Saudi Arabia. J. Saudi Univ. Agric. Sci. 2007, 19, 35–55. [Google Scholar]
- Mattingly, P.F.; Knight, K.L. The mosquitoes of Arabia. Int. Bull. Br. Mus. Nat. Hist. Entomol. 1956, 4, 89–141. [Google Scholar]
- Zahar, A.R. Vector Bionomics in the Epidemiology and Control of Malaria, Part I, the WHO African Region and the Southern WHO Eastern Mediterranean Region, Section III: South-Western Arabia; WHO/VBC/85.3-MAP/85.3; WHO: Geneva, Switzerland, 1985; pp. 211–244. [Google Scholar]
- Miller, B.R.; Godsey, M.S.; Crabtree, M.B.; Savage, H.M.; Al-Mazrao, Y.; Al-Jeffri, M.H.; Abdoon, A.M.; Al-Seghayer, S.M.; Al-Shahrani, A.M.; Ksiazek, T.G. Isolation and genetic characterization of Rift Valley fever virus from Aedes vexans arabiensis, Kingdom of Saudi Arabia. Emerg. Infect. Dis. 2002, 8, 1492–1494. [Google Scholar] [CrossRef]
- World Health Organization. Integrated Vector Management: Strategic Framework for the Eastern. The Mediterranean Region 2004–2010; The WHO Regional Office for the Eastern Mediterranean: Cairo, Egypt, 2004. [Google Scholar]
- Pepin, M.; Bouloy, M.; Bird, B.H.; Kemp, A.; Paweska, J. Rift Valley fever virus (Bunyaviridae: Phlebovirus): An update on pathogenesis, molecular epidemiology, vectors, diagnostics and prevention. Vet. Res. 2010, 41, 61. [Google Scholar] [CrossRef]
- Tchouassi, D.; Bastos, A.; Sole, C.; Diallo, M.; Lutomiah, J.; Mutisya, J.; Mulwa, F.; Borgemeister, C.; Sang, R.; Torto, B. Population genetics of two key mosquito vectors of Rift Valley Fever virus reveals new insights into the changing disease outbreak patterns in Kenya. PLoS Negl. Trop. Dis. 2014, 8, e3364. [Google Scholar] [CrossRef]
- Mellor, P.S.; Leake, C.J. Climatic and geographic influences on arboviral infections and vectors. Rev. Sci. Tech. Int. Off. Epizoot. 2000, 19, 41–54. [Google Scholar] [CrossRef]
- Davies, F.G. Observations on the epidemiology of Rift Valley fever in Kenya. J. Hyg. 1975, 75, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Metselaar, D.; Henderson, B.E.; Kirya, G.B.; Tukei, P.M.; De Geus, A. Isolation of arboviruses in Kenya, 1966–1971. Trans. R. Soc. Trop. Med. Hyg. 1974, 68, 114–123. [Google Scholar] [CrossRef]
- Davies, F.G.; Logan, T.M.; Binepal, Y.; Jessen, P. Rift Valley fever virus activity in East Africa in 1989. Vet. Rec. 1992, 130, 247–249. [Google Scholar] [CrossRef]
- Al-Azraqi, T.A.; El Mekki, A.; Mahfouz, A. Rift Valley Fever in Southwestern Saudi Arabia: A seroepidemiological study seven years after the outbreak of 2000–2001. Acta Trop. 2012, 123, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Bird, B.H.; Khristova, M.L.; Rollin, P.; Ksiazek, T.; Nichol, S.T. Complete genome analysis of 33 ecologically and biologically diverse Rift Valley fever virus strains reveals widespread virus movement and low genetic diversity due to recent common ancestry. J. Virol. 2007, 81, 2805–2816. [Google Scholar] [CrossRef] [PubMed]
- Shoemaker, T.; Boulianne, C.; Vincent, M.J.; Pezzanite, L.; Al-Qahtani, M.M.; Al-Mazrou, Y.; Khan, A.S.; Rollin, P.E.; Swanepoel, R.; Ksiazek, T.; et al. Genetic analysis of viruses associated with emergence of Rift Valley fever in Saudi Arabia and Yemen, 2000-2001. Emerg. Infect. Dis. 2002, 8, 1415–1420. [Google Scholar] [CrossRef]
- Balkhy, H.H.; Memish, Z.A. Rift Valley Fever: An uninvited zoonosis in the Arabian Peninsula. Int. J. Antimicrob. Agents 2003, 21, 153–157. [Google Scholar] [CrossRef]
- Chevalier, V. Relevance of Rift Valley Fever to public health in the European Union. Clin. Microbiol. Infect. 2013, 19, 705–708. [Google Scholar] [CrossRef] [PubMed]
- Wernery, U.; Kinne, J.; Schuster, R.T. Camelid Infectious Disorders; OIE (World Organisation for Animal Health): Paris, France, 2014. [Google Scholar]
- Woods, C.W.; Karpati, A.M.; Grein, T.; McCarthy, N.; Gaturuku, P.; Muchiri, E.; Dunster, L.; Henderson, A.; Khan, A.S.; Swanepoel, R. World Health Organization Hemorrhagic Fever Task Force. An outbreak of Rift Valley fever in Northeastern Kenya, 1997-98. Emerg. Infect. Dis. 2002, 8, 138–144. [Google Scholar] [CrossRef]
- Jup, P.G.; Kemp, A.; Grobbelaar, A.; Leman, P.; Burt, F.J.; Alahmed, A.M.; Al Mujalli, D.; Al Khamees, M.; Swanepoel, R. The 2000 epidemic of Rift Valley Fever in Saudi Arabia: Mosquito vector studies. Med. Vet. Entomol. 2002, 16, 245–252. [Google Scholar] [CrossRef]
- Peters, C.J. Emergence of Rift Valley fever. In Factors in the Emergence of Arboviruses; Saluzzo, J.F., Dodet, B., Eds.; Elsevier: Paris, France, 1997; pp. 253–264. [Google Scholar]
- Sall, A.A.; Zanotto, P.D.A.; Sene, O.K.; Zeller, H.; Digoutte, J.; Thiongane, Y.; Bouloy, M. Genetic reassortment of Rift Valley fever in nature. J. Virol. 1999, 73, 8196–8200. [Google Scholar] [PubMed]
- Godsey, M.; Abdoon, A.; Savage, H.; Al-Sharani, A.M.; Al-Mazrou, Y.; Al-Jeffri, M.H.; Al-Sughair, S.; Al-Safi, S.; Ksiazek, T.G.; Miller, B.R. First record of Aedes (Stegomyia) unilineatus in the Kingdom of Saudi Arabia. J. Am Mosq. Control Assoc. 2003, 19, 84–86. [Google Scholar] [PubMed]
- Tantely, L.M.; Boyer, S.; Fontenille, D. A review of mosquitoes associated with Rift Valley fever virus in Madagascar. Am. J. Trop. Med. Hyg. 2015, 92, 722–729. [Google Scholar] [CrossRef] [PubMed]
- Murithi, R.M.; Munyua, P.; Ithondeka, P.M.; Macharia, J.M.; Hightower, A.; Luman, E.T.; Breiman, R.F.; Njenga, M.K. Rift Valley fever in Kenya: History of epizootics and identification of vulnerable districts. Epidemiol. Infect. 2011, 139, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Sindato, C.; Karimuribo, E.D.; Pfeiffer, D.U.; Mboera, L.E.; Kivaria, F.; Dautu, G.; Bernard, B.; Paweska, J.T. Spatial and temporal pattern of Rift Valley fever outbreaks in Tanzania; 1930 to 2007. PLoS ONE 2014, 9, e88897. [Google Scholar] [CrossRef] [PubMed]
- Gautret, P.; Benkouiten, S.; Gaillard, C.; Parola, P.; Brouqui, P. Camel milk-associated infection risk perception and knowledge in French Hajj pilgrims. Vector Borne Zoonotic Dis. 2013, 13, 425–427. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.R.; Nasci, R.S.; Lutwama, J.; Godsey, M.S.; Savage, H.; Lanciotti, R.; Peters, C.J. First field evidence for natural vertical transmission of West Nile virus in Culex univittatus complex mosquitoes from Rift Valley Province, Kenya. Am. J. Trop. Med. Hyg. 2000, 62, 240–246. [Google Scholar] [CrossRef]
- Dar, O.; McIntyre, S.; Hogarth, S.; Heymann, D. Rift Valley fever and a new paradigm of research and development for zoonotic disease control. Emerg. Infect. Dis. 2013, 19, 189–193. [Google Scholar] [CrossRef]
- Alhaeli, A.; Bahkali, S.; Ali, A.; Househ, M.; El-Metwally, A. The epidemiology of Dengue fever in Saudi Arabia: A systematic review. J. Infect. Public Health. 2016, 9, 117–124. [Google Scholar] [CrossRef]
- Paupy, C.; Delatte, H.; Bagny, L.; Corbel, V.; Fontenille, D. Aedes albopictus, an arbovirus vector: From the darkness to the light. Microbes Infect. 2009, 11, 1177–1185. [Google Scholar] [CrossRef]
- Bhatt, S.; Gething, P.W.; Brady, O.; Messina, J.; Farlow, A.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Calisher, C.H.; Karabatsos, N.; Dalrymple, J.; Shope, R.; Porterfield, J.; Westaway, E.; Brandt, W. Antigenic relationships between flaviviruses as determined by cross-neutralization tests with polyclonal antisera. J. Gen. Virol. 1989, 70, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Al-Tawfiq, J.A.; Memish, Z.A. Dengue Hemorrhagic Fever Virus in Saudi Arabia: A Review. Vect. Borne Zoonotic Dis. 2018, 18, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Guzman, A.; Istúriz, R.E. Update on the global spread of dengue. Int. J. Antimicrob. Agents 2010, 36, S40–S42. [Google Scholar] [CrossRef] [PubMed]
- Fakeeh, M.; Zaki, A.M. Virologic and serologic surveillance for dengue fever in Jeddah, Saudi Arabia, 1994–1999. Am. J. Trop. Med. Hyg. 2001, 65, 764–767. [Google Scholar] [CrossRef] [PubMed]
- Fakeeh, M.; Zaki, A. Dengue in Jeddah, Saudi Arabia, 1994–2002. Dengue Bull. 2003, 27, 13–18. [Google Scholar]
- Khan, N.; Azhar, E.; El-Fiky, S.; Madani, H.; Abuljadial, M.; Ashshi, A.; Turkistani, A.; Hamouh, E. Clinical profile and outcome of hospitalized patients during first outbreak of dengue in Makkah, Saudi Arabia. Acta Trop. 2008, 105, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Department of Communicable Diseases, Ministry of Health (MOH). Surveillance Report; Saudi Arabia Ministry of Health: Riyadh, Saudi Arabia, 2007; (Last update on 3 January 2019). [Google Scholar]
- Zaki, A.; Perera, D.; Jahan, S.; Cardosa, M.J. Phylogeny of dengue viruses circulating in Jeddah, Saudi Arabia: 1994 to 2006. Trop. Med. Int. Health. 2008, 13, 584–592. [Google Scholar] [CrossRef]
- Egger, J.; Ooi, E.; Kelly, D.; Woolhouse, M.E.; Davies, C.; Coleman, P.G. Reconstructing historical changes in the force of infection of dengue fever in Singapore: Implications for surveillance and control. Bull. World Health Organ. 2008, 86, 187–196. [Google Scholar] [CrossRef]
- Badreddine, S.; Al-Dhaheri, F.; Al-Dabbagh, A.; Al-Amoudi, A.; Al-Ammari, M.; Elatassi, N.; Abbas, H.; Magliah, R.; Malibari, A.; Almoallim, H. Dengue fever Clinical features of 567 consecutive patients admitted to a tertiary care center in Saudi Arabia. Saudi Med. J. 2017, 38, 1025–1033. [Google Scholar] [CrossRef]
- Ayyub, M.; Khazindar, A.M.; Lubbad, E.H.; Barlas, S.; Alfi, A.Y.; Al-Ukayli, S. Characteristics of dengue fever in a large public hospital, Jeddah, Saudi Arabia. J. Ayub. Med. Coll. Abbottabad 2006, 18, 9–13. [Google Scholar] [PubMed]
- Kholedi, A.A.; Balubaid, O.; Milaat, W.; Kabbash, I.A.; Ibrahim, A. Factors associated with the spread of dengue fever in Jeddah Governorate, Saudi Arabia. East Mediterr. Health J. 2012, 18, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, A.G.; Al Mazroa, M.; Alrabeah, A.; Ibrahim, A.; Mokdad, A.H.; Memish, Z.A. Geographical distribution and spatiotemporal patterns of dengue cases in Jeddah Governorate from 2006–2008. Trans. R. Soc. Trop. Med. Hyg. 2013, 107, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Aziz, A.T.; Al-Shami, S.; Mahyoub, J.; Hatabbi, M.; Ahmad, A.; Rawi, C.S. An update on the incidence of dengue gaining strength in Saudi Arabia and current control approaches for its vector mosquito. Para. Vect. 2014, 7, 258. [Google Scholar] [CrossRef] [PubMed]
- El-Gilany, A.H.; Eldeib, A.; Hammad, S. Clinico-epidemiological features of dengue fever in Saudi Arabia. Asian Pac. J. Trop. Med. 2010, 3, 220–223. [Google Scholar] [CrossRef]
- Alwafi, O.M.; McNabb, S.; Memish, Z.; Assiri, A.; Alzahrani, S.; Asiri, S.; Alturkstani, A.; Albar, I.; Turkstani, A. Dengue Fever in Makkah, Kingdom of Saudi Arabia, 2008–2012. Am. J. Res. Commun. 2013, 1, 123–139. [Google Scholar]
- El-Badry, A.; El-Beshbishy, H.; Al-Ali, K.; Al-Hejin, A.; ElSayed, W. Molecular and seroprevalence of imported dengue virus infection in Al-Madinah, Saudi Arabia. Comp. Clin. Pathol. 2014, 23, 861–868. [Google Scholar] [CrossRef]
- Al-Azraqi, T.A.; El Mekki, A.; Mahfouz, A. Seroprevalence of dengue virus infection in Aseer and Jizan regions, Southwestern Saudi Arabia. Trans. R. Soc. Trop. Med. Hyg. 2013, 107, 368–371. [Google Scholar] [CrossRef]
- MOH. Dengue Fever Cases in Jeddah Drop by 38%-Saudi Gazette. 2018. Available online: http://saudigazette.com.sa/article/527068/SAUDI-ARABIA/Dengue-fever-cases-in-Jeddah-drop-by-38 (accessed on 5 April 2018).
- McVey, D.S.; Wilson, W.C.; Gay, C.G. West Nile virus. Rev. Sci. Tech. 2015, 34, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Tantely, M.L.; Goodman, S.M.; Rakotondranaivo, T.; Boyer, S. Review of West Nile virus circulation and outbreak risk in Madagascar: Entomological and ornithological perspectives. Parasite 2016, 23, 49. [Google Scholar] [CrossRef] [PubMed]
- Smithburn, K.C.; Hughes, T.P.; Burke, A.W.; Paul, J.H. A neurotropic virus isolated from the blood of a native of Uganda. Am. J. Trop. Med. Hyg. 1940, 20, 471–492. [Google Scholar] [CrossRef]
- Bernkopf, H.; Levine, S.; Nerson, R. Isolation of West Nile virus in Israel. J. Infect. Dis. 1953, 93, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Lanciotti, R.; Roehrig, J.; Deubel, V.; Smith, J.; Parker, M.; Steele, K.; Crise, B.; Volpe, K.; Crabtree, M.; Scherret, J. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 1999, 286, 2333–2337. [Google Scholar] [CrossRef] [PubMed]
- Giladi, M.; Metzkor-Cotter, E.; Martin, D.; Siegman-Igra, Y.; Korczyn, A.; Rosso, R.; Berger, S.A.; Campbell, G.L.; Lanciotti, R.S. West Nile encephalitis in Israel, 1999: The New York connection. Emerg. Infect. Dis. 2001, 7, 659–661. [Google Scholar] [CrossRef] [PubMed]
- Ceianu, C.; Ungureanu, A.; Nicolescu, G.; Cernescu, C.; Nitescu, L.; Tardei, G. West Nile virus surveillance in Romania: 1997–2000. Viral Immunol. 2001, 14, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Balenghien, T.; Sabatier, P.; Bicout, D. Histoire et épidémiologie de la fièvre West Nile. In Le Virus du Nil Occidental; Ed. Quae: Versailles, France, 2013; pp. 7–24. [Google Scholar]
- Harbach, R.E. Culex pipiens: Species versus species complex taxonomic history and perspective. J. Am. Mosq. Control Assoc. 2012, 28 (Suppl. 4), 10–23. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghamdi, G. Incidence of West nile virus in Al-Ahsa, Saudi Arabia. Int. J. Virol. 2014, 10, 163–167. [Google Scholar] [CrossRef]
- Sayed-Ahmed, M. Incidence History of West Nile Virus in Africa and Middle East, With an Emphasis on Egypt: A Review. J. Dairy Vet. Anim. Res. 2016, 3, 00080. [Google Scholar] [CrossRef]
- Ahmadnejad, F.; Otarod, V.; Fallah, M.H.; Lowenski, S.; Sedighi-Moghaddam, R.; Zavareh, A.; Durand, B.; Lecollinet, S.; Sabatier, P.; et al. Spread of West Nile virus in Iran: A cross-sectional serosurvey in equines, 2008–2009. Epidemiol. Infect. 2011, 139, 1587–1593. [Google Scholar] [CrossRef]
- Batieha, A.; Saliba, E.K.; Graham, R.; Mohareb, E.; Hijazi, Y.; Wijeyaratne, P. Seroprevalence of West Nile, Rift Valley, and sandfly arboviruses in Hashimiah, Jordan. Emerg. Infect. Dis. 2000, 6, 358–362. [Google Scholar] [CrossRef]
- Gallian, P.; de Micco, P.; Ghorra, P. Seroprevalence of West Nile virus in blood donors at Hotel Dieu de France, Beirut, Lebanon. Transfusion 2010, 50, 1156–1158. [Google Scholar] [CrossRef] [PubMed]
- Abutarbush, S.M.; Al-Majali, A.M. West Nile virus infection in horses in Jordan: Clinical cases, seroprevalence and risk factors. Transbound. Emerg. Dis. 2014, 61, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Joseph, S.; Wernery, U.; Teng, J.L.; Wernery, R.; Huang, Y.; Patteril, N.; Chan, K.; Elizabeth, S.; Fan, R.; Lau, S.; et al. First isolation of West Nile virus from a dromedary camel. Emerg. Microbes Infect. 2016, 5, e53. [Google Scholar] [CrossRef] [PubMed]
- Gür, S.; Kale, M.; Erol, N.; Yapici, O.; Mamak, N.; Yavru, S. The first serological evidence for Rift Valley fever infection in the camel, goitered gazelle and Anatolian water buffaloes in Turkey. Trop. Anim. Health Prod. 2017, 49, 1531–1535. [Google Scholar] [CrossRef] [PubMed]
- Almuzainia, A.M.; Osman, S.A.; Saeed, E.M. An outbreak of dermatophytosis in camels (Camelus dromedaríus) at Qassim Region, Central of Saudi Arabia. J. Appl. Anim. Res. 2016, 44, 126–129. [Google Scholar] [CrossRef]
- Abdallah, M.; Adam, I.; Abdalla, T.; Abdelaziz, S.; Ahmed, M.; Aradaib, I. A survey of Rift valley fever and associated risk factors among the one-humped camel (Camelus dromedaries) in Sudan. Irish. Vet. J. 2016, 69, 6. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Rahim, I.H.; El-Hakim, U.A.; Hussein, M. An epizootic of Rift Valley fever in Egypt in 1997. Rev. Sci. Tech. Off. Int. Epi. 1999, 18, 741–748. [Google Scholar] [CrossRef]
- Carroll, S.A.; Reynes, J.; Khristova, M.L.; Andriamandimby, S.; Rollin, P.; Nichol, S.T. Genetic evidence for Rift Valley fever outbreaks in Madagascar resulting from virus introductions from the East African mainland rather than enzootic maintenance. J. Virol. 2011, 85, 6162–6167. [Google Scholar] [CrossRef]
- Bruckner, G.K. The role of the World Organisation for Animal Health (OIE) to facilitate the international trade in animals and animal products. Onderstepoort J. Vet. Res. 2009, 76, 141–146. [Google Scholar] [CrossRef]
- Ebrahim, S.H.; Memish, Z.; Uyeki, T.; Khoja, T.; Marano, N.; McNabb, S. Public health pandemic H1N1 of the 2009 Hajj. Science 2009, 326, 938–940. [Google Scholar] [CrossRef]
- Hussain, M.H.; Ward, M.P.; Body, M.; Al-Rawahi, A.; Wadir, A.A.; Al-Habsi, S.; Saqib, M.; Ahmed, M.S.; Almaawali, M.G. Spatio-temporal pattern of sylvatic rabies in the Sultanate of Oman, 2006–2010. Prev. Vet. Med. 2013, 110, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Abdelwhab, E.M.; Hassan, M.; Abdel-Moneim, A.; Naguib, M.; Mostafa, A.; Hussein, I.; Arafa, A.; Erfan, A.; Kilany, W.; Agour, M. Introduction and enzootic of A/H5N1 in Egypt: Virus evolution, pathogenicity and vaccine efficacy ten years on. Infect. Genet. Evol. 2016, 40, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Salaheldin, A.H.; Veits, J.; El-Hamid, H.S.A.; Harder, T.C.; Devrishov, D.; Mettenleiter, T.C.; Hafez, H.M.; Abdelwhab, E. Isolation and genetic characterization of a novel 2.2.1.2a H5N1 virus from a vaccinated meat-turkeys flock in Egypt. Virol. J. 2017, 14, 48. [Google Scholar] [CrossRef] [PubMed]
- Kandeel, A.; Deming, M.; Elkreem, E.A.; El-Refay, S.; Afifi, S.; Abukela, M.; Earhart, K.; El-Sayed, N.; ElGabay, H. Pandemic (H1N1) 2009 and Hajj Pilgrims who received Predeparture Vaccination, Egypt. Emerg. Infect. Dis. 2011, 17, 1266–1268. [Google Scholar] [CrossRef] [PubMed]
- Rupprecht, C.E.; Schlim, D. Rabies. CDC Health Information for International Travel. 2014. Available online: http://wwwnc.cdc.gov/travel/yellowbook/2014/chapter-3-infectious-diseases-related-to-travel/rabies (accessed on 4 March 2015).
- Al-Tayib, O.A.; Abdoun, K.A. Balantidium coli infection in hamadryas baboon (Papio hymadryas) in Saudi Arabia: A case report. J. Anim. Plant. Sci. 2013, 23, 940–943. [Google Scholar]
- Hui, D.S.; Azhar, E.I.; Kim, Y.; Memish, Z.; Oh, M.; Zumla, A. Middle East respiratory syndrome coronavirus: risk factors and determinants of primary, household, and nosocomial transmission. Lancet Infect. Dis. 2018, 18, e217–e227. [Google Scholar] [CrossRef]
- Ibrahim, I.; Salah, H.; El Sayed, H.; Mansour, H.; Eissa, A.; Wood, J.; Fathi, W.; Tobar, S.; Gur, R.C.; Gur, R.E.; et al. Hepatitis C virus antibody titers associated with cognitive dysfunction in an asymptomatic community-based sample. J. Clin. Exp. Neuropsychol. 2016, 38, 861–868. [Google Scholar] [CrossRef]
- Almajhdi, F.A.; Ali, G. Report on Influenza A and B Viruses: Their Coinfection in a Saudi Leukemia Patient. BioMed. Res. Int. 2013, 2013, 290609. [Google Scholar] [CrossRef]
- Malkinson, M.; Banet, C. The role of birds in the ecology of West Nile virus in Europe and Africa. Curr. Top. Microbiol. Immunol. 2002, 267, 309–322. [Google Scholar]
- Wernery, U.; El Rasoul, I.; Wong, E.Y.; Joseph, M.; Chen, Y.; Jose, S.; Tsang, A.K.; Patteril, N.; Chen, H.; Elizabeth, S.K.; et al. phylogenetically distinct Middle East respiratory syndrome coronavirus detected in a dromedary calf from a closed dairy herd in Dubai with rising seroprevalence with age. Emerg. Microbes Infect. 2015, 4, e74. [Google Scholar] [CrossRef]
- Perera, R.A.; Wang, P.; Gomaa, M.R.; El-Shesheny, R.; Kandeil, A.; Bagato, O.; Siu, L.Y.; Shehata, M.M.; Kayed, A.S.; Moatasim, Y.; et al. Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013. Eurosurveillance 2013, 18, 20574. [Google Scholar] [CrossRef] [PubMed]
- Laxminarayan, R.; Heymann, D. Challenges of drug resistance in the developing world. BMJ 2012, 344, e1567. [Google Scholar] [CrossRef] [PubMed]
- Ayukekbong, J.A.; Ntemgwa, M.; Atabe, A.N. The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob. Resist. Infect. Control. 2017, 6, 47. [Google Scholar] [CrossRef] [PubMed]
Pathogens * | First Country Affected and Year | First Cases Recorded from Saudi Arabia, Year and Area | Reference on Cases Information from Saudi | Pathogen Sources + | Pathogen Host |
---|---|---|---|---|---|
Rabies | First human rabies death in the USA, 1899 | 2018 in Makkah | [41] | Saliva, CNS | All mammals |
MERS-CoV | Saudi Arabia in 2012 | 2012 in Jeddah, Riyadh, and Makkah | [34,55,61,63] | Nasal and eyes discharges | Arabian camel |
Influenza A H1N1; H5N1 | First in 1918, then 1976 in the USA. Another fatality complication occurred from 2005–2009 | 2009 in Riyadh, Eastern region, and Jeddah | [68,78,84,87] | Aerosols, bird feces | Birds + pigs + horses + dogs + sea mammals + humans |
AHFV | Saudi Arabia in 1994 | 1994 in Jeddah, and between 2006–2009 in Jeddah, Makkah, and Najran | [33,90,95,96] | Blood, feces, and nasal discharges | Sheep + Arabian camel |
CCHV | Crimean Peninsula in 1944 and 1956 from a Congo child | 1989–1990 in Makkah. 1991–1993 in Makkah, Jeddah, and Taif. 2009 in Jazan | [114,115,116,117] | Blood, tissue, and ticks | Domestic ruminants |
RVFV | Great Rift Valley of Kenya in 1912 | 2000 in Southwestern regions of Saudi (Jizan and Aseer) | [148] | Blood, tissues, and mosquitoes | Lamb + goat + bovine + Arabian camel |
DHFV | Before the 18th century. Manila in 1953. Jakarta Indonesia and Egypt in 1779 | 1994 in Jeddah, 2004 in Makkah, and 2008 in Al-Madinah | [171,177,178,179,180,181,182,184,205,209] | Blood, tissue, and mosquitoes | Human |
WNV | Uganda in 1937 | 2007 in Al-Ahsa, virus detection was by serology positivity | [196] | CNS, tissue | Horse + human |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Tayib, O.A. An Overview of the Most Significant Zoonotic Viral Pathogens Transmitted from Animal to Human in Saudi Arabia. Pathogens 2019, 8, 25. https://doi.org/10.3390/pathogens8010025
Al-Tayib OA. An Overview of the Most Significant Zoonotic Viral Pathogens Transmitted from Animal to Human in Saudi Arabia. Pathogens. 2019; 8(1):25. https://doi.org/10.3390/pathogens8010025
Chicago/Turabian StyleAl-Tayib, Omar A. 2019. "An Overview of the Most Significant Zoonotic Viral Pathogens Transmitted from Animal to Human in Saudi Arabia" Pathogens 8, no. 1: 25. https://doi.org/10.3390/pathogens8010025
APA StyleAl-Tayib, O. A. (2019). An Overview of the Most Significant Zoonotic Viral Pathogens Transmitted from Animal to Human in Saudi Arabia. Pathogens, 8(1), 25. https://doi.org/10.3390/pathogens8010025